
Speeding up N-body

Calculations on Machines

without Hardware Square Root

Alan H. Karp

IBM Scientific Center

1530 Page Mill Road

Palo Alto, CA 94304

Present address:

Hewlett-Packard Labs 3U-7

1501 Page Mill Road

Palo Alto, CA 94304

karp@hpl.hp.com

October 13, 1992

1

Abstract

The most time consuming part of an N-body simulation is computing the

components of the accelerations of the particles. On most machines the slowest

part of computing the acceleration is in evaluating r
�3=2 which is especially true

on machines that do the square root in software. This note shows how to cut the

time for this part of the calculation by a factor of 3 or more using standard Fortran.

Index terms: N-body, square root

2

1 Introduction

Many phenomena in astrophysics and chemistry are being simulated using N-body

methods.[1, 2] The most time consuming part of such simulations is computing the

accelerations on each particle due to all the others. This is true for the simple N 2

methods, tree based methods,[3] or those using neighbor lists.[4]

If the potential being used has an odd power of the particle separation in it, com-

puting the orthogonal components of the acceleration will involve taking a square root.

While some machines do square root in hardware, many do not. It is not unusual to find

that half the run time of an N-body calculation is spent in the square root subroutine.

In our case, we want to evaluate the acceleration on each particle in a system of

self-gravitating bodies. For example, the x-component of the acceleration for particle

j under the gravitational influence of particle k is

î � ajk =
Gmk(xj � xk)

r3

where î is the unit vector in the x direction, G is the gravitational constant, m k is the

mass of particle k, and r is the separation between the particles,

r =
q

(xj � xk)2 + (yj � yk)2 + (zj � zk)2

For efficiency, we usually code r3 as r2
p
r2.

The system square root routine, not knowing how its result will be used, computes

the square root with a divide-free Newton iteration to compute the inverse of the square

root followed by a multiplication by the input value to get the final result. The compiler

then multiplies by r2 and divides the result into the numerator. Since both divisions

and square roots are usually slow, this operation takes a long time.

Table 1 shows the time needed for some common operations – an empty loop, a

simple assignment, division, square root, and x�3=2. All times are in machine cycles

per element measured on an IBM RISC System/6000 Model 540. Since RISC machines

of this kind usually improve performance by pipeliningarithmetic operations, unrolling

loops frequently speeds things up. Clearly, the operations measured do not benefit.

3

It is possible to do considerably better than the direct computation. This note shows

how to use standard Fortran to evaluate the acceleration in about one third the time

taken by the direct evaluation.

2 Algorithm

The only way we can beat the efficiency of the system routines is to use our extra

knowledge of the problem. In this case, we won’t compute
p
r2. Instead, we’ll

compute r�3 directly from r2.

The simplest approach is to approximate this function with a polynomial. Cheby-

chev polynomials are frequently used because they minimize the maximum error of the

approximation on some interval.[5] One difficulty is that the approximation is accurate

only if the arguments are limited to a relatively small range. With a range reduction

the procedure for an input argument r2 becomes

1. Find a u such that � � ur2 < �, where � and � are numbers of order unity.

2. Approximate (ur2)�3=2.

3. Get the correct result by multiplying the approximation by t = u 3=2.

Since I want to keep my algorithm entirely in Fortran, I decided to use two tables

for u and t. The entries in u are simply the power of 2 such that 1 � ur2 < 2. The

entries in t are u3=2. The only problem is to figure out which table entries to use for a

given input value.

The range reduction I use is based on the IEEE double precision number format.[6]

Each number consists of 64 bits – one sign bit, 11 exponent bits, and 52 fraction bits.

In addition, there is an implicit 1 bit for normalized numbers.

If I know the argument is positive, as it must be for the function I am interested in, I

can extract the exponent by shifting the high order 32 bits of the floating point number

20 bits to the right. In Fortran, this procedure requires that I EQUIVALENCE the double

precision number to an integer or pass a double precision argument to a subroutine that

4

uses it as an integer. Shifting the integer gives the index in the tables. Since there are

only 11 bits to represent the exponent, I know my tables need only 2,048 entries.

I could have coded my tables as DATA statements in the program, but I decided

to ask the user to make a single call to set them up as is frequently done with Fourier

transform routines. The code to build the tables is contained in the program in the

Appendix.

Now that I have scaled the input to a modest range, I can do the approximation. The

coefficients of the fit are easy to compute.[5] If I write the approximation of (ur 2)�3=2

as

f(x) � 1
2
c0 +

mX
k=1

ckTk(x);

where x = 2(ur2)� 3, the coefficients ck can be calculated from

ck =
2
N

NX
j=1

f(xj)Tk(xj);

where the xj are the zeros of TN (x), xj = cos[�(j�1=2)=N]. The change of variable

from (ur2) to x is needed because the Chebychev polynomials are orthogonal on the

interval [�1; 1]. If we choose N � m, the approximation will be very close to the

minimax polynomial.

It is important to use knowledge of the hardware in writing the code. I made my

runs on an IBM RISC System 6000 Model 540. RISC machines nominally do all

operations in one machine cycle, but in practice complicated operations are pipelined.

On this machine, all floating point additions and multiplications are treated as compound

multiply/add operations.[7] An isolated operation takes 2 cycles, but a sequence of

operations produces one result per cycle after a delay of 2 cycles. Thus, our goal is to

produce compound operations that can be pipelined.

Figure 1 shows part of a function that the user invokes to do the Chebychev fit.

The input value is r2. The statement EQUIVALENCE (r2,ir2) is needed because

the shift function will only work on an integer argument. (“Strong typing is nice, but

5

it shouldn’t be invincible.”[8]) Only 4 terms are shown, but the extension to more is

obvious.

After some set-up code to do the range reduction and shift the arguments into the

range of the Chebychev polynomials, all operations but the last are multiply/adds.

Unfortunately, these operations are dependent on each other, so we are not making

optimal use of the arithmetic pipeline. For example, we can not start the multiply/add

that updates s until the previous t is ready. We also can’t start computing the next t

until the previous one is done. However, we can overlap these two calculations so we

expect each order of approximation to take an additional 3 cycles.

Table 2 summarizes the timing and accuracy results. The relative errors are mea-

sured using the direct calculation as the correct value. These errors are identical to the

bounds computed by summing the absolute values of the dropped coefficients.[5]

The times are given in machine cycles per element. In each case I measured the

elapsed time with a clock accurate to a few nanoseconds. The times reported are the

smallest of 20 runs of 10,000 random inputs. Although there are some anomalies, most

of the time it takes 3 cycles to add one more order to the approximation. The anomalies

are caused by running out of registers and the performance of the memory when loading

the coefficients.

One way to improve the overlap is to do more than one evaluation on each pass

through the loop, i.e., unroll the loop. I experimentally determined that unrolling the

loop 8 ways gave me as much speed-up as I was going to get. The last column in the

Table 2 shows that adding one more term to the approximation costs less when the loop

is unrolled, about 2 cycles per term.

Is it worth using this approximation? It depends on the accuracy needed. The time

stepping scheme will have some truncation error. Clearly, there is no point making the

function evaluation more than an order of magnitude more accurate than this value.

We see from the table that we can get single precision (about 8 digit) accuracy with

around 10 terms at a cost of 28 cycles, a third the cost of the direct computation. If we

need more accuracy, we can get almost 16-digit accuracy if we go to 20 terms, but the

6

speed-up over the direct calculation is small.

Another approach is to use Newton’s method. It is based on finding the roots of

some function, in this case

f(y) =
1
y2 � (r2)3:

The iteration is then

yn+1 = yn �
f(yn)

f 0(yn)
=

1
2
yn(3� (r2)3y2

n);

where n is the iteration index.

Newton’s method is quadratically convergent when applied to a convex function

such as the one we are interested in.[9] This means that each iteration doubles the

number of correct bits in the result. We only need to get a reasonably accurate first

guess. If we use the same range reduction as before, a reasonable first guess would be

the function evaluated near the midpoint of the range. In fact, I chose to use a zero’th

order Chebychev fit for the first guess.

Figure 2 shows the key part of the function invoked by the user. We see that this

code won’t use the hardware as effectively as the Chebychev code. Each Newton

iterations has a multiplication, a multiply/add, and a final multiplication for a total of 6

cycles.

Table 3 shows the convergence and time for rolled and unrolled loops, If the loop

is not unrolled, Newton’s method takes 6 cycles per iteration as predicted; it takes only

about 3 if the loop is unrolled. We see that we get single precision accuracy in about

29 cycles per element and double precision in 34 cycles per element.

Is it worth using Newton’s method? Yes it is unless you need the last few bits

correct. Without doing arithmetic in a higher precision the loss of a few bits of

accuracy is inevitable. However, the simplicity of the code and its speed are in its

favor.

We can do considerably better by making two changes to the Newton’s method code.

First of all, we note the small improvement in the first few iterations. A better first

7

guess would reduce the number of Newton iterations dramatically. I chose a six-term

Chebychev fit which results in single precision accuracy with one Newton iteration and

double precision with two.

There is another trick that can be used if only 6 terms are to be used in the polynomial

approximation – compute the coefficients of the powers of x. This approach is not

recommended in general because of the potential round-off errors when the coefficients

are combined. Here we don’t have to worry because the Newton iteration will tolerate

such errors. The monomial coefficients are

d0 = 1
2c0 � c2 + c4

d1 = c1 � 3c3 + 5c5

d2 = 2c2 � 8c4

d3 = 4c3 � 20c5

d4 = 8c4

d5 = 16c5

:

If we use Horner’s rule to evaluate the approximation,

s = d0 + x(d1 + x(d2 + x(d3 + x(d4 + xd5)))))

the polynomial evaluation is all multiply/adds. The key part of the code is shown in

Figure 3.

Table 4 summarizes the performance results. We see that we get single precision

accuracy in only 19 cycles and double precision in 23 cycles. Since this algorithm

outperforms the direct evaluation by a factor of nearly 4, an N-body code using this

approach should run considerably faster.

The referee pointed out one more trick that reduces the times in Table 4 by one cycle

per element. The Chebychev polynomials are evaluated on the interval �1 � x < 1

while we have done a range reduction to 1 � ur2 < 2. We use the variable xx to do

the required change of variables. Examination of the code shows that we can substitute

xx into the polynomial approximation for s, rearrange the terms, and precompute the

new coefficients. These new coefficients, call them gk are related to the dk by

8

g0 = d0 � 3d1 + 9d2 � 27d3 + 81d4 � 243d5

g1 = 2d1 � 12d2 + 54d3 � 216d4 + 810d5

g2 = 4d2 � 36d3 + 216d4 � 1080d5

g3 = 8d3 � 96d4 + 720d5

g4 = 16d4 � 240d5

g5 = 32d5

:

We now evaluate the polynomial

s = g0 + (ur2)(g1 + (ur2)(g2 + (ur2)(g3 + (ur2)(g4 + (ur2)g5))))):

The complete subroutine, including the set-up code, is shown in the Appendix; the

coefficients, in Table 5.

3 Conclusions

How can I beat the performance of a highly tuned system routine with Fortran code?

Simple – I cheat.

I cheat in a number of ways. First of all, I evaluate the function directly rather than

in pieces. Secondly, I cheat by not getting the last few bits right. Finally, I cheat by

not doing any error checking. (I could take the absolute value of the input at the cost

of one additional cycle.) However, the output value is accurate for any floating point

input. Very large input values produce denormalized results; very small input values

produce floating point infinity as they should.

If your machine supports the IEEE double extended format,[6] a format with at least

64 bits in the fraction that is usually reserved for data kept in the registers, you can get

the last few bits right using a simple trick. Compute the array t in extended precision,

but store it as two double precision numbers, t(1,i) and t(2,i). Then the final

scaling becomes s*(t(1,i)+t(2,i)). I could not check the accuracy since the

9

RISC System/6000 does not support the double extended format, but the change added

only 1 cycle per result to the time of the unrolled loop.

Is it worth the effort and worry to use this new approach? If your calculation is

typical and spends 3/4 of its time evaluating the acceleration, speeding up this one line

of code by a factor of 3 will cut your total run time in half.

Acknowledgements: I would like to thank Vivek Sarkar for helping me understand

the RS/6000 instruction scheduling, Rad Olson and Bill Swope for trying to convince

me I couldn’t beat the system functions (I love a challenge.), and the referee for several

good ideas.

References

[1] Roger W. Hockney and J. W. Eastwood. Computer Simulation Using Particles.

McGraw-Hill, New York, 1981.

[2] J. A. Sellwod. The Art of N-body Building, volume 25 of Annual Reviews of

Astronomy and Astrophysics, pages 151–186. Annual Reviews, Inc., Palo Alto,

CA, 1987.

[3] J. Barnes and P. Hut. A Hierarchical O(NlogN) Force-Calculation Algorithm.

Nature, 324:446–449, 1986.

[4] M. P. Allen and D. J. Tildesley. Computer Simulationof Liquids. Oxford University

Press, Oxford, 1987.

[5] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical

Recipes. Cambridge University Press, New York, 1986.

[6] American National Standards Institute, Inc. IEEE Standard for Binary Floating-

Point Arithmetic. Technical Report ANSI/IEEE Std 754-1985, IEEE, 345 East

47th Street, New York, NY 10017, 1985.

10

[7] Brett Olsson, Robert Montoye, Peter Markstein, and MyHong NgyuenPhu. RISC

System/6000 Floating-point Unit, pages 34–42. RISC System/6000 Technology.

IBM Corporation, 1990.

[8] Nancy L. Karp. Private communication, 1985.

[9] James M. Ortega. Numerical Analysis. Academic Press, New York, 1972.

Sample Code

This appendix contains the complete version of the code as measured. For the sake of

space, I changed the loop unrolling from 8-way to 2-way. Some points are worthy of

note.

If you are working with single precision data, you should change the shift to

ishft(x,23) since IEEE single precision only uses 8 bits for the characteristic.

Also, the center for the arrays t and u should be at 127.

Some systems do not allow you to continue execution following an overflow. Since

r�3=2 will underflow and overflow at the boundaries of the floating point arithmetic,

you will have to adjust your loop limits on these machines. However, you should make

sure that the table is filled properly. Underflow should produce a true zero and overflow

should produce floating point infinity.

c Approximate r**(-3/2) using Newton with Chebychev first guess
c
c Initialize arrays by calling with n = 0 on first call
c

subroutine r32i (a, r2, ir2, n)
implicit double precision (a-h, o-z)
parameter (ncheb = 200)
save g0, g1, g2, g3, g4, g5, c, t, u

c
c Calling sequence
c
c a = output array
c r2 = input array
c ir2 = input array to be used as an integer
c n = length of input and output arrays

11

c
dimension a(n), r2(n), ir2(2,n)

c
c Local variables
c
c f = temporary array needed to compute c
c z = temporary array needed to compute c
c c = coefficients of Chebychev approximation
c d = coefficients of monomial fit on -1 < x < 1
c g = coefficients of monomial fit on 1 < x < 2
c t = table of (2**k)**(-3/2) for -1024 < k < 1024
c u = table of 1/2**k for -1024 < k < 1024
c

dimension t(0:2046),u(0:2046),c(0:ncheb-1),f(ncheb),z(ncheb)
c
c Function shifted from 1 to 2 to -1 to 1
c

func(r) = (1.5d0 + 0.5d0*r)**(-1.5)
c
c If not first call, then compute function
c

if (n .gt. 0) then
c
c Approximate results - loop unrolled 2 ways
c A greater degree of loop unrolling will probably perform better
c

do i = 1, n, 2
it = ishft(ir2(1,i),-20)
x = r2(i) * u(it)
x3 = 0.5d0*x*x*x
s = g0 + x*(g1 + x*(g2 + x*(g3 + x*(g4 +x*g5))))
s = s*(1.5d0-x3*s*s)

c s = s*(1.5d0-x3*s*s) ! Use for double precision
a(i) = s*t(it)
it = ishft(ir2(1,i+1),-20)
x = r2(i+1) * u(it)
x3 = 0.5d0*x*x*x
s = g0 + x*(g1 + x*(g2 + x*(g3 + x*(g4 +x*g5))))
s = s*(1.5d0-x3*s*s)

c s = s*(1.5d0-x3*s*s) ! Use for double precision
a(i+1) = s*t(it)

enddo
c
c Finish up unrolled loop
c

do j = i, n
it = ishft(ir2(1,j),-20)

12

x = r2(j) * u(it)
x3 = 0.5d0*x*x*x
s = g0 + x*(g1 + x*(g2 + x*(g3 + x*(g4 +x*g5))))
s = s*(1.5d0-x3*s*s)

c s = s*(1.5d0-x3*s*s) ! Use for double precision
a(j) = s*t(it)

enddo
else

c
c If the first call, build table of results for powers of 2
c

xi = 1.d0
t(1023) = 1.d0
u(1023) = 1.d0
do i = 1, 1023

xi = 0.5d0*xi
t(1023+i) = xi*sqrt(xi)
t(1023-i) = 1.d0/t(1023+i)
u(1023+i) = xi
u(1023-i) = 1.d0/xi

enddo
c
c Precompute zeros of Chebychev polynomials and function
c

pi = 4.d0 * atan (1.d0)
do k = 1, ncheb

z(k) = pi * (k - 0.5d0) / ncheb
zero = cos(z(k))
f(k) = func(zero)

enddo
c
c Get coefficients of Chebychev fit
c

factor = 2.d0/ncheb
do j = 0, ncheb-1

sum = 0.d0
do k = 1, ncheb

arg = z(k) * j
sum = sum + f(k)*cos(arg)

enddo
c(j) = factor*sum

enddo
c
c Get coefficients of powers of x on -1 < x < 1
c

d0 = 0.5d0*c(0) - c(2) + c(4)
d1 = c(1) - 3.d0*c(3) + 5.d0*c(5)

13

d2 = 2.0d0*c(2) - 8.d0*c(4)
d3 = 4.0d0*c(3) - 20.d0*c(5)
d4 = 8.0d0*c(4)
d5 = 16.0d0*c(5)

c
c Get coefficients of powers of x on 1 < x < 2
c

g0=d0-3.0d0*d1+ 9.0d0*d2-27.0d0*d3+ 81.0d0*d4- 243.0d0*d5
g1= 2.0d0*d1-12.0d0*d2+54.0d0*d3-216.0d0*d4+ 810.0d0*d5
g2= 4.0d0*d2-36.0d0*d3+216.0d0*d4-1080.0d0*d5
g3= 8.0d0*d3- 96.0d0*d4+ 720.0d0*d5
g4= 16.0d0*d4- 240.0d0*d5
g5= 32.0d0*d5

endif
c

end

14

List of Figures

1 Code to evaluate Chebychev fit. : 16
2 Code for Newton iteration. : 17
3 Code for hybrid method. : 17

15

equivalence (r2,ir2)
it = ishft(ir2,-20)
x = r2 * u(it)
x = 4.d0*x - 6.d0
t00 = 1.d0
s = c(1)
t01 = 0.5d0*x
s = s + c(2)*t01
t02 = x*t01 - t00
s = s + c(3)*t02
t03 = x*t02 - t01
s = s + c(4)*t03
result = s*t(it)

Figure 1: Code to evaluate a 4 term Chebychev fit. The input is r2. The tables u, t,
and c were calculated in the setup routine.

16

equivalence (r2,ir2)
it = ishft(ir2,-20)
x = r2 * u(it)
x3 = 0.5d0*x*x*x
s = d0
s = s*(1.5d0-x3*s*s)
s = s*(1.5d0-x3*s*s)
s = s*(1.5d0-x3*s*s)
s = s*(1.5d0-x3*s*s)
result = s*t(it)

Figure 2: Code for 4 Newton iterations. The arrays u and t were calculated in the
setup routine.

equivalence (r2,ir2)
it = ishft(ir2,-20)
x = r2 * u(it)
xx = 2.d0*x - 3.d0
x3 = 0.5d0*x*x*x
s = d0+xx*(d1+xx*(d2+xx*d3)))
s = s*(1.5d0-x3*s*s)
result = s*t(it)

Figure 3: Code for the hybrid method. A third order Chebychev fit and one Newton
iteration are shown. The coefficients d and the arrays u and t were calculated in the
setup routine.

17

List of Tables

1 Baseline measurements. : 19
2 Chebychev approximation results. : : : : : : : : : : : : : : : : : : : 19
3 Newton method results. : 19
4 Hybrid method results. : 20
5 Coefficients of minimax fit. : 20

18

m Rolled Unrolled
empty 2 2

assignment 4 4
x�1 20 20p
x 56 56

(x
p
x)�1 77 77

Table 1: Time for some common operations in machine cycles per element run on an
IBM RS/6000-540. Unrolled refers to loops unrolled 8 ways. Note that loop unrolling
has no effect.

m Error Rolled Unrolled
0 7:2� 10�1 8 6
2 3:1� 10�2 15 13
4 1:1� 10�3 21 17
6 3:8� 10�5 28 21
8 1:3� 10�6 33 25

10 4:2� 10�8 37 28
12 1:3� 10�9 42 33
14 4:2� 10�11 59 38
16 1:3� 10�12 60 43
18 4:1� 10�14 50 48
20 3:2� 10�15 53 50

Table 2: Summary of measurements of accuracy and time for the Chebychev approx-
imation. Unrolled refers to loops unrolled 8 ways. Times are in machine cycles per
element.

n Error Rolled Unrolled
1 5:2� 10�1 17 14
2 3:3� 10�1 23 16
3 1:4� 10�1 30 20
4 3:0� 10�2 36 24
5 1:3� 10�3 42 26
6 2:7� 10�6 48 29
7 1:1� 10�11 54 32
8 4:3� 10�16 60 34

Table 3: Summary of measurements of accuracy and time for the Newton method.
Unrolled refers to loops unrolled 8 ways. Times are in machine cycles per element.

19

n Error Rolled Unrolled
0 7:2� 10�1 9 7
1 1:6� 10�1 10 10
2 3:1� 10�2 12 11
3 6:0� 10�3 13 12
4 1:1� 10�3 16 13
5 2:1� 10�4 17 14

N1 6:6� 10�8 23 19
N2 6:6� 10�15 30 23

Table 4: Summary of measurements of accuracy and time for the hybrid method. The
first 6 rows are the order of the Chebychev fit; the last two are the Newton iterations.
Unrolled refers to loops unrolled 8 ways. Times are in machine cycles per element.

k c d g
0 0.60800336 0.54441741 7.05452470
1 -0.30951280 -0.27227564 -14.85088557
2 0.06613347 0.11188678 14.70832310
3 -0.01321311 -0.04324377 -7.83703555
4 0.00254752 0.02038017 2.17094576
5 -0.00048043 -0.00768693 -0.24598174

Table 5: Coefficients of the minimax fit. Three forms are given; c are the coefficients
of the orthogonal polynomials; d are the coefficients of the monomials on [�1; 1]; g are
the coefficients of the monomials on [1; 2].

20

