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Abstract

The solution of the radiation transfer equation for the Earth's at-
mosphere needs to account for the re
ectivity of the ground. When
using the spherical harmonics method, the solution for this term in-
volves an integral with a particular measure that presents numerical
challenges. We are interested in computing a high order Gauss quadra-
ture rule for this measure. We show that the two classical algorithms
to compute the desired Gauss quadrature rule, namely the Stieltjes
algorithm and the method using moments are unstable in this case.
In their place, we present a numerically stable method to compute
Gauss quadrature rules of arbitrary high order. The key idea is to
discretize the measure in the integral before computing the recurrence
coe�cients of the orthogonal polynomials which lead to the quadra-
ture rule. For discrete measures, one can use a numerically stable
orthogonal reduction method to compute the recurrence coe�cients.
Re�ning the discretization we arrive at the nodes and weights of the
Gauss quadrature rule for the continuous case in a stable fashion. This
technique is completely general and can be applied to other measures
whenever high order Gauss quadrature rules are needed.

1 Introduction

We are interested in studying the standard problem in radiation trans-
port. We have a homogeneous, plane parallel layer with internal
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sources, unidirectional radiation incident on the top, and a di�usely re-

ecting lower boundary. For convenience we de�ne two new variables,
� = �z, where � equals the sum of the scattering and absorption co-
e�cients per unit distance, and � = cos(�), the cosine of the zenith
angle. The speci�c intensity I(�; �) is de�ned as the amount of radi-
ation moving in a particular direction � at a point � in space. The
governing equation for I(�; �) is

�
dI

d�
= I � !

2

Z 1

�1
P (�; �0)I(�; �0)d�0 + S; (1.1)

where ! is the fraction of the radiation that is scattered on each inter-
action, P (�; �0) describes how the radiation changes direction when
it is scattered, and S represents all internal sources. If there is some
scattering, ! 6= 0, equation (1.1) is complicated, since now each direc-
tion is coupled to all the other directions by the integral. The whole
system has to be solved simultaneously for all directions �.

Chandrasekhar [3] proposed replacing the integral in equation (1.1)
with a quadrature sum and solving the resulting system of equations
for the speci�c intensity at a number of discrete ordinates, the Discrete
Ordinates Method.

A di�erent method to solve equation (1.1) is the spherical har-
monics method which was proposed by Jeans [9] long before Chan-
drasekhar's Discrete Ordinates Method. It has a number of compu-
tational advantages and is the spectral analogue of the Discrete Or-
dinates Method. The key idea is to expand the intensity I(�; �) and
the kernel P (�; �0) in orthogonal polynomials such that the integral
in equation (1.1) is replaced by an orthogonality condition. Write

I(�; �) =
nX

k=0

fk(�)Pk(�); (1.2)

and as shown in Chandrasekhar [3]

P (�; �0) =
nX

k=0

�kPk(�)Pk(�
0); (1.3)

where the �k are known quantities that depend on the type of scat-
tering particle and Pk(�) is the k-th Legendre polynomial that satis-
�es the standard recurrence relations and orthogonality condition [1].
Substituting equations (1.2) and (1.3) into equation (1.1) and using
the recurrence relation of Pk(�) involving the derivative [9] gives us
the system of ordinary di�erential equations

k + 1

2k + 1

dfk+1
d�

+
k

2k + 1

dfk�1
d�

+

�
!�k
2k + 1

� 1

�
fk = sk; (1.4)

2



where sk is the expansion coe�cient of the internal sources.
There are two kinds of boundary conditions that are normally

treated separately: the uni-directional solar illumination and the ground
re
ectivity. We are interested in the latter. In each case, we compute
a pseudo-source that represents the e�ect of one scattering of the ra-
diation from the boundary condition.

We assume that the ground re
ects the incoming radiation with
some angular distribution h(�). The corresponding source term is
shown in [4] to be

sk;g(�) =
�Rg�k
2k + 1

Z 1

0
e�(�0��)=�h(�)Pk(�)d�; (1.5)

where Rg is the re
ectivity of the ground. Specular re
ection, h(�) =
�(� � �0), is usually treated separately. We will assume that h(�)
is piecewise continuous. The numerical evaluation of the integral in
equation (1.5),

Sk(c) :=

Z 1

0
e�c=�h(�)Pk(�)d�; (1.6)

where c := �0 � � , is the subject of this paper.

2 Earlier Work

If h(�) is a constant, h(�) � H, we can use the exponential integral [1]

Ej(c) :=

Z
1

1
e�cx

1

xj
d� (2.1)

to integrate (1.6). Let ak be the coe�cients of the polynomial Pk(�),

Pk(�) =
kX

j=0

aj�
j:

Inserting this expression into Sk(c) and using the exponential integral
(2.1) we obtain

Sk(c) = H �
kX

j=0

ajEj+2(c); (2.2)

Unfortunately, the coe�cients aj of Pk(�) vary widely in magnitude
and di�er in sign making the summation numerically unstable. Table
1 shows how the positive and negative components in the sum balance
each other and lead to cancellation.

Dave [5] used Simpson's rule between the zeros of Pk(�) and Karp,
Greenstadt and Fillmore [10] used a 50-point Gauss quadrature to
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k positive part negative part
5 0.31593286828701e+00 -0.32273434246716e+00
10 1.06529837121543e+01 -1.06537713711572e+01
25 1.60087271890534e+06 -1.60087271891255e+06
50 2.14468963201455e+15 -2.14468963201455e+15

Table 1: Positive and negative values in the sum (2.2) summed separately
reveal cancellation

evaluate this integral. While for both approaches the absolute accu-
racy is good and the methods are e�cient, neither of these approaches
is mathematically elegant.

More than a decade passed with no further publications in this area
until Settle [11] derived a 5-term recurrence relation that is valid when
h(�) = �r, where r > �1 is a real number. Hence, any re
ectivity of
this form can be computed. The backward recurrence of

0 = (2k + 3)(k � 1)(k � r � 2)Sk�2
�c(2k � 1)(2k + 3)Sk�1
+(2k + 1)(2k2 + 2k � 3� r)Sk
+c(2k � 1)(2k + 3)Sk+1
+(k + 2)(k + r + 3)(2k � 1)Sk+2

(2.3)

is only mildly unstable, allowing the evaluation of the integral for this
class of re
ectivity coe�cients.

3 Gauss Quadrature Rule

Our approach is to note that the integral can be viewed as integrating
a polynomial over a �nite interval with the non-negative measure

w(�) := e�c=�h(�) � 0; (3.1)

since the angular distribution h(�) is in general non-negative 1. It
is always possible to derive Gauss quadrature rules for non-negative
measures [6]. The nodes and weights can be obtained from the poly-
nomials which are orthogonal on the �nite interval under the given
measure w(�).

1If a certain model requires h(�) to attain negative values as well, one would exclude
h(�) from the measure and integrate it together with Pk(�) when the quadrature rule is
applied.
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It is well known that the orthogonal polynomials �k(�) satisfy a
three term recurrence relation

�k+1(x) = (x� �k)�k(x)� �k�k�1(x); k = 0; 1; : : :
�0(x) = 1; ��1(x) = 0

(3.2)

and from the recurrence coe�cients �k and �k the Golub-Welsch al-
gorithm [8] computes in a stable fashion the nodes and weights of the
desired Gauss quadrature rule. It is thus essential to be able to com-
pute the recurrence coe�cients �k and �k in the recurrence relation
(3.2) to compute a Gauss quadrature rule for a given measure w(�)
[7].

3.1 Continuous Measures

There are two classical methods to compute the recurrence coe�cients
�k and �k for continuous measures w(�): the Stieltjes algorithm and
the method of moments.

The Stieltjes algorithm uses the fact that the recurrence coe�cients
�k and �k can be expressed in terms of the orthogonal polynomials
(3.2) and the related inner product

(f; g) =

Z b

a
f(�)g(�)w(�)d�: (3.3)

The relations are

�k =
(x�k;�k)
(�k;�k)

; k � 0;

�0 = (�0; �0); �k =
(�k;�k)

(�k�1;�k�1)
; k > 0:

(3.4)

To compute the orthogonal polynomials the following iterative proce-
dure can be used: compute �0 and �0 using the known initial poly-
nomial �0 = 1. Then use the recurrence relation for the polynomials
(3.2) to compute �1. With �1 we can compute �1, �1 using (3.4) and
so on. This procedure can however exhibit instabilities for measures
w(�) arising in applications. We will show in Section 4 that we can
only obtain low order quadrature rules with the Stieltjes algorithm in
our application.

The second method, the method of moments, uses the fact that
the �rst n recursion coe�cients �k and �k, k = 0; 1; : : : ; n � 1 are
uniquely determined by the �rst 2n moments mk, k = 0; 1; : : : ; 2n� 1
of the given measure w(�),

mk =

Z b

a
�kw(�)d�:
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Formulas are known which express �k and �k in terms of Hankel deter-
minants in these moments. Unfortunately this algorithm is unstable
as well for the measures in our application, as will be shown in Section
4. In fact, we were not able to compute Gauss quadrature rules of the
order required in our application using the classical two methods.

3.2 Discrete Measures

For discrete measures

w(�) =
nX

i=1

wi�(�� �i)

there is a third method to compute the orthogonal polynomials which
is based on an observation by Boley and Golub [2], that the tridiagonal
matrix containing the desired recurrence coe�cients

Jn :=

2
66666664

1
p
�0 0p

�0 �0
p
�1

p
�1 �1

. . .
. . .

. . .
p
�n�1

0
p
�n�1 �n�1

3
77777775

is orthogonally similar to the matrix

An :=

2
6666664

1
p
w1

p
w2 : : :

p
wnp

w1 �1p
w2 �2
...

. . .p
wn �n

3
7777775
;

where wi are the values of the discrete measure at the nodes �i. Hence
the desired entries of the matrix Jn can be obtained by applying Givens
rotations or Householder re
ections to the matrix An. This process is
by its de�nition numerically stable.

Thus, for cases where the two classical methods for continuous
measures fail, and it is impossible to compute the needed Gauss quadra-
ture rule, we propose to bene�t from the stability of the discrete al-
gorithm to obtain the desired recurrence coe�cients. We discretize
the measure w(�) and compute a sequence of approximations to the
inner product (3.3) by a sum using a suitable quadrature scheme Qi,
i = 1; 2; : : :,

(f; g) =

Z b

a
f(�)g(�)w(�)d� � Qi(f �g) =

NiX
j=1

f(�ij)g(�
i
j)w

i
j; Ni+1 > Ni:

(3.5)

6



Then we compute the recurrence coe�cients ~�i
k and

~�ik of the discrete
measure wi in a stable fashion using the Boley-Golub algorithm. The
obtained recurrence coe�cients are an approximation of the recurrence
coe�cients of the continuous measure,

~�i
k � �k; ~�ik � �k:

By re�ning the discretization of the measure using higher and higher
order quadrature schemes Qi as i increases in (3.5), we can compute
an approximation to the recurrence coe�cients �k and �k up to a
required accuracy. Furthermore there is no need to implement this
discretization procedure: the procedure 'mcdis' from the ORTHPOL
package by Gautschi [7] which was designed to compute quadrature
rules for measures with continuous and discrete parts uses discretiza-
tion to achieve its goal. Applied to a measure with continuous part
only it performs precisely the calculations we need. The stability of
these calculations when every other method fails for continuous mea-
sures is in our opinion a new result. Indeed we were not able to �nd
this result when we searched for a way to compute the high order
Gauss quadrature rules in our application described in the following
section.

4 Numerical Experiments

We perform numerical experiments with the methods described in the
previous section on the integral of radiation transfer (1.6). We illus-
trate in the following how the two classical algorithms fail to compute
the desired Gauss quadrature rule whereas the discretization proce-
dure succeeds. We choose as a �rst example

h(�) := 1 and c := 3=2 (4.1)

Using the Stieltjes algorithm we can directly compute the recur-
rence coe�cients �k and �k with the iterative algorithm given in Sec-
tion 3.1. However this process becomes very quickly unstable as k
increases. Table 2 shows the results of this algorithm which required
60 digits of accuracy in Maple and several hours computing time on a
workstation to obtain 14 correct digits for k = 50.

Table 3 shows the results of the Stieltjes algorithm with standard
double precision for the example measure (4.1) and compares the re-
sults with the accurate results obtained by Maple in Table 2. Clearly
the algorithm becomes unstable and there are only one resp. no signi�-
cant digits left for k = 10. Thus the high order Gauss quadrature rules
needed in our application can not be obtained with this algorithm.
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k �k exact �k exact
0 .77618166448162 .073100786538480
1 .65768094525413 .026905634469467
2 .61907537016101 .034688131374812
3 .59820380841666 .039286039184924
4 .58473406996687 .042328606983553
5 .57516985728672 .044518321400496
6 .56795457810211 .046185049938023
7 .56227743900237 .047505066032515
8 .55766990937508 .048581848115053
9 .55384032530538 .049480524061563
10 .55059662985707 .050244336338481
20 .53318631545529 .054385798780231
30 .52572641062310 .056182700835241
40 .52142039580247 .057226424055389
50 .51856195909407 .057922028958190

Table 2: Coe�cients �k and �k computed with the the Stieltjes algorithm
and 60 digits accuracy in Maple.

k �k double precision err �k �k double precision err �k
0 .77618166448164 1.1e-14 .073100786538480 8.4e-16
1 .65768094525488 7.4e-13 .026905634469455 1.2e-14
2 .61907537016421 3.2e-12 .034688131374769 4.2e-14
3 .59820380936326 9.4e-10 .039286039151921 3.3e-11
4 .58473407735886 7.3e-09 .042328606683491 3.0e-10
5 .57517005348101 1.9e-07 .044518309567765 1.1e-08
6 .56795473056972 1.5e-07 .046185091997963 4.2e-08
7 .56230484613302 2.7e-05 .047502893642560 2.1e-06
8 .55788886824010 2.1e-04 .048560599223896 2.1e-05
9 .55735849056603 3.5e-03 .049247351793347 2.3e-04
10 .56153846153846 1.0e-02 .049056603773584 1.1e-03

Table 3: Coe�cients �k and �k with standard double precision using the
Stieltjes algorithm and the absolute error.
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k �k double precision err �k �k double precision err �k
0 .77618166448162 1.1e-16 .073100786538480 0.0
1 .65768094525413 1.1e-16 .026905634469466 5.8e-17
2 .61907537016083 1.7e-13 .034688131374815 2.8e-15
3 .59820380840887 7.7e-12 .039286039185180 2.5e-13
4 .58473406966937 2.9e-10 .042328606993016 9.4e-12
5 .57516984500899 1.2e-08 .044518321810482 4.0e-10
6 .56795409444963 4.8e-07 .046185066228693 1.6e-08
7 .56225946568115 1.7e-05 .047505737782324 6.7e-07
8 .55751834547536 1.5e-04 .048599725384848 1.7e-05
9 .58382382821813 2.9e-02 .049051912565198 4.2e-04

Table 4: Coe�cients �k and �k with standard double precision using the
method of moments compared with the accurate values from Maple.

To use the method of moments, we note that for the constant
re
ectivity, the moments

mk :=

Z 1

0
�kdw(�) =

Z 1

0
�ke�c=�d�

can be obtained explicitly using the exponential integral (2.1). Thus
the method of moments would be ideal in this case to compute the
recurrence coe�cients �k and �k. However the method becomes un-
stable as well as k increases. We show the results obtained using the
method of moments for the example measure (4.1) in Table 4. Again
there are only one resp. two signi�cant digits left for k = 9 and thus
we can not compute the Gauss quadrature rules we need in our appli-
cation.

Using the discrete algorithm allows us to compute the recurrence
coe�cients to full accuracy. Table 5 shows for the example weight
(4.1) that the computation is numerically stable.

To compute accurate results with the Stieltjes procedure for k =
50 we needed 60 digits of accuracy in Maple and several hours of
computation, whereas the discretization procedure achieves the same
accuracy with standard double precision in a few seconds. Figure 1
shows that even for large values of k there is no instability in the
computation of the recurrence coe�cients �k and �k. For such large
k we were not able to perform the computations in Maple and thus
the discretization method was the only approach which allowed us to
compute the desired Gauss quadrature rule.

To test the robustness of the discretization method, we applied the
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k �k double precision �k exact �k double precision �k exact
0 .77618166448162 6.6e-16 .073100786538480 4.1e-17
1 .65768094525413 5.5e-16 .026905634469467 1.0e-17
2 .61907537016101 6.6e-16 .034688131374812 3.4e-17
3 .59820380841666 0.0 .039286039184924 5.5e-17
4 .58473406996687 3.3e-16 .042328606983553 1.5e-16
5 .57516985728672 2.2e-16 .044518321400496 4.1e-17
6 .56795457810211 6.6e-16 .046185049938023 1.3e-16
7 .56227743900237 2.2e-16 .047505066032515 1.1e-16
8 .55766990937508 4.4e-16 .048581848115054 1.8e-16
9 .55384032530538 4.4e-16 .049480524061563 6.9e-17
10 .55059662985706 1.1e-15 .050244336338481 1.0e-16
20 .53318631545529 3.3e-16 .054385798780232 1.0e-16
30 .52572641062310 6.6e-16 .056182700835242 7.6e-17
40 .52142039580247 7.7e-16 .057226424055389 9.0e-17
50 .51856195909408 6.6e-16 .057922028958190 2.0e-17

Table 5: Coe�cients �k and �k with standard double precision using the
discretization method compared with the accurate values from Maple.
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Figure 1: Coe�cients �k and �k of the three term recurrence relation for the
example measure (4.1).
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algorithm to the following set of test measures from our application:

w1(�) = 2�e�5=�

w2(�) =

(
0 if � � a

1
1�ae

�1=� otherwise

w3(�) =
2erf(b)p

�b
e�b

2(1��)2e�3=2�

w4(�) = 2 sin2(2��)e�2=�

Note that the last three measures can not be integrated using the �ve
term recurrence by Settle [11], since the corresponding re
ectivity can
not be represented in the required form. The discretization method
computes again the recurrence coe�cients in a stable fashion, as one
can see in Figure 2 whereas with standard double precision, the Stielt-
jes algorithm lost all accuracy after 6 steps for w1 and after 8 steps
for the other measures. We used again 60 digits of accuracy in Maple
to check our calculations, but we were only able to verify the accu-
racy of the discretization procedure for moderate values of k since the
calculations became infeasible for k large.

Having the coe�cients for the recurrence relation of the orthogonal
polynomials with respect to our measure, the Golub-Welsch algorithm
[8] computes in a stable fashion the nodes and weights for a Gauss
Quadrature rule which is exact for polynomials up to order 2n� 1.

We have used the nodes and weights to evaluate the integral for
c = 3=2, h(�) = 1 and k up to 199. The absolute accuracy is good, but
as k increases, the value of the integral decreases causing the relative
accuracy to su�er. Beyond k = 100 the value of the integral is less
than 10�12, and only few signi�cant digits are left, as one can see
in table 6. Fortunately, the computed intensity is insensitive to such

Degree of the Gauss Quadrature Maple with high
Polynomial precision arithmetic

20 -1.238295799049847e-05 -1.238295799049653e-05
40 2.269755760984558e-07 2.269755759420927e-07
60 -6.058218490188644e-09 -6.058218535653499e-09
80 -6.269748923528706e-10 -6.269748390677194e-10
100 1.327424746795755e-10 1.327425275730553e-10
120 5.190009477008340e-12 5.190243346208851e-12
150 1.587570576573345e-12 1.587741096646863e-12
199 -2.350507619488032e-14 not feasible

Table 6: Integration using a Gauss Rule with 100 nodes
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Figure 2: Coe�cients �k and �k of the three term recurrence relation, from
top left to bottom right for the measures w1, w2 with a = 1=2 and w3 with
b = 1 and w4.

small contributions.

5 Conclusions

We have shown how to derive Gauss quadrature rules for an integral
important in radiation transport. To overcome the numerical insta-
bilities of the traditional Stieltjes algorithm and the method using
moments we discretized the measure and applied the numerically sta-
ble orthogonal reduction method. By re�ning the discretization, we
are able to compute high order quadrature rules for this particular
integral.

Our approach makes no use of the form of the measure. Hence the
method of discretization is a numerically stable tool for computing
Gauss quadrature rules of high order for non-negative measures in
general.
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