
Hardware Assist for

Data Merging for

Shared Memory Multiprocessors

Alan H. Karp

Rajiv Gupta

Hewlett-Packard Labs

1501 Page Mill Road

Palo Alto, CA 94304

fkarp,guptag@hpl.hp.com

March 13, 1994

Abstract

We describe hardware that improves on the performance of Data Merg-

ing, an e�cient software cache consistency mechanism for shared memory

multiprocessors. The hardware support consists of an extra bit attached

to each datum in a cache line. These bits are used to control the merge

operation rather than a bit mask held in the global memory. The bits

can also be used to reduce the amount of network tra�c by sending only

modi�ed words to memory.

We also propose some extensions to the basic model. We can reduce

the cache area overhead of the extra bits by keeping a bit per word instead

of a bit per byte. Subword operations are supported with the same mech-

anism used in the original data merging paper. We can also keep separate

bit masks for readers and writers of data which allows us to report all

data races, an important feature in debugging shared memory, parallel

programs. Other improvements are also described.

1



1 Introduction

A distributed shared memory computer is one that uses software and/or hard-

ware to make a physically distributed memory look like a physically shared

memory to the programmer. Sequential consistency[6] may be the single most

signi�cant inhibitor in achieving scalability in distributed shared memory ma-

chines. The recognition of this fact has led to a number of delayed consistency

schemes[1, 2, 3, 4]

One recent entry into the �eld is Data Merging[5]. Karp and Sarkar designed

Data Merging to satisfy a number of goals.

1. The processor hardware need not have any knowledge that shared data is

cached in multiple local memories.

2. The programmer and the compiler need not have any knowledge that

shared data is cached in multiple local memories.

3. The solution provides e�cient support for false sharing of data blocks.

4. The solution can exploit the slackness revealed by delayed consistency

models.

5. The solution is e�ective for all data block size granularities.

6. The solution is simple to implement in hardware or software.

7. The solution can use o�-the-shelf processors.

KS Data Merging is an e�cient software cache consistency mechanism for shared

memorymultiprocessors that supports multiple writers and works for cache lines

of any size. The authors claim to have met all the above stated goals except

the last one; they needed a small change to existing cache designs.

We �nd KS Data Merging interesting because it does extra work only when a

block of data is actually shared over the time interval it was held by a processor;

2



other schemes do extra work whenever the data might be shared during the

interval. There are many applications, such as transaction processing, where all

data is potentially shared but actual sharing is exceedingly rare.

Unfortunately, KS Data Merging has some shortcomings. The KS merging

operations are too complicated for a simple state machine memory controller

to handle. Also, there are times when memory requests to a data block must

be suspended which forced Karp and Sarkar to add a time-out to allow an

invalidate command to be broadcast. Another potential problem is that Data

Merging generates unnecessary memory tra�c because it sends the entire data

block to the global memory while it needs to send only the modi�ed data.

In this paper we describe some changes to the cache that allow us to avoid

these di�culties most of the time. Some further modi�cations allow us to detect

all data races, both write-write and read-write. We adopt the same multipro-

cessor memory model as did Karp and Sarkar which is illustrated in Figure 1,

namely compute nodes with local memories connected to global memory servers.

This dichotomy is not necessary; the compute nodes can also be used as global

memory servers. We �nd that this model simpli�es the discussion, though.

Section 2 reviews the Karp-Sarkar Data Merging scheme. Next, in Section 3

we show how a simple change to the processor cache can lead to a substantial

performance improvement. A further extension presented in Section 4 shows

how our proposal can be modi�ed to detect data races.

2 Data Merging Summary

The basic KS scheme was well explained in the original Data Merging paper[5].

In this section we paraphrase their description and point out some weaknesses

in their proposal.

Global memory is divided into data blocks of arbitrary size. The global

memory controller maintains a counter, a bitmask, and a suspend bit for each

3



data block. The counter is used to keep track of how many copies of the data

block are currently held by processors. The bitmask identi�es the elements that

have been modi�ed in the data block, and is used to control subsequent merges

into the data block. The suspend bit is explained below.

When a processor requesta a data block, the global memory unit sends the

data and increments the corresponding counter. When the processor replaces a

clean copy, either because of a synchronization or due to LRU replacement, the

global memory controller decrements the counter. When the processor 
ushes

a dirty copy, the global memory controller merges the changed words with the

current version of the data block using the bit mask. The bit mask is updated

to identify which data elements have been modi�ed. When the counter reaches

zero, the bitmask is cleared.

For simplicity and scalability, no attempt is made to store the set of processor

ids that have requested a copy of the data block; only a count is kept. It is

possible for a processor to fetch a data block, modify it, then 
ush it. If, before

reaching a synchronization point, the same processor requests the data block

and changes a word it had modi�ed before, this change will not be recorded when

the block is 
ushed to global memory. Hence, processors must be suspended

until the merge is completed, i.e., the count has gone to zero. The suspend bit

is used to suspend memory requests until the bitmask is reinitialized.

The key functional advantage of Data Merging solution is that it imposes

only two minor requirements on the processor hardware or software: a) the pro-

cessor must also notify global memory when a clean cache line is replaced, b) all

synchronizations must be performed through explicit synchronization routines

(so that they can also ensure that the appropriate shared data in cache is 
ushed

or replaced). Requirement a) is a very minor extension to processor hardware.

Requirement b) is also needed by other delayed consistency mechanisms. The

suspend bit can also be used to do locking in memory which can greatly reduce

the need for spin locks.

4



In practice, data merging has the great advantage that the processors do

local computation exactly as they would in a serial implementation. Between

synchronization points cache lines are fetched, modi�ed, and 
ushed exactly

as in a uniprocessor run. Even at a synchronization point, processors do no

computation; they need only 
ush some of their shared data. The only extra

computational work done is at the global memory unit, and then only when a

modi�ed data block was actually shared during the interval a processor held a

copy. This latter fact is particularly important when the processors also act as

global memory units. The number of CPU cycles used to implement the data

merging protocol will be greatly reduced over that of other schemes that use

processor cycles whenever the data might be shared.

Because KS data merging approach requires such small changes to the pro-

cessing element hardware and software, it can be e�ciently implemented on

tightly-coupled multiprocessors as well as on networked workstations. In a

tightly-coupled system, the appropriate data block granularity is the cache line

size using the memory controller to implement the protocol. For a network of

workstations, the appropriate data block granularity is the virtual page size.

Here, software can be made to handle the protocol by modifying the paging

mechanism.

There are two potential problems with KS Data Merging. The �rst is the

need to suspend memory requests which makes it impossible to bound the delay

of a memory request. Karp and Sarkar had to add a time out to their basic

scheme because of the possibility of deadlock. When a memory request has been

in the memory queue beyond the time-out interval, an invalidation request for

this data block is broadcast to all the processor. Karp and Sarkar claim that

these broadcasts will be rare but present no application experiences to justify

this belief.

The second problem is that the assumption that the processor will send the

entire data block to the global memory. This procedure won't be too much of a

5



problem in a tightly coupled system where the data blocks are relatively short

cache lines. It may be more of a problem in a loosely coupled system where

the blocks are 2 KByte or 4 KByte pages. While a well-tuned program may

well modify most or all of the words on a page between synchronizations, many

programs may not. The increased memory tra�c may be signi�cant in some

settings.

3 Hardware Assist

A very simple modi�cation to the cache structure enables us to avoid both

problems inherent in KS Data Merging. Each byte in each cache line has a

modi�ed bit associated with it. When the cache line is loaded, the associated

bits are cleared. Any store into the cache line sets the a�ected bits. In prin-

ciple, these bits should be set only when the data is actually changed, but in

practice, they will probably be set on any write, even one that doesn't change

the contents.

There are two ways these bits can be used when the cache line is replaced.

Either the entire cache line along with the bit mask can be sent to memory, or

just the bit mask and modi�ed bytes. In a tightly coupled system, the former

approach would probably be used. The memory controller would use the mask

to control which elements replace those in the copy in global memory. The latter

scheme might be used in a loosely coupled system in which the local memory of

the processor is treated as an additional layer of caching. In this case, the local

memory unit could save the bit mask for use when a data block is later moved

to the global memory.

With this approach, the global memory needs only the ability to use the bit

mask to control which elements get replaced. There is no counter, no bit mask

in memory, no suspend bit. Unfortunately, maintaining a bit per byte in the

cache is expensive in terms of area and transmitting a bit per byte to the global

6



memory is expensive in terms of communications bandwidth.

We can reduce both of these costs from 12.5% of the cost of transmitting

just the data to only 3% if we store a bit per word. Since most programs modify

only words (or even double words), these programs will always modify all the

bytes in a word at the same time. Providing a bit per word will su�ce for

these programs. On the other hand, most machines available today allow the

programmer to modify bytes.

In order to support those programs that involve sub-word operations we

propose using a hybrid approach. Each cache line will be modi�ed further to

include a bit that says whether any sub-word modi�cations were done. This

bit can be set as part of the store-byte or store-halfword operations. Most of

the time this bit will indicate that no sub-word operations were done, and the

memory unit will act as described for the bit per byte case; the mask will be

used to control which elements are to be replaced.

If the sub-word 
ag is set, we use KS Data Merging. In other words, when

such a cache line is 
ushed, the global memory unit will allocate a bit per byte

to act as a mask and a suspend bit. Since the global memory does not know

which data blocks may be modi�ed by sub-word operations, it will have to have

a counter attached to each data block. Most of the time this counter will only

be incremented and decremented. Once the �rst sub-word operation on the

data block has been detected, the counter will be used to control suspending of

requests for this block that are received before the merge is complete.

This hybrid scheme has the same problems as KS Data Merging, but on a

much reduced scale. Unbounded delays can occur, including deadlock, and we

must send entire words from the cache to the memory even if only one byte in

it was modi�ed. However, sub-word operations are much less frequent and can

be avoided entirely. Further, the maximumamount of extra data transmitted is

only 3 bytes in this scheme versus nearly a full cache line in KS Data Merging.

7



4 Data Race Detection

Once we have accepted changes to the cache to improve the performance of

Data Merging, there are more things we can do to assist the programmer. In

this Section we describe a modi�cation to our proposal that enables us to report

all data races.

Debugging shared memory programs is extremely di�cult, in part because it

is so easy to inadvertantly modify a shared word without proper synchronization.

Techniques such as instant replay are di�cult to implement e�ciently because

the granularity of the shared objects, words, is so small. Further, there are two

types of races { write-write in which two or more tasks modify the same word,

and read-write in which one task reads a word written by another.

We propose modifying the cache to have two bits per data element, either

byte or word. Both bits will be cleared when the cache line is loaded. One will

be set, as before, when the datum is written; one will be set when the datum

is read. When the cache line is 
ushed to the global memory, these two masks

can be used to detect races using the following scheme.

As in KS Data Merging, the global memory unit will keep a counter for each

data block. In addition, it will keep a write-mask and a read-mask which are

initalized to zero. When a copy is sent to a processor, the counter is incremented.

When a copy is returned, the data is simply stored if the counter is unity and

the read and write masks are both in their initial state. Otherwise, the read and

write masks from the processor will be compared with the current copies in the

global memory. If there are no set write mask bits occur in the same position

as set read or write mask in the global memory copy, the masks are ORed and

stored in the global memory copy. If there are set bits in the same positions

in the two versions, a data race has been detected and can be reported to the

programmer.

Unfortunately, we must suspend requests for a data block once a merge has

started even though we know which words have been modi�ed for the same

8



reason that KS Data Merging must. If we don't suspend these requests, we

won't know if a con
ict is a true race or caused by a processor fetching a line,

modifying it, 
ushing it, and refetching it. Since this situation is expected to

occur rarely, some users may be willing to accept the occasional false detection

rather than allow requests to be suspended. In the next Section, we show

another way to avoid suspending memory requests.

There is one problem with the above scheme that requires programmer or

compiler assistance; we don't know when to reset the race detection masks to

their initial state. The only really safe place is at a global barrier. However,

there are many situations where a subset of the processors coordinate their

activities independently of the remaining processors. Our hardware has no way

of knowing when enough processors have synchronized to allow us set the masks

to their initial state. Hence, we ask the programmer to call library routines

around a block of code suspected of having a data race. As long as this block

has no synchronization points inside it, we will report only data races that occur

during the run. If the block includes a synchronization of some sort, we may

report some false data races.

5 Extensions

Our proposed modi�cations to the cache remove the problems with KS Data

Merging if we are willing to provide two bits per byte in the cache or keep two

bits per word and forego subword operations. If we are not, there will be times

when memory requests will be suspended, and we will sometimes send more than

the minimum amount of data to the global memory unit. Suspended memory

requests might also be a problem if we are attempting to detect data races.

We believe that memory requests will be suspended rarely, even with KS

Data Merging. However, having unbounded delays and potential deadlocks is

9



intellectually unsatisfying. We propose a software change to eliminate the last

vestiges of suspended requests by using mini-directories.

When a memory request arrives at the global memory that can not be satis-

�ed because a merge is in progress that requires suspending requests, we record

the id of the processor requesting the data block and the current contents of

the data block including the read and write bit masks. Then, we can safely

deliver the current copy to the requesting processor. Once this directory has

been allocated, all subsequent cache lines returned to the global memory are

checked to see if the version in memory or the mini-directory should be used

to control the merge or race detection. The race detection masks will be used

under the direction of user generated library routines as described in Section 4.

We expect the mini-directories to be allocated rarely and to have few entries

since it is unlikely that a processor will 
ush a line and reaccess it between

synchronization points.

Another extension involves bit operations. It is possible to write a program

that manipulates bits that can be parallelized to run correctly on a sequentially

consistent shared memory machine. None of the proposed delayed consistancy

schemes will give the correct answer if two processors modify di�erent bits in

the same byte.

We propose to handle this situation by modifying the cache and the registers.

In addition to having a sub-word store 
ag, each cache line will have a bit-

modi�ed 
ag. The registers will have a bit appended to them that is cleared on

a load and set whenever an operation could a�ect less than a byte of data. For

example, shifts by amounts not a multiple of 8 bits, AND and OR, etc.

When a register having its bit-modi�ed 
ag set is stored, the corresponding

bit is set in the cache line. When this cache line is 
ushed to global memory,

a bit-wise merge is done. Since we expect that the memory controller can only

load and store bytes, we replace the current contents of memory with

B = (B AND NOT M) OR (C AND M),

10



where M is the current bit mask stored in the global memory, C is the data

coming from the processor, and B is the contents of memory. We also construct

the new mask by ORing in a bit mask of the newly modi�ed bits. Clearly,

bit-wise merges are expensive and will probably only be used rarely and for

compatibility with other sytsems.

6 Conclusions

Delayed consistency memory systems may make it feasible to build scalable

shared memory systems. However, great care will be needed to avoid a new class

of bottlenecks. In particular, there are commercially important applications,

such as transaction processing, that access large amounts of shared data, but

any record is only rarely shared. A parallel machine running this application

should be able to scale up to a large number of processors if the work done

avoiding the rare con
icts can be reduced.

KS Data Merging is the �rst delayed consistency scheme that does extra

work only when data is actually shared; all others do extra work whenever the

data might be shared. For example, Munin[2] delivers a read-only copy of a page

to the processor making the memory request. On the �rst write, a clone of the

page is made. When a synchronization point is reached, the clone is compared

to the current version of the page. The bytes that di�er can be sent back to

the global memory. This work consumes some 25% of the processor cycles on

a moderately well-structured algorithm, a Fast Fourier Transform. KS Data

Merging does no extra work unless another processor is holding a copy.

Another approach is taken in the Stanford DASH machine which keeps direc-

tories showing which data is held by which processor, even when implementing

release consistency[4]. In this case, the complexity of the machine is increased.

Because the directories are in the critical path of loads and stores that miss in

11



the cache, either the cycle time of the machine is larger or the latency of a cache

miss is larger than without the directory.

KS Data Merging may not be scalable to large numbers of processors if

requests for data frequently occur while a merge is in progress. Furthermore,

KS Data Merging may saturate the communications network unnecessarily if

only a small percentage of the data in a block is modi�ed. A more serious

drawback is the need for a rather sophisticated memory controller; it is unlikely

that even the basic KS protocol can be implemented with the state machines

used in today's workstations.

We believe that the hardware changes we propose present a reasonable trade-

o� between cost and bene�t. The extra bit per word in the cache increases the

chip area by a negligible amount; the extra path lengths through the cache a�ect

stores, not loads, and so have a minimal impact on cycle time. The bene�t is

that we can use almost exactly the same memory controller as on a standard

workstation and still implement the merging. We also eliminate the problem of

needing to suspend memory requests, and we can reduce the amount of memory

tra�c by sending only modi�ed data if that will improve system performance.

Acknowledgements

We would like to thank Dennis Brzezinski for helping us to understand the

various memory consistency models. David Worley provided encouragement

and support.

References

[1] Sarita Adve and Mark Hill. Weak Ordering | A New De�nition. In Proc. of

the 17th Annual International Symposium on Computer Architecture, pages
1{14, May 1990.

12



[2] J. B. Carter, J. K. Bennet, and W. Zwaenepoel. Implementation and Per-
formance of Munin. In Proc. of the 13th ACM Symposium on Operating

Systems Principles, pages 152{164, May 1991.

[3] M. Dubois and C. Scheurich. Memory Access Dependencies in Shared Mem-
ory Multiprocessors. IEEE Transactions on Software Eng., 16(6):660{674,
June 1990.

[4] K. Gharachorloo, D. Lenoski, J. Lanudon, P. Gibbons, A. Gupta, , and
J. Hennessy. Memory Consistency and Event Ordering in Scalable Shared-
Memory Multiprocessors. In Proc. of the 17th Annual International Sympo-

sium on Computer Architecture, pages 15{26, May 1990.

[5] Alan H. Karp and Vivek Sarkar. Data Merging for Shared Memory Multi-
processors. In Hawaii International Conference on System Science 26, Los
Alamitos, CA, 1993. IEEE Computer Society Press.

[6] Leslie Lamport. How to Make a Multiprocessor Computer that Correctly
Executes Multiprocess Programs. IEEE Trans. on Computers, C-28(9):690{
691, September 1979.

13



MC

MC MC

MC MCMem Mem Mem

Mem Mem

Interconnect

cpu PE

GMU

PE PEcpu cpu

GMU

Figure 1: Multiprocessor memory model. Each processing element (PE) has

a cpu, a memory controller (MC), and a local memory (Mem). Each global

memory unit (GMU) has a memory controller and a global memory module.

The GMU memory reserves some of its space for data structures needed to

implement data merging.

14


