Speeding up N-body

Calculations on Machines

without Hardware Square Root

AlanH. Karp
IBM Scientific Center
1530 Page Mill Road
Palo Alto, CA 94304

Present address:
Hewlett-Packard Labs 3U-7
1501 Page Mill Road
Palo Alto, CA 94304
karp@hpl.hp.com

October 13, 1992

Abstract

The most time consuming part of an N-body simulation is computing the
components of the accelerations of the particles. On most machines the slowest
part of computing the acceleration is in evaluating » ~3/2 which is especially true
on machines that do the square root in software. This note shows how to cut the

time for this part of the calculation by afactor of 3 or more using standard Fortran.

Index terms: N-body, square root

1 Introduction

Many phenomena in astrophysics and chemistry are being simulated using N-body
methods.[1, 2] The most time consuming part of such simulations is computing the
accelerations on each particle due to all the others. This is true for the simple N2
methods, tree based methods,[3] or those using neighbor lists.[4]

If the potential being used has an odd power of the particle separation in it, com-
puting the orthogonal components of the accel eration will involve taking a square root.
While some machines do square root in hardware, many do not. It isnot unusual to find
that half the run time of an N-body calculation is spent in the square root subroutine.

In our case, we want to evaluate the acceleration on each particle in a system of
self-gravitating bodies. For example, the z-component of the acceleration for particle

J under the gravitational influence of particle & is

:~ Gmy(z; —x
l.a]'k = —k(ré k)

where1 is the unit vector in the « direction, G is the gravitational constant, m , isthe

mass of particle k, and r is the separation between the particles,

r= \/(l‘j — o)+ (g — uk)? + (2 —)2

For efficiency, we usually code 2 as r2 /72,

The system square root routine, not knowing how its result will be used, computes
the square root with a divide-free Newton iteration to compute the inverse of the square
root followed by amultiplication by theinput value to get thefinal result. The compiler
then multiplies by =2 and divides the result into the numerator. Since both divisions
and square roots are usually slow, this operation takes along time.

Table 1 shows the time needed for some common operations — an empty loop, a
simple assignment, division, square root, and = ~3/2. All times are in machine cycles
per element measured onan IBM RISC System/6000 M odel 540. Since RISC machines
of thiskind usually improve performance by pipeliningarithmetic operations, unrolling

loops frequently speeds things up. Clearly, the operations measured do not benefit.

Itispossibleto do considerably better than the direct computation. Thisnote shows
how to use standard Fortran to evaluate the acceleration in about one third the time

taken by the direct evaluation.

2 Algorithm

The only way we can beat the efficiency of the system routines is to use our extra
knowledge of the problem. In this case, we won't compute /72, Instead, we'll
compute r~3 directly from r2,

The simplest approach is to approximate this function with a polynomial. Cheby-
chev polynomialsare frequently used because they minimize the maximum error of the
approximation on some interval.[5] One difficulty isthat the approximation is accurate
only if the arguments are limited to a relatively small range. With a range reduction

the procedure for an input argument -2 becomes
1. Findau suchthat o < ur? < 3, where o and 3 are numbers of order unity.
2. Approximate (ur?)~%/2,
3. Get the correct result by multiplying the approximation by ¢ = w 3/2.

Since | want to keep my algorithm entirely in Fortran, | decided to use two tables
for w and ¢. The entriesin u are simply the power of 2 such that 1 < ur? < 2. The
entriesin t are «3/2. The only problem is to figure out which table entries to use for a
giveninput value.

Therange reduction | use is based on the | EEE double precision number format.[6]
Each number consists of 64 bits— one sign bit, 11 exponent bits, and 52 fraction bits.
In addition, thereisan implicit 1 bit for normalized numbers.

If I know the argument is positive, as it must be for the function| am interestedin, |
can extract the exponent by shifting the high order 32 bits of the floating point number
20hitstotheright. In Fortran, thisprocedure requiresthat | EQUI VALENCE the double

precision number to an integer or pass adoubl e precision argument to a subroutinethat

usesit as an integer. Shifting the integer givesthe index in the tables. Since there are
only 11 bitsto represent the exponent, | know my tables need only 2,048 entries.

| could have coded my tables as DATA statements in the program, but | decided
to ask the user to make a single call to set them up as is frequently done with Fourier
transform routines. The code to build the tables is contained in the program in the
Appendix.

Now that | have scaled theinput to amodest range, | can do the approximation. The
coefficients of the fit are easy to compute.[5] If | writethe approximation of (wr2)~3/2
as

1 m
f(x) ~ Seo+ > eTi(x),
k=1
where x = 2(ur?) — 3, the coefficients ¢, can be calculated from

N

%Zf(l‘j)Tk(l‘j),

ji=1

Cr =

wherethe z; arethezerosof T (z), z; = cos[x(j —1/2)/N]. The change of variable
from (ur?) to z is needed because the Chebychev polynomials are orthogonal on the
interval [—1,1]. If we choose N > m, the approximation will be very close to the
minimax polynomial.

It is important to use knowledge of the hardware in writing the code. | made my
runs on an IBM RISC System 6000 Model 540. RISC machines nominally do all
operationsin one machine cycle, but in practice complicated operations are pipelined.
Onthismachine, al floating point additionsand multiplications are treated as compound
multiply/add operations.[7] An isolated operation takes 2 cycles, but a sequence of
operations produces one result per cycle after adelay of 2 cycles. Thus, our goa isto
produce compound operations that can be pipelined.

Figure 1 shows part of a function that the user invokes to do the Chebychev fit.
Theinput valueisr 2. The statement EQUI VALENCE (r 2, i r 2) isneeded because

the shift function will only work on an integer argument. (“Strong typing is nice, but

it shouldn’t be invincible."[8]) Only 4 terms are shown, but the extension to more is
ohvious.

After some set-up code to do the range reduction and shift the arguments into the
range of the Chebychev polynomials, all operations but the last are multiply/adds.
Unfortunately, these operations are dependent on each other, so we are not making
optimal use of the arithmetic pipeline. For example, we can not start the multiply/add
that updates s until the previoust isready. We aso can’t start computing the next t
until the previous one is done. However, we can overlap these two calculations so we
expect each order of approximation to take an additional 3 cycles.

Table 2 summarizes the timing and accuracy results. The relative errors are mea-
sured using the direct calculation as the correct value. These errors are identical to the
bounds computed by summing the absolute values of the dropped coefficients.[5]

The times are given in machine cycles per element. In each case | measured the
elapsed time with a clock accurate to a few nanoseconds. The times reported are the
smallest of 20 runs of 10,000 random inputs. Althoughthere are some anomalies, most
of thetime it takes 3 cycles to add one more order to the approximation. The anomalies
are caused by running out of registers and the performance of the memory when loading
the coefficients.

One way to improve the overlap is to do more than one evaluation on each pass
through the loop, i.e., unroll the loop. | experimentally determined that unrolling the
loop 8 ways gave me as much speed-up as | was going to get. The last column in the
Table 2 shows that adding one more term to the approximation costs less when the loop
isunrolled, about 2 cycles per term.

Isit worth using this approximation? It depends on the accuracy needed. Thetime
stepping scheme will have some truncation error. Clearly, there is no point making the
function evaluation more than an order of magnitude more accurate than this value.

We see from the table that we can get single precision (about 8 digit) accuracy with
around 10 terms at acost of 28 cycles, athird the cost of the direct computation. If we

need more accuracy, we can get almost 16-digit accuracy if we go to 20 terms, but the

speed-up over the direct calculationis small.
Another approach is to use Newton's method. It is based on finding the roots of

some function, in this case

Theiteration isthen

Yntl = Yn — % = %%(3— (rz)syle)’
where n isthe iteration index.

Newton's method is quadratically convergent when applied to a convex function
such as the one we are interested in.[9] This means that each iteration doubles the
number of correct bits in the result. We only need to get a reasonably accurate first
guess. |f we use the same range reduction as before, a reasonable first guess would be
the function evaluated near the midpoint of the range. Infact, | chose to use a zero’th
order Chebychev fit for the first guess.

Figure 2 shows the key part of the function invoked by the user. We see that this
code won't use the hardware as effectively as the Chebychev code. Each Newton
iterations has a multiplication, a multiply/add, and a final multiplicationfor atotal of 6
cycles.

Table 3 shows the convergence and time for rolled and unrolled loops, If the loop
isnot unrolled, Newton’s method takes 6 cycles per iteration as predicted; it takes only
about 3 if the loop is unrolled. We see that we get single precision accuracy in about
29 cycles per element and double precision in 34 cycles per element.

Is it worth using Newton's method? Yes it is unless you need the last few bits
correct. Without doing arithmetic in a higher precision the loss of a few bits of
accuracy is inevitable. However, the simplicity of the code and its speed are in its
favor.

We can do considerably better by making two changestothe Newton’smethod code.

First of all, we note the small improvement in the first few iterations. A better first

guess would reduce the number of Newton iterations dramatically. | chose a six-term
Chebychev fit which resultsin single precision accuracy with one Newton iteration and
double precision with two.

Thereisanother trick that can be used if only 6 termsare to be used in the polynomial
approximation — compute the coefficients of the powers of . This approach is not
recommended in general because of the potential round-off errors when the coefficients
are combined. Here we don’t have to worry because the Newton iteration will tolerate

such errors. The monomia coefficients are

do = %co - co + 4
dy = c1 — 3cz3 4+ 5es
dp= 2c0 — 8ey

d3= 4ecz — 20c5

dys= 8ey

ds = 16¢5

If we use Horner’srule to evaluate the approximation,

s =do+ x(d1+ x(d2 + #(d3s + (ds + xds)))))

the polynomial evaluation is all multiply/adds. The key part of the code is shown in
Figure3.

Table 4 summarizes the performance results. We see that we get single precision
accuracy in only 19 cycles and double precision in 23 cycles. Since this algorithm
outperforms the direct evaluation by a factor of nearly 4, an N-body code using this
approach should run considerably faster.

Thereferee pointed out one moretrick that reducesthetimesin Table 4 by onecycle
per element. The Chebychev polynomials are evaluated on theinterval —1 < z < 1
while we have done a range reductionto 1 < ur? < 2. We use the variable xx to do
therequired change of variables. Examination of the code shows that we can substitute
xx into the polynomial approximation for s, rearrange the terms, and precompute the

new coefficients. These new coefficients, call them g, are related to the d;, by

go= do — 3dy + 9, — 27d3 + 8ldy — 243ds

g1 = 2d; — 12d, + 54dz — 216ds + 810ds
g2 = 4d, — 36ds + 216d, — 1080ds
g3 = 8ds — 96d; + T720ds
ga= 16d, — 240ds
g5 = 32ds

We now evaluate the polynomial

s = go+ (wr?) (g1 + (ur®) (g2 + (ur®)(gs + (ur®)(ga + (ur?)gs))))).

The complete subroutine, including the set-up code, is shown in the Appendix; the
coefficients, in Table 5.

3 Conclusions

How can | beat the performance of a highly tuned system routine with Fortran code?
Simple—1I cheat.

| cheat in anumber of ways. First of al, | evaluate the function directly rather than
in pieces. Secondly, | cheat by not getting the last few bitsright. Finaly, | cheat by
not doing any error checking. (I could take the absolute value of the input at the cost
of one additional cycle.) However, the output value is accurate for any floating point
input. Very large input values produce denormalized results; very small input values
produce floating point infinity as they should.

If your machine supportsthe | EEE double extended format,[6] aformat with at least
64 bitsinthe fraction that is usually reserved for data kept in the registers, you can get
the last few bitsright using asimple trick. Computethe array t in extended precision,
but store it as two double precision numbers, t (1,i) andt (2, i). Then the fina

scaling becomes s* (t (1,i)+t(2,i)). | could not check the accuracy since the

RISC System/6000 does not support the double extended format, but the change added
only 1 cycle per result to the time of the unrolled loop.

Is it worth the effort and worry to use this new approach? If your calculation is
typical and spends 3/4 of itstime evaluating the accel eration, speeding up thisoneline
of code by afactor of 3 will cut your total run timein half.

Acknowledgements: | wouldliketo thank Vivek Sarkar for hel ping me understand
the RS/6000 instruction scheduling, Rad Olson and Bill Swope for trying to convince
me | couldn’t beat the system functions(l love a challenge.), and the referee for several

good idess.

References

[1] Roger W. Hockney and J. W. Eastwood. Computer Smulation Using Particles.
McGraw-Hill, New York, 1981.

[2] J. A. Sdlwod. The Art of N-body Building, volume 25 of Annual Reviews of
Astronomy and Astrophysics, pages 151-186. Annual Reviews, Inc., Palo Alto,
CA, 1987.

[3] J. Barnes and P. Hut. A Hierarchica O(NlogN) Force-Calculation Algorithm.
Nature, 324:446-449, 1986.

[4] M.P AllenandD. J. Tildesley. Computer Smulationof Liquids. Oxford University
Press, Oxford, 1987.

[5] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical
Recipes. Cambridge University Press, New York, 1986.

[6] American National Standards Institute, Inc. IEEE Standard for Binary Floating-
Point Arithmetic. Technical Report ANSI/IEEE Std 754-1985, |EEE, 345 East
47th Street, New York, NY 10017, 1985.

10

[7] Brett Olsson, Robert Montoye, Peter Markstein, and MyHong NgyuenPhu. RISC
System/6000 Floating-point Unit, pages 34-42. RISC System/6000 Technology.
IBM Corporation, 1990.

[8] Nancy L. Karp. Private communication, 1985.

[9] James M. Ortega. Numerical Analysis. Academic Press, New York, 1972.

Sample Code

This appendix contains the complete version of the code as measured. For the sake of
space, | changed the loop unrolling from 8-way to 2-way. Some points are worthy of
note.

If you are working with single precision data, you should change the shift to
i shft (x, 23) since IEEE single precision only uses 8 bits for the characteristic.
Also, the center for thearrayst and u should be at 127.

Some systems do not allow you to continue execution following an overflow. Since
#~3/2 will underflow and overflow at the boundaries of the floating point arithmetic,
you will haveto adjust your loop limits on these machines. However, you should make
surethat thetableisfilled properly. Underflow should produce atrue zero and overflow

should produce floating point infinity.

c Approximate r**(-3/2) using Newton w th Chebychev first guess
c
c Initialize arrays by calling with n = 0 on first cal
c
subroutine r32i (a, r2, ir2, n)
inplicit double precision (a-h, 0-2)
paraneter (ncheb = 200)
save g0, g1, g2, 93, g4, g5 ¢, t, u

c
¢ Calling sequence

c

c a = output array

C r2 = input array

C ir2 =input array to be used as an integer
C =

n I ength of input and output arrays

11

(oI e} O0O0O0O0O00000O0

o 2N]

O o0 oo

(9]

di mension a(n), r2(n), ir2(2,n)
Local vari abl es

tenporary array needed to compute c¢
tenporary array needed to compute c¢
coefficients of Chebychev approximation
coefficients of monomal fit on -1 <x <1
coefficients of monomial fit on 1 < x <2

CcC TQ OO N T
| | T (B VA 11

table of 1/2**k for -1024 < k < 1024

table of (2**k)**(-3/2) for -1024 < k < 1024

di mensi on t(0:2046), u(0: 2046), c(0: ncheb- 1), f (ncheb), z(ncheb)

Function shifted from1l to 2 to -1to 1
func(r) = (1.5d0 + 0.5d0*r)**(-1.5)

If not first call, then conpute function
if (n.gt. 0) then

Approximate results - loop unrolled 2 ways
A greater degree of loop unrolling will probably

doi =1, n, 2
it =ishft(ir2(1,i),-20)
X =r2(i) * u(it)
x3 = 0. 5d0*x*x*x

s = g0 + x*(gl + x*(g2 + x*(g3 + x*(g4
s = s*(1.5d0-x3*s*s)

s = s*(1.5d0-x3*s*s) I Use for
a(i) = s*t(it)

it = ishft(ir2(1,i+1),-20)

X = r2(i+1) * u(it)
x3 = 0. 5d0*x*x*x

s = g0 + x*(gl + x*(g2 + x*(g3 + x*(g4
s = s*(1.5d0-x3*s*s)
s = s*(1.5d0-x3*s*s) I Use for
a(i+1) = s*t(it)

enddo

Fi ni sh up unrolled |oop

doj =i, n
it =ishft(ir2(1,j),-20)

12

perform better

+x*g5))))

doubl e preci sion

+x*g5))))

doubl e precision

X =r2(j) * u(it)
x3 = 0. 5d0*x*x*x

s = g0 + x*(gl + x*(g2 + x*(g3 + x*(g4 +x*g5))))
s = s*(1.5d0-x3*s*s)
c s = s*(1.5d0-x3*s*s) I Use for double precision
a(j) = s*t(it)
enddo
el se
c
c If the first call, build table of results for powers of 2
c
xi = 1.d0
t(1023) = 1.d0
u(1023) = 1.d0
doi =1, 1023
xi = 0.5d0*x
t(1023+i) = Xxi*sqrt(xi)
t(1023-i) = 1.d0/t(1023+i)
u(1023+i) = xi
u(1023-i) = 1.dO/«xi
enddo
c
¢ Precompute zeros of Chebychev pol ynom als and function
c
pi =4.d0 * atan (1.d0)
do k = 1, ncheb
z(k) =pi * (k- 0.5d0) / ncheb
zero = cos(z(k))
f(k) = func(zero)
enddo
c
c Get coefficients of Chebychev fit
c
factor = 2.d0/ ncheb
do j = 0, ncheb-1
sum = 0.dO0
do k = 1, ncheb
arg = z(k) * j
sum = sum + f(k)*cos(arg)
enddo
c(j) = factor*sum
enddo
c
c Get coefficients of powers of x on -1 < x <1
c
d0 = 0.5d0*c(0) - c(2) + c(4)
di = c(1l) - 3.d0*c(3) + 5.d0*c(5)

13

c
c
c

Get

d2 = 2.0d0*c(2) - 8.d0*c(4)
d3 = 4.0d0*c(3) - 20.d0*c(5)
d4 = 8.0d0*c(4)
d5 = 16.0d0*c(5)

coefficients of powers of x on 1 < x < 2

end

end

g0=d0- 3. 0d0*d1+ 9. 0d0*d2-27.0d0*d3+ 81.0d0*d4- 243
gl= 2.0d0*d1-12. 0d0*d2+54. 0d0*d3- 216. 0d0*d4+ 810

g2= 4. 0d0* d2- 36. 0d0* d3+216. 0d0* d4- 1080
g3= 8. 0d0*d3- 96. 0d0*d4+ 720
g4= 16. 0d0*d4- 240
g5= 32
if

14

. 0d0*d5
. 0d0*d5
. 0d0*d5
. 0d0*d5
. 0d0*d5
. 0d0*d5

List of Figures

1
2
3

Codeto evaluate Chebychevfit.

Code for Newton iteration.
Code for hybrid method.

15

equi val ence (r2,ir?2)
it = ishft(ir2,-20)

X =r2* u(it)

X = 4.d0*x - 6.dO0
t00 = 1.d0

s =c(1)

t01 = 0.5d0*x

s =s +c(2)*t01
t02 = x*t01 - t00
s =s +c(3)*t02
t03 = x*t02 - t01
s =s +c(4)*t03

result = s*t(it)

Figure 1: Codeto evaluate a 4 term Chebychev fit. Theinputisr 2. Thetablesu,t,
and ¢ were calculated in the setup routine.

16

equi val ence (r2,ir?2)
it = ishft(ir2,-20)
X =r2* u(it)

x3 = 0. 5d0*x*x*x

do

s*(1.5d0- x3*s*s)
s* (1. 5d0- x3*s*s)
s*(1.5d0- x3*s*s)
s* (1. 5d0- x3*s*s)

s
s
s
s
s
result = s*t(it)

[I I | I I T |

D

Figure 2: Code for 4 Newton iterations. The arrays u and t were calculated in the
setup routine.

equi val ence (r2,ir?2)
it = ishft(ir2,-20)
X =r2* u(it)

xx = 2.d0*x - 3.dO

x3 = 0. 5d0*x*x*x

s = dO+xx* (d1+xx*(d2+xx*d3)))
s = s*(1.5d0-x3*s*s)

result = s*t(it)

Figure 3: Code for the hybrid method. A third order Chebychev fit and one Newton
iteration are shown. The coefficients d and the arrays u andt were calculated in the
setup routine.

17

List of Tables

a b~ wN Bk

Basdlinemeasurements.o 19
Chebychev approximationresults. 19
Newtonmethodresults. 19
Hybrid methodresults. 20
Coefficientsof minimax fit. 20

18

m Rolled | Unrolled
empty 2 2
assignment 4 4
z7 1 20 20
N 56 56
(x/7)" 1 77 77

Table 1: Time for some common operations in machine cycles per element run on an
IBM RS/6000-540. Unrolled refers to loops unrolled 8 ways. Note that loop unrolling
has no effect.

m | Error Rolled | Unrolled
0| 72x10°1 8 6
2| 31x10°2 15 13
4|11x 108 21 17
6| 38x10°° 28 21
8|13x 1076 33 25

10 | 4.2x 1078 37 28

12 | 1.3x 1079 42 33

14 | 42 x 10712 59 38

16 | 1.3x 10712 60 43

18| 41x 107 | 50 48

20 | 3.2x 10715 53 50

Table 2: Summary of measurements of accuracy and time for the Chebychev approx-
imation. Unrolled refers to loops unrolled 8 ways. Times are in machine cycles per
element.

n | Error Rolled | Unrolled
1]52x101 17 14
2133x101? 23 16
3|14x 101 30 20
4| 30x10°2 36 24
5| 1.3x 1073 42 26
6| 27x 107 48 29
7| 11x 10712 54 32
8| 43x 10716 60 34

Table 3: Summary of measurements of accuracy and time for the Newton method.
Unrolled refers to loops unrolled 8 ways. Times are in machine cycles per element.

19

n | Error Rolled | Unrolled

0] 72x101 9 7

1]16x101 10 10

2] 31x10°2 12 11

3]6.0x103 13 12

4| 11x10°3 16 13

5| 21x 104 17 14
N1 | 6.6x 10~8 23 19
N2 | 6.6 x 10~15 30 23

Table 4: Summary of measurements of accuracy and time for the hybrid method. The
first 6 rows are the order of the Chebychev fit; the last two are the Newton iterations.
Unrolled refers to loops unrolled 8 ways. Times are in machine cycles per element.

c d g
0.60800336 | 0.54441741 7.05452470
-0.30951280 | -0.27227564 | -14.85088557
0.06613347 | 0.11188678 | 14.70832310
-0.01321311 | -0.04324377 | -7.83703555
0.00254752 | 0.02038017 2.17094576
-0.00048043 | -0.00768693 | -0.24598174

g wWwN - Ol

Table 5: Coefficients of the minimax fit. Three forms are given; ¢ are the coefficients
of the orthogonal polynomials; d are the coefficients of themonomialson[—1, 1]; ¢ are
the coefficients of the monomialson [1, 2].

20

