
Confluence: Enhancing Contextual Desktop Search

Karl Gyllstrom
University of North Carolina

Chapel Hill, NC USA
27599-3175

karl@cs.unc.edu

Craig Soules
Hewlett Packard Laboratories

1501 Page Mill Road, MS
1134

Palo Alto, CA 94304-1126
craig.soules@hp.com

Alistair Veitch
Hewlett Packard Laboratories

1501 Page Mill Road, MS
1134

Palo Alto, CA 94304-1126
alistair.veitch@hp.com

ABSTRACT

We present Confluence, an enhancement to a desktop file
search tool called Connections which extracts conceptual re-
lationships between files by their temporal access patterns in
the file system. A limitation of a purely file-based approach
is that as file operations are increasingly abstracted by ap-
plications, their correlation to a user’s activity weakens and
thereby reduces the applicability of their temporal patterns.
To deal with this problem, we augment the file event stream
with a stream of window focus events from the UI layer. We
present 3 algorithms that analyze this new stream, extract-
ing the user’s task information which informs the existing
Connections algorithms. We present results and conclusions
from a preliminary user study on Confluence.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Search and Retrieval]: Clustering

General Terms: Human Factors, Experimentation

Keywords: Contextual search, User modeling

1. INTRODUCTION

Unlike web search, desktop search lacks local hyperlinks
which provide the foundation for structural search algorithms
like PageRank. Consequently, desktop search is typically
limited to text-based methods, placing the onus on the user
to provide more descriptive queries, and often reducing the
quality of results. Temporal context provides desktop search
an alternative method with which to understand the rela-
tionships between files; namely that files which exhibit sim-
ilar access patterns are likely to share a task commonality –
even when those files bear no content similarities. Connec-
tions[3] is a local file search tool that departs from the tra-
ditional desktop search paradigm to incorporate these con-
textual relationships in search results.

Connections is composed of two main parts: context build-
ing and search. Contextual relationships are captured by a
relation graph, where nodes represent files, and the links be-
tween them reflect the strength of their contextual relation-
ships. To build the relation graph, a kernel-layer file system
monitor records file operations such as read and write as a
user goes about their work. While these events occur, Con-
nections maintains a relation window (RW), which is a log
of all file events occurring in the last n-seconds. When a
new write event enters the RW, the relation graph link to
the newly written file from each file read in the RW is incre-

Copyright is held by the author/owner(s).
SIGIR’07, July 23–27, 2007, Amsterdam, The Netherlands.
ACM 978-1-59593-597-7/07/0007.

mented. Similarly, a new entering read event has its file’s
links to files written in the RW incremented.

Upon a user query, a pool of results is created using a
traditional text based method (e.g. tf-idf). For each file
in this pool, Connections identifies a subgraph of contextu-
ally related files by selecting all files on the relation graph
connected to that file within n hops and of at least s link
strength. A ranking algorithm such as PageRank or HITS
is then used to transform this subgraph into an ordered list
of files that is augmented to the original pool.

Despite positive results in [3], we perceived some limita-
tions inherent in a purely file-based approach. As applica-
tions grow increasingly sophisticated, they tend to further
insulate users from low level file operations, forging a divide
between a user’s conceptual document interaction and its
file layer manifestation. We have developed Confluence, a
set of modifications to the existing Connections algorithms
that incorporate application window focus events, which are
generated by the OS whenever a user changes the active
window (typically through a mouse click or closing of the
previously active window).

One problem with a file system based approach is the dif-
ficulty in differentiating background noise (e.g. reads from
a virus checker) from user events (e.g. writes from a text
editor). While much of the background noise is generated
by system-owned processes, it can also be generated by pas-
sivated user processes (e.g. a text editor which automati-
cally saves open files even when the application window has
been minimized and not recently used). Our first algorithm,
the Focused Window Filtering (FWF) algorithm, helps deal
with this problem by applying information gleaned from the
focused application window to inform the interpretation of
that application’s file operations. FWF assumes that the
currently focused window dictates the active user task, and
applies a filter to the file event stream which removes all
file operations except those whose process identifier (pid)
(or some parent pid) matches that of the currently focused
window. The reduction of noise enables us to expand the
duration and scope of the RW, as the original duration (30
seconds) and read-to-write increment restriction existed to
manage the prohibitive volume of file operations. FWF al-
lows a focus-based relation window that is sized to reflect
a user’s task, starting a new RW when an application win-
dow gains focus and ending it when the window loses focus.
In addition, it allows for reads to be correlated with other
reads within a common RW. Furthermore, the reduction of
files helps maintains a leaner relation graph.

SIGIR 2007 Proceedings Poster

717



While a useful starting point, FWF’s inability to connect
file operations which occur across different focus events lim-
its its ability to effectively capture the typical task model,
where users switch between multiple windows or applica-
tions as they go about their work. The Focused Task Filter-
ing (FTF) algorithm broadens the definition of user task to
the set of recently focused windows among which the user
has switched focus as part of their work over a longer time
interval, overcoming FWF’s inability to consider relation-
ships between files which are accessed while different win-
dows are focused. FTF maintains a log of focus-based RWs
that occur over the last n seconds (e.g. 300 to 600). For
each file event, FTF increments the links to each of the files
in previous RWs in addition to the active RW, broadening
the time period within which file relationships can be built
while maintaining the advantages of filtering.

Another problem faced by Connections is the tendency
of some applications to obviate file system activity through
caching. For example, a user who opens a PDF file may refer
to it many times through an application window while work-
ing; however, because the application caches the PDF, this
activity is not reflected in the file system. The Weight Car-
rying (WC) algorithm extends FTF, maintaining a record of
the set of file events that occurred while that widget last had
focus.1. If that widget is focused again without witnessing a
new file event matching the widget’s pid, WC retrieves the
last set of file events which occurred while that widget had
focus, and inserts “fake” copies of those events into the file
stream. Connections then has more information about how
a file might be being used in concert with other files within
the active task. Distinguishing widget from window allows
for a more fine-grained application of this technique.

2. EVALUATION

We conducted a user study involving 4 volunteers over
a 3-6 week period to evaluate the effectiveness of Conflu-
ence compared to Connections. Users installed the Conflu-
ence software, which included a kernel-layer file system event
monitor and a UI event monitor, both recording to a com-
mon, secure file on their system. At the end of the period,
we collected these traces and generated relation graphs us-
ing the various Confluence algorithms (parameterizing the
FTF and WC algorithms for 5 and 10 minute intervals), as
well as the original Connections algorithm.

From the file system logs, we generated and presented
users a list of files accessed during the trace period and asked
them to select a set of 5-10 disjoint tasks with which they
were engaged during the period. For each task, they se-
lected one or two files which were used as part of it. We
used these files to seed searches on each of the algorithms’
relation graphs, producing lists of files which were consid-
ered by the algorithms to be strongly contextually related to
the seeds. For each seed file, we merged the set of the var-
ious algorithms’ file lists into a single pool. To increase the
pool’s coverage of potentially related files, we also merged
results from a directory search algorithm which produced a
list of all files that existed at some point within the same
directory as the seed file, under the premise that user’s di-
rectory organization of their files at least partially reflects

1Widgets, such as text panes, are distinct from windows in
that they are components of other windows, and different
widgets within a common window can operate on different
files (e.g. tabbed text editors)

Method 5 10 15 20 25 30

FTF (300) 0.13 0.20 0.28 0.36 0.41 0.45
FTF (600) 0.13 0.19 0.27 0.31 0.38 0.41
WC (300) 0.10 0.20 0.28 0.33 0.36 0.40
WC (600) 0.10 0.18 0.29 0.33 0.35 0.39
Standard 0.13 0.15 0.18 0.19 0.20 0.20

Figure 1: Average Recall over Result Size.

Method 5 10 15 20 25 30
FTF (300) 0.03 0.66 1.16 2.05 2.57 3.10
FTF (600) 0.01 0.55 1.04 1.46 2.21 2.60
WC (300) 0.52 0.70 1.20 1.61 1.90 2.47
WC (600) 0.43 0.41 1.27 1.64 1.87 2.32

Figure 2: t-values (df = 61) of mean recall differ-

ences between Confluence algorithms and Connec-

tions. Dark gray is significant with P < 0.01, medium

gray is P < 0.05, and light gray is P < 0.1.

the commonality of those files. From this pool, users rated
each listed file on a 0-3 scale, where 3 indicated the file was
highly related to the seed file and 0 indicated no relation-
ship. Using these ranked pools, we evaluated each algorithm
by recall, or the percentage of the algorithm’s results which
had a rank of 3.

3. RESULTS AND CONCLUSIONS

We evaluated Confluence and Connections for 31 file pools
spanning the 4 users. Figure 1 depicts the algorithms’ aver-
age recall values for results containing a score of 3 (FWF per-
formed predictably poorly and its results are omitted from
the graph). For a result size of 5, the different algorithms
performed similarly. As result size increases, the improve-
ment of the Confluence algorithms over the pure file-based
approach grows substantial. Figure 2 depicts the Student’s
t scores comparing Confluence to Connections.

We did not observe a large performance difference between
the FTF and WC methods, nor between task durations.
However, while not strongly evident in the collective num-
bers, WC did find unique, accurate file relationships, and
performs better at higher result sizes (50-100). WC presents
a trade-off; its “fake” file insertion has the potential to find
relationships that would be lost by other methods at the risk
of enhancing false relationships which can push valid results
further down the list.

In light of the strong performance of the FTF and WC
methods, the poor performance of FWF indicates that it
is not purely the filtering – but rather the increased RW
duration and file operation flexibility enabled by the filtering
– which constitutes the primary advantage of Confluence.

4. REFERENCES

[1] S. Dumais, E. Cutrell, J. Cadiz, G. Jancke, R. Sarin, and D. C.
Robbins. Stuff I’ve seen: a system for personal information
retrieval and re-use. In Proc. of SIGIR ’03, pages 72–79, New
York, NY, USA, 2003. ACM Press.

[2] D. Karger, K. Bakshi, D. Huynh, D. Quan, and V. Sinha.
Haystack: A General Purpose Information Management Tool for
End Users of Semistructured Data. In CIDR ’05, pages 13–26,
2005.

[3] C. A. N. Soules and G. R. Ganger. Connections: using context
to enhance file search. In Proc. of SOSP ’05, pages 119–132,
New York, NY, USA, 2005. ACM Press.

SIGIR 2007 Proceedings Poster

718


