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Abstract

LINDA is a system for programming parallel computers. Although it was originally de-
signed for shared memory machines, versions for distributed memory systems and machines
connected over a network are also available. LINDA programs that run well over the network
will run well without change on a shared memory system.

This report discusses some features of LINDA as implemented for networked IBM
RS/6000s. Measurements of network performance running across both Ethernet and the
Serial Link Adapter fiber optic channel are presented. A parallelization of the Linpack 100
algorithm applied to a problem of order 1,000 is described. Some details of how we have
configured our system at the Palo Alto Scientific Center that others might find useful are also
included.

Index terms: Parallel processing, parallel languages, network computing, RS/6000, LINDA





1 Introduction

Many packages for programming parallel pro-
cessors are available.[6] For shared memory
machines there are language extensions, sets
of compiler directives, and preprocessors. For
message passing systems there are several li-
brary packages, some provided by the hard-
ware vendor and some by third parties.

Shared memory systems view memory as
divided into two pieces, a part local to each
process and a part shared by all (or some)
processes. Thus, each process owns its private
memory and shares ownership of the shared
memory. Any process can access a word in
shared memory simply by referring to it as it
would on a sequential machine.

Message passing systems treat the memory
of each processor as being accessible only to
locally running processes. Data to be shared
must be sent explicitly by the programmer.
Thus, each process can access only the mem-
ory on its processor.

LINDA is unique; it is neither a shared
memory nor a distributed memory system.
Because of the way it handles memory,
LINDA codes can be moved freely between
shared and distributed memory machines.
What distinguishes LINDA from other ap-
proaches is LINDA’s handling of shared data
objects.

LINDA views memory as divided into two
parts. One part is local to each process.
The other part, called the tuple (pronounced
toople) space, is owned by an agent called the
tuple space manager. Processes wishing to
share data give it to the tuple space manager or
request data from it. The tuple space manager
keeps track of all the data it has been given

and delivers it to requesters. The programmer
views the tuple space as a bag containing col-
lections of data that are accessed by name, not
address as with conventional memory.

The remainder of this report contains an
overview of LINDA, some measurements of
Network LINDA running on RS/6000s over
both Ethernet and the Serial Link Adapter
fiber optic channel, the performance of a par-
allel version of the Linpack 100 code, and an
overview of using LINDA at the Palo Alto Sci-
entific Center. This report ends with a discus-
sion of LINDA’s strengths and weaknesses.

2 LINDA Overview

The best overview of LINDA can be found in
the reference manual[9] which is also a good
primer. Most of the material in this section
comes from that document.

The LINDA system from SCA, Inc. con-
sists of several parts. There is a library of
user routines for managing tuples, a set of de-
bugging and performance tuning routines, a
C-LINDA compiler, a routine for distribut-
ing work across the network, and a run-time
system that contains the code for the tuple
space manager. LINDA also includes a code
development system that simulates a parallel
processor on a single machine.

Programming in LINDA only requires that
you learn how to call six routines – out,
in, rd, inp, rdp, and eval which makes
writing a parallel program in LINDA rather
straightforward. Once you know what data is
to be shared among processors, you invoke a
function to hand the data to the tuple space
manager, out. When a process needs some
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1: real_main() 13: int worker()
2: { 14: {
3: int i, j, me, np, worker(); 15: int me, j, n;
4: np = 5; 16: rd("np",n);
5: out("np",np); 17: in("count",?j);
6: out("count",1); 18: out("count",j+1);
7: for ( i=0; i<np; i++) 19: printf("%d of %d.\n",j,n);
8: eval("worker",worker()); 20: return(j);
9: for ( i=0; i<np; i++) { 21: }

10: in("worker",?j);
11: printf("%d done.\n",j); }
12: }

Figure 1: Sample program showing one way for each process to get a unique identifier.

data from another process, you use another
function to get the data from the tuple space
manager.

You have the option of removing the data
from tuple space, in or inp, or simply read-
ing a copy, rd or rdp. If the data is not in the
tuple space, you have the option of blocking
until the data appears, in or rd, or continuing
with other work, inp or rdp.

New processes are started by using eval
to put a live tuple into tuple space. A live tuple
starts a new process but does not put anything
into tuple space until that process finishes.This ma-

terial can
be deleted
at the ed-
itor’s dis-
cretion.

To make things concrete consider a simple
example. We wish to start a number of tasks
and have each one compute a unique identifier.
The code is shown in Figure 1.

Line 1 shows that the main program must
be given the name real main. The first
LINDA operation appears in line 5. It says put
the string "np" and the integer 5 as a single

tuple into tuple space. (I think they named
it backwards; this operation should be called
in.) Line 6 initializes the counter to be shared
by putting a tuple into tuple space. Lines 7 and
8 show how to start np processes by creating
live tuples. Each time one of the worker()
functions finishes, a tuple consisting of the
string "worker" followed by an integer will
be put into tuple space. Finally, the main
routine enters into a loop looking for the tuples
generated by the evals. If the tuple is not yet
in the tuple space, the process will block until
the tuple appears.

The worker routine does ard of the number
of workers. Next, it does an in of the counter
and does an out of the new value. The rd
is used for n because we want all workers
to share the same value; the in of count
is used so that no other worker will grab the
value until the update has been completed.

The use of a string for the first entry in the

2 Network LINDA



tuple is more than a nicety. It helps the pro-
grammer keep track of what is going on and
helps the C-LINDA compiler optimize tuple
operations. If we did not have the string, then
the tuples would each consist of a single in-
teger. Any tuple space operation that looked
just for a single integer could be given this tu-
ple even if we did not want it to. For example,
the in at line 10 might remove the value of
np from the tuple space before the workers
could read it. The program would then give
incorrect results.

Tuples can contain a lot of data, not just
single numbers. For example,

out("row",i,x,(a+n*i):n)

puts a tuple consisting of the string "row",
an integer, a floating point number, and an ag-
gregate of n floating point numbers into tuple
space. If I later need this data,

inp("row",7,?x,?b:k)

attempts to remove the tuple consisting of the
string"row", the integer7, any floating point
value, and any floating point aggregate. Be-
cause I used an inp instead of an in, I will
continue processing if the tuple is not yet in
tuple space. The function inp returns a value
of 1 if successful and 0 otherwise. If the inp
was successful, k is set to the number of items
returned. Due to a bug in the current release,
kwill be set to a core constant if the inp fails.

It is also possible to use anonymous fields
in LINDA calls. Let’s say I want to remove
all the tuples beginning with"row" but don’t
need the data. The call

inp("row",?int,?float,?float *:)

will remove the tuple without requiring me
to allocate space for the data. This feature
is particularly important when running across
the network because data transmission takes
so long. No data is transferred for anonymous
fields. End of op-

tional ma-
terial.

In addition to the network version, the
LINDA system has a code development sys-
tem (CDS). The CDS allows you to simulate
parallel processing on a single machine. It is
useful for testing and debugging codes. First
of all, you do not have to wait for executables
to be moved to several machines before your
run starts. Secondly, you can simulate many
more processors than are available for runs.
Finally, the code development system comes
with the tuple scope, an X-windows based tool
that lets you view and interact with the tuple
space during your run.

The tuple scope displays a pane for each
class of tuples you define in your program.
You may run, stop, or single step your pro-
gram. You may also examine tuples or dump
the tuple space. There is also a debug lan-
guage to help you see what is going on. Due
to a bug in the X interface, nothing will hap-
pen until you click on any pane’s icon and then
move that pane.

This brief introduction is intended only to
give a flavor for the LINDA system. Fur-
ther details can be found in the C-LINDA
Reference Manual[9], a book by LINDA’s
inventors[2], and a review article[1].

3 LINDA at PASC

The Parallel Processing Laboratory (PPL) at
the Palo Alto Scientific Center (PASC) is in
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a constant state of flux. As new equipment
becomes available it is added to the machines.
Thus, the configurations given here are likely
to be out of date. In fact, the configuration
changed while this paper was being written ne-
cessitating changes to all the figures! While
much of the material in this section is spe-
cific to our configuration, others may be able
to build on our experience when configuring
their systems.

There are 5 machines in the PPL; all are
on the Ethernet, and 3 are connected in a line
with Serial Link Adapter (SLA) fiber optic
channels. Figure 2 shows the system con-
figuration. All machines on the fiber optic
network are model 530s. We found that there
were problems when a model 530 sent data
to a model 520 over the SLA. Apparently, the
520 could not keep up with the data flow.

After some thrashing around, we found a
reasonable way to manage these machines. In
particular, we were able to deal with multiple
networks connected to each machine. We also
found a convenient way to switch between
the code development system and the network
version.

Each of the machines on the SLAnet has
a different name and IP address for each net-
work to which it is connected, in our case two.
The name itself is used to communicate over
the Ethernet; the name with-fo (for fiber op-
tic) appended uses the SLA channel. The net-
work used will also depend on the hostname.
If knack has its hostname set to knack-fo,
and it sends a message to knick-fo, then
all transmission is over the SLAnet. If knack
has hostnameknack and talks to knick, ev-
erything goes over the Ethernet. Ifknack has
hostnameknack and talks toknick-fo, the

transmission from knack uses the SLA but
the acknowledgements use the Ethernet.

There is one other consideration when look-
ing at hostname. In order to use LINDA
to run across the network, the user provides a
file tsnet.nodes listing the machines to be
used. LINDA checks that the value returned
from hostname is the same as the entry in
this file. If you want to use the SLAnet, you
must specify the -fo form of the machine
names and make sure that the host name is
set properly. We have been told that future
releases will not check hostname so this
problem is temporary. In the interim, your
installation should set up procedures to allow
your users to change the hostname.

Originally, we ran without any sort of net-
work file system. Users had to move their
code and data to all machines to be used be-
fore the run started, a process automated by
the LINDA system. While the 5 to 10 sec-
ond delay was not a problem for production
runs, it was an annoyance when making short
test runs. Things became more convenient
once we brought up the Andrew File System
(AFS).[8]

We found that interactive use and the load
due to AFS interfered with our parallel runs.
This problem was minimized when we lim-
ited the use of our three machines on the SLA
network to parallel use only. Thus, all LINDA
runs were started from a machine not on the
fiber optic network. While some data trans-
fers were slower, the problem was not too
serious because we were able to structure our
algorithms so that all our large data aggre-
gates were generated on the machines doing
the computation.

The shell scripts we received from SCA
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Ethernet

129.33.192.53 129.33.192.46 129.33.192.35 129.33.192.52
bruinen corfu knack knick peak

540 520 530 530 530
64 MB 48 MB 32 MB 32 MB 32 MB

knack-fo knick-fo peak-fo

129.33.192.34

129.33.200.1 129.33.200.2 129.33.200.3

SLAnet

Figure 2: Configuration of the PPL as of 1 July 1991. The long numbers are the IP addresses
for the two networks. There is no connection between peak-fo and knick-fo because
one of our fiber optic boards has a defective side.

did not make it easy to switch between the
network and code development versions. To
improve the situation we modified the scripts
and installed LINDA in a directory with two
subdirectories – tsnet for the network code
and cds for the code development system.
Users now include both the cds/bin and
tsnet/bin directories in their path. They
can run with the version they want simply by
setting the environment variable LINDA to
either cds or tsnet.

When the environment variable LINDA
is set to tsnet the job will run in par-
allel using the machines listed in the file
tsnet.nodes. Any machine that allows
you to do a remote copy to it can be used so
you can grab cycles from others. We limited
our work to the three dedicated machines in

the PPL so as not to irritate our colleagues.
Unless you tell the system how many pro-

cessors you wish to use, LINDA will dis-
tribute your executable to all nodes in your
tsnet.nodes file unless you use a network
file system like NFS or AFS or distribute the
code ahead of time. This procedure can take
quite a while if you list a lot of machines.

There are two ways to avoid this delay. If
you specify tsnet -n x, LINDA will at-
tempt to find the x least heavily loaded ma-
chines in your list; you won’t know which
machines LINDA will pick. If it is important
to pick the machines you use, you will have to
modify your tsnet.nodes file to list only
the machines you wish to use.

Even though only C-LINDA is available,
you may still use Fortran for the bulk of your
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code. You will have to write some simple C
to handle the tuple space operations, though.
Appendix E is the set of C routines needed
to run the parallel Linpack code discussed in
Section 5.

4 Network Performance

LINDA manages communications for the
user. This feature makes it easier to get a
program running, but it also makes it hard to
interpret the network performance measure-
ments. In this section I present some such
measurements along with an attempt at inter-
preting them.

The ping time tells us the minimum trans-
mission time between two machines. It takes
about 3 ms to ping any two machines over
the Ethernet, 2 ms between neighbors on the
SLAnet, and 4 ms on the SLAnet with one
intervening node.

LINDA does its best to optimize the tuple
space operations. In a network environment
the tuple space manager is distributed across
all processors which avoids a potential serial
bottleneck. The tuples are distributed among
these tuple managers.

All measurements presented in this section
were made using the code in Appendix A and
the results summarized in Table 1. It times
the out of tuples of various sizes, then the
in of them. This procedure is repeated to
test for initialization effects such as memory
allocations. (When run on a single machine,
the two evals of indata() are changed to
function calls.)

First, let’s look at LINDA running on a sin-
gle RS/6000-530, peak-peak in Table 1.

Some special cases must be considered. For
example, LINDA does dynamic memory al-
location to make room for new tuples. There
is, therefore, a difference between the per-
formance of the first iteration and subsequent
ones. In addition, tuples larger than 8 KB are
handled differently than smaller ones. Sin-
gle quantities and small aggregates are put
directly into tuple space; large aggregates are
copied to a local memory buffer, and a pointer
to this data is put into tuple space.

An out or in of a small tuple takes about
0.4 ms which is a measure of the software
overhead. As shown in Figure 3, the access
time does not start to increase until the tu-
ples are about 1 KB long. Note that the the
first out of large aggregates is slower than
subsequent outs due to the time needed for
memory allocation. The in times are nearly
the same as the times for the second out. The
times on a model 520 are longer by a factor of
about 1.4. Small variations are not significant
and can be attributed to various Unix demons
stealing cycles.

Next, let’s look at two RS/6000s connected
with an Ethernet or an SLAnet, peak to
knick andpeak-fo toknick-fo, respec-
tively. Getting a small tuple from another ma-
chine takes about 5.3 ms over the Ethernet and
4.3 ms over the SLAnet, only about twice the
ping time. Also, the performance for anout
of a 1 MByte tuple is nearly the same as when
running on one processor. This equality is due
to LINDA keeping large aggregates in a local
memory buffer.

The performance for ins is shown in Fig-
ure 4. We see that there is only a small differ-
ence between the performance of a 520 talking
to a 530 and a 530 talking to a 530.
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Figure 3: Times and rates to out tuples of various sizes on a model 520. The solid line shows
the times for the first out; the dashed line, the second out.

There is a large difference between the
performance of nearest neighbors and ma-
chines separated by an intermediary. (Recall
that knick-fo sits between peak-fo and
knack-fo on the SLAnet.) The fiber op-
tic board can forward messages without in-
terrupting the CPU if we use low level calls.
However, if we use IP, as LINDA does, the
CPU is needed to provide address resolution.

LINDA distributes tuples and small aggre-
gates among the machines. For example, it
takes 5.3 ms to get a 16 byte tuple from peak
to knick but only 0.4 ms for an 8 byte tuple.
This effect can be attributed to the smaller tu-
ple being stored on the machine that ultimately
does the in. Further evidence is the fact that

the out of the 8 byte tuple takes about 1 ms
compared to 0.4 ms to out the 16 byte tuple.

Notice the change in performance between
aggregates of 8 KB and those of 16 KB shown
in Table 1. Large aggregates are held in a
memory buffer on the machine that does the
out and a pointer to this buffer is put into
tuple space. The time to out the smaller
tuple is 1.6 ms compared to 0.85 ms to out
the larger tuple. In fact, the time to out any
tuple larger than 8 KB is the same as when
run on one machine. The situation for the
ins is more complicated, but the change in
performance for 8 KB tuples shows that there
is a difference between the handling of large
and small tuples.
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Figure 4: Times to in tuples of various sizes over the network. corfu is a model 520; peak,
knick, and knack are model 530s. The -fo suffix means that the fiber optic link was used.

This performance for the SLA, nominally
a 20 MB/sec link, is disappointing especially
considering the fact that LINDA uses UDP
instead of the less efficient TCP for commu-
nications. The next release of LINDA should
improve the performance substantially. The
current release is using an 8 KB buffer which
limits performance to a theoretical peak of
1.6 MB/sec. The new release will use a 28 KB
buffer which should result in transfer rates ex-
ceeding 6 MB/sec.

While I had the machines to myself, I ran
some other tests which are summarized in Fig-
ure 5. Clearly, peak to knick-fo uses the
SLAnet but is a few percent slower than when
both names use the -fo suffix. On the other

hand peak-fo to knick is using the Eth-
ernet but is slightly faster than when neither
name has the -fo suffix.

The three processor run is using the
SLAnet to communicate between peak-fo
and knack-fo. Another iteration made
as part of this run had peak-fo talking
to knick-fo. The measured rate to in
a tuple of 4 KB was over 7 MB/s while
the rate for an 8 KB tuple was 0.54 MB/s.
The run made entirely on peak also showed
7 MB/s transfer rate. Clearly, the 4 KB tu-
ple created by peak-fo was being stored
on knick-fo. Very large aggregates were
transferred at 1.5 MB/s between nearest neigh-
bors and at 1.0 MB/s with one intervening
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Machines Op 8B 16B 4 KB 8 KB 16 KB 1 MB
corfu out 0.000458 0.000460 0.001049 0.001091 0.001656 0.110827

out 0.000475 0.000475 0.000734 0.000849 0.001255 0.049091
corfu in 0.000509 0.000508 0.000768 0.001039 0.001456 0.050214
peak out 0.000357 0.000360 0.000784 0.000805 0.001159 0.075027

out 0.000359 0.000359 0.000547 0.000625 0.000844 0.032070
peak in 0.000392 0.000391 0.000581 0.000751 0.000967 0.032262
peak out 0.001071 0.000496 0.000790 0.001533 0.001166 0.078526

out 0.001068 0.000377 0.000564 0.001629 0.000862 0.032279
knick in 0.000384 0.005297 0.010544 0.020618 0.037712 1.835715
peak-fo out 0.001331 0.000485 0.000785 0.001977 0.001163 0.077335

out 0.001329 0.000365 0.000547 0.001638 0.000846 0.032120
knick-fo in 0.000384 0.004292 0.005583 0.011707 0.018338 0.681707
peak-fo out 0.001356 0.000489 0.000913 0.001930 0.001153 0.076972

out 0.001327 0.000365 0.000549 0.001648 0.000846 0.032575
knack-fo in 0.000393 0.005947 0.008215 0.015510 0.027634 1.034006
corfu out 0.001835 0.000611 0.000625 0.001038 0.002316 0.111513

out 0.001369 0.000473 0.000725 0.002124 0.001256 0.050180
peak in 0.000390 0.005779 0.011182 0.022316 0.039868 1.890971
corfu out 0.001992 0.000597 0.001041 0.002047 0.002157 0.110479

out 0.001335 0.000462 0.000713 0.001797 0.001270 0.048965
peak-fo in 0.000384 0.005730 0.011156 0.022147 0.040049 1.884350
peak out 0.001357 0.000493 0.000788 0.001821 0.001157 0.077085

out 0.001325 0.000366 0.000550 0.001633 0.000847 0.032092
knick-fo in 0.000382 0.005095 0.006068 0.012111 0.020148 0.738569
peak-fo out 0.001369 0.001520 0.001745 0.001606 0.001278 0.078623

out 0.001347 0.001358 0.001583 0.001640 0.000853 0.033222
knick-fo in 0.000387 0.000382 0.000572 0.015102 0.018865 0.695202
knack-fo in 0.004408 0.004411 0.005829 0.015684 0.027171 1.041857

Table 1: Summary of measurements of LINDA network performance. All times are in
secconds.
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node.
Selected times for the runs reported in this

section are given in Table 1. Some aspects
of these times are worth noting. On the two
processor runs, the out times are small for
the 16 B tuples and large for the 8 B tuples;
the roles are reversed for the in times. The
three processor run shows a similar effect, but
here all small aggregates tuples are stored on
knick-fo. Larger tuples are always sent
across the network.

5 Parallel Linpack 100

One way to learn a new programming system
is to rewrite a program you know extremely

well. This approach lets you concentrate on
what is new without having to worry about not
understanding fully the problem being solved.
I chose to take the Linpack 100 algorithm run
on a problem of order 1,000 as my sample.

The original code is shown in Appendix B.
This subroutine factors a matrix A into lower
and upper triangular parts using Gaussian
elimination. These factors over-write the in-
put matrix. At each step, the current column
is searched for its largest element, and the row
containing this element exchanged with the
row containing the diagonal element, a pro-
cess called pivoting. Next, a set of multipliers
are computed and applied to the remaining
submatrix. This procedure is repeated on the
submatrix until the submatrix is a single ele-
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ment.
This code is not a good one for parallel

processing. It is based on the BLAS 1,[7] a
vector-vector approach, which does not make
effective use of hierarchical memories. Since
the distributed memory of the parallel machine
can be viewed as another stage in the hierar-
chy, we would expect that an algorithm based
on the BLAS 3[4] would perform much better.
Indeed, on a single RS/6000 model 520 this
method runs at only 9 Mflops/sec on an order
1,000 problem while an implementation based
on the BLAS 3 runs at 26 Mflops/sec.[3]

The first decision made in parallelizing this
code is the data distribution – rows or columns,
block or wrapped. The algorithm is column
oriented since Fortran stores data in column
major order. I decided to distribute complete
columns to each processor to avoid commu-
nication during the pivot search. Thus, piv-
oting is guaranteed to take a trivial amount
of time. Also, wrapped distribution in which
columns are dealt to processors like cards in a
bridge game provides better performance than
giving each processor a contiguous block of
columns. (The best approach is a hybrid – deal
out contiguous blocks of columns – but was
too complicated for this learning exercise.)

The program, shown in Appendix C, is
nearly 4 pages long, compared to the orginal
25 lines of executable code. Clearly, LINDA
is more suited to a program with large blocks
of serial code where the effort of parallelizing
per line of code is more modest.

The first thing the program does is start he
workers. Next, it puts the array A into tu-
ple space one column at a time. As soon
as the workers are started, they begin remov-
ing the columns from tuple space so there is

some overlap between the input and output
processes. Once all the columns have been
put into tuple space, the master enters a loop
looking for results. Each time a column has
been updated, the owning process puts it into
the tuple space so the input of the results can
overlap the computation.

This output loop also removes the pivots
from the tuple space as soon as it is safe to do
so. If this step were neglected, the next call
to this routine would give incorrect answers
because a rd of a pivot column could get one
left from a previous matrix. For neatness sake,
the master task also removes the tuples left by
the evals.

The routine control simply inputs the
columns and calls the routine that updates the
matrix. You will notice that this implementa-
tion could lead to super-linear speed-ups. If
the matrix is too large to fit in the memory of
one of the processors but the individual pieces
do fit, the one processor run will be slow due
to paging while the multiprocessor runs will
work entirely out of memory.

Upon entering routine update, the owner
of column 1 pivots the column and outs the
first set of multipliers and the first column of
the results. Everyone else attempts to rd the
first pivot column.

The owner of the next column immediately
generates the next pivot column so it will be
ready when the others have finished updating
their parts of the remaining submatrix. It also
outs the next column of the results. All others
proceed to the loop that updates the submatrix.

We can estimate the performance of this
implementation using the sequential program
for the compute time and our measurements of
network performance for the communications
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time. All estimates are for an order 1,000
problem running on a model 530. The serial
computation runs at over 12 Mflops/sec and
takes about 54 seconds.

The master takes 2 ms to out each col-
umn, a total of 2 seconds. Since the master
is not on the fiber network, getting the data
from the master to the worker proceeds at
a rate of 0.37 MB/sec and takes 22 ms per
column or 22 seconds for the entire matrix.
Since each processor ins only its part of the
data, as a rough estimate we can divide this
time by the number of processors. Of course,
this estimate is too optimistic since eventu-
ally the transfer rate stops improving as either
the network, the tuple space manager, or both
become overloaded.

The time to out the pivots also takes about
2 seconds, but this figure can be divided by
the number of processors since each machine
must output only part of the result. The time
to get the pivots is a bit more complicated to
estimate since each has a different length; the
first is length n; the next, length n� 1; etc. If
we let the data transmission time be

tk = t0 + lk=r;

where t0 is the start-up time, lk the length of
k’th pivot column, and r the transfer rate, the
total time is

tt =
n�1X

k=1

tk = (n� 1)t0 +
4(n+ 2)(n� 1)

r
:

We have r = 1:5 MB/sec, t0 = 0:004 sec so
that tt = 7 sec.

Each processor will also out its part of the
results into tuple space so they can be collected
by the master, a total of 2 second. The master

must collect the results which will take 22
seconds.

The total time will be the sum of all these
times. If we use p processors, our time to
complete the calculation will be

T = 24 + 88=p:

We have assumed no overlap between input,
output, and computation.

Of course, this estimate is too optimistic
because the data transfer rates do not decrease
linearly with p. Our actual times are some-
what longer than predicted. For p = 2 we
predict a time of 68 seconds and measure 73
seconds; for p = 3 we predict 53 seconds and
measure 67.

It is clear that a good place to look for im-
provement is in getting the data from the mas-
ter to the workers. Not only is it by far the
largest part of the communications time, but
a simple change can be made to improve the
transfer rate by about 40%. From our net-
work performance measurements we see that
8 KB blocks of data are transferred at a rate
of 0.3 MB/sec while 128 KB blocks move
at over 0.5 MB/sec. Thus, the output rou-
tine was modified to use a work array of size
16 K words to increase the size of the aggre-
gates. The routines modified to implement
this change are shown in Appendix D.

With this change we expect it to take 15
seconds to load the columns into a single pro-
cessor; we measure 16 seconds. The over-
all performance improved a bit less than ex-
pected due to the loss of some overlap between
the outs and ins of the columns. Table 2
compares the performance of these two ap-
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Machines Method out col in col Update in res Total Mflops
A Unblocked 4.84 32.75 77.88 107.7 113.6 5.87

A,B Unblocked 12.48 18.12 46.66 60.40 73.05 9.12
A,B,C Unblocked 14.89 18.52 43.39 51.64 66.61 10.00
D,E Unblocked 13.24 18.21 48.35 57.51 70.89 9.40
X Unblocked 7.01 14.02 56.54 63.85 70.98 9.40
A Blocked 0.87 16.45 78.34 97.41 98.31 6.78

A,B Blocked 2.06 11.33 45.02 62.38 64.52 10.32
A,B,C Blocked 4.66 9.09 41.36 52.82 57.65 11.55
D,E Blocked 2.15 9.69 48.63 62.92 65.23 10.21
X Blocked 1.18 5.20 53.27 58.13 59.37 11.23

Table 2: Summary of Linpack 100 algorithm on a problem of order 1,000. A – peak-fo,
B – knick-fo, C – knack-fo, D – peak, E – knick. In all cases except X corfu is the
master processor; in X it is peak-fo with knick-fo as the worker. The best of four runs
is shown. All entries but Mflops are in seconds.

proaches. Each table entry is the best of four
runs on a random matrix.

Some features of these results are worth
noting. The total time is very nearly equal
to the time needed to out the columns plus
the time to in the results. The total is slightly
larger than the sum for some unknown reason.

We would also expect the time to in the
columns plus the time to update the subma-
trices to equal the time to in the results. We
see that for the unblocked versions the sum
is greater than the time to in the results.
Clearly, we are overlapping the time to out
the columns and in the results with the time
to do the update.

We have lost much of this overlap with the
blocked code; the sum of the time to in the
columns and update the array is substantially
less than the time to in the results. Clearly,
corfu can not get the results across the Eth-
ernet fast enough one column at a time to keep

up with the computation. Only when all pro-
cessors are connected over the SLAnet is the
sum close to the time to in the results.

I made another set of runs to see the ef-
fect of having more machines listed in the
tsnet.nodes file than I had tasks. With
corfu as the master, I listed peak, knick,
and knack and specified 2 tasks. Each
pass ran on a different pair of processors due
to the way LINDA assigns evals to pro-
cessors. The processor with no computa-
tional work to do had a CPU busy of 10%
to 20% and little I/O activity except for very
short bursts. Overall performance was re-
duced from 9.4 Mflops/sec when two pro-
cessors were in the tsnet.nodes file to
9.0 Mflops/sec. Clearly, there is some ex-
tra communications overhead when the third
processor is given tuples by the tuple space
manager.
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6 Conclusions

LINDA does what it says it will do and does
it well. The code is stable, does not crash
the system, has only minor bugs, and uses the
network efficiently. There are a number of
annoying errors in the documentation, how-
ever, that make using some features frustrat-
ing. For example, the tuple scope can be set
up to stop the program when some condition
is met. The documentation lists "=" as the test
for equality. Unfortunately, equality is tested
with "==". Another problem was a missing
underscore in the names of the timer func-
tions. In both cases, e-mail support quickly
identified the problem.

The network performance over the SLA is
disappointing but is supposed to be improved
by about a factor of four in the next release.
Even with this improvement network LINDA,
like other network computing systems, is only
suitable for large grain work. In the 6 ms
it takes to get a small tuple from another ma-
chine you could have executed 60,000 floating
point operations. Even accessing a local tuple
consumes the time needed to do 3,000 flops.
If you can structure your problem to trans-
fer large aggregates, things become somewhat
better. At 1.5 MB/sec you can do only about
60 flops in the time it takes to transfer a double
precision word.

Although LINDA has been used for a wide
variety of applications,[5] I believe it would
be much more useful if some features were
added.

It would be nice to have some kind of con-
trol over the tuple space as a whole. For exam-
ple, the parallel Linpack code would have ben-
efited from a clear ts function that would

simple empty the tuple space. It takes over
6 seconds to remove the 1,000 pivot tuples, a
function that could be done with a single call.

Library routine writers would also benefit
if they could push and pop tuple spaces. It
is possible to achieve a similar function now
by getting a random number when the routine
is entered and using it as an actual in each
tuple operation. However, getting a unique
sequence of random numbers for disjoint pro-
cesses is not trivial. Alternatively, we could
use a tuple to keep track of the push/pop level.
While it is not hard to implement, this scheme
needs care since the library routine does not
get access to tuple space until some unknown
amount of work has been done. A pair of
push ts and pop ts calls would be sim-
pler.

As presently implemented, there is no way
to control where a tuple goes. This feature
makes programming easier but means that I
can’t stage data to the machine that will need
it later. It would be nice if I could overlap the
network delay with computation.

A simple change in the interpretation of
rdp and inp would allow me to overlap data
movement and computation. Currently, these
functions return a 0 and do no data movement
if the tuple is not in tuple space. I propose
they also return 0 if the data is not on the re-
questing processor. However, in this case the
data will be moved so at a later time the oper-
ation will return a 1 and move the data from a
local buffer to my array. This change would
allow me to issue the rdp or inp as soon as I
know what data I want. A later rd or in will
provide any needed synchronization.

Many programs could be greatly simplified
if the tuple manager had some intelligence.
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For example, if I could

in("x",?k<7)

which returns any tuple for whichk is less than
7, I could reduce both the number of synchro-
nization points in the code and the number of
accesses to tuple space. Of course, any valid
function should be acceptable.
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A Network Measurement Code

/* Time network performance of C-Linda */
#include <time.h>
#include <stdio.h>
#define SIZE 524288
#define MAX 18
#define TIMES 5

real_main()
{

int outdata(), indata();
("outdata",outdata());
eval("live",indata());
in("live",?int);
("outdata",outdata());
eval("live",indata());

}

int outdata()
{

int i, j, l, it, indata();
double *a, mint, t;
setlinebuf(stdout);
a = (double *) malloc(SIZE*sizeof(double));

/* Time outs */
printf("Time out on varying sizes on\n");
system("hostname");
l = -1;
printf("Time for single integer: ");
for (i=0;i<TIMES;i++) {

it = mytime();
out("data",l);
printf("%10.6f ",1e-6*(mytime()-it));

}
printf("\n");
for (j=0;j<MAX;j++) {

l = 1<<j;
mint = 1e20;
printf("%10d",j+3);
for (i=0;i<TIMES;i++) {

it = mytime();
out("data",l,a:l);
t = 1e-6*(mytime() - it);
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printf("%10.6f ",t);
if ( t > 0.0 )

mint = (mint<t)?mint:t;
}
printf(" %10.6f %10.6f\n",mint,1e-6*8*l/mint);

}
return(0);

}

/* Now time ins */
int indata()
{

int i, j, l, it;
double *a, mint, t;
setlinebuf(stdout);
a = (double *) malloc(SIZE*sizeof(double));
printf("Time in on varying sizes on\n");
system("hostname");
l = -1;
printf("Time for single integer: ");
for (i=0;i<TIMES;i++) {

it = mytime();
in("data",?l);
printf("%10.6f ",1e-6*(mytime()-it));

}
printf("\n");
for (j=0;j<MAX;j++) {

l = 1<<j;
mint = 1e20;
printf("%10d",j+3);
for (i=0;i<TIMES;i++) {

it = mytime();
in("data",l,?a:);
t = 1e-6*(mytime() - it);
printf("%10.6f ",t);
if ( t > 0.0 )

mint = (mint<t)?mint:t;
}
printf(" %10.6f %10.6f\n",mint,1e-6*8*l/mint);

}
return(0);

}
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B Original Linpack 100 Code

SUBROUTINE DGEFA(A,LDA,N,IPVT,INFO)
INTEGER LDA,N,IPVT(1),INFO
DOUBLE PRECISION A(LDA,1)
DOUBLE PRECISION T
INTEGER IDAMAX,J,K,KP1,L,NM1

C
C GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING
C

INFO = 0
NM1 = N - 1
IF (NM1 .LT. 1) GO TO 70
DO 60 K = 1, NM1

KP1 = K + 1
C
C FIND L = PIVOT INDEX
C

L = IDAMAX(N-K+1,A(K,K),1) + K - 1
IPVT(K) = L

C
C ZERO PIVOT IMPLIES THIS COLUMN ALREADY TRIANGULARIZED
C

IF (A(L,K) .EQ. 0.0D0) GO TO 40
C
C INTERCHANGE IF NECESSARY
C

IF (L .EQ. K) GO TO 10
T = A(L,K)
A(L,K) = A(K,K)
A(K,K) = T

10 CONTINUE
C
C COMPUTE MULTIPLIERS
C

T = -1.0D0/A(K,K)
CALL DSCAL(N-K,T,A(K+1,K),1)

C
C ROW ELIMINATION WITH COLUMN INDEXING
C

DO 30 J = KP1, N
T = A(L,J)
IF (L .EQ. K) GO TO 20

A(L,J) = A(K,J)
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A(K,J) = T
20 CONTINUE

CALL DAXPY(N-K,T,A(K+1,K),1,A(K+1,J),1)
30 CONTINUE

GO TO 50
40 CONTINUE

INFO = K
50 CONTINUE
60 CONTINUE
70 CONTINUE

IPVT(N) = N
IF (A(N,N) .EQ. 0.0D0) INFO = N
RETURN
END

C Parallel Linpack 100 Code

SUBROUTINE DGEFA(A,LDA,N,IPVT,INFO)
INTEGER LDA,N,IPVT(1),INFO
DOUBLE PRECISION A(LDA,1)
DOUBLE PRECISION T
INTEGER IDAMAX,J,K,KP1,L,NM1

C
C GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING
C

data if/0/
if ( if .eq. 0 ) then

if = 1
read(1,*) nt
write(*,*)nt,’ tasks.’
close(1)
if ( nt .eq. 0 ) call exit

endif
INFO = 0
IF (N-1 .ge. 1) then

call init(%val(n),%val(nt))
do i = 1, nt

c---------> eval("evals",ccontrol(i,nt,n))
call spawn(i,nt,n)

enddo
t1 = second()
do j = 1, n

c---------> out("col",j,a(1,j):n)
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call outcol(n,j,a(1,j))
enddo
write(*,*)second()-t1,’ seconds to output columns’
t1 = second()
do k = 1, n + nt

c-------------------------> in("result",k,?ipvt(k),?a(1,k):n)
if ( k .le. n ) ipvt(k) = inres(k,l,a(1,k))

c--------------------------> in("pivot",k-nt,?int,?int,?double,?double *:)
if ( k .gt. nt ) call inpiv ( k - nt )

enddo
write(*,*)second()-t1,’ seconds to input results’

c-----------> in("evals",?int)
call cleanup(nt,n)

endif
end

c-----------------------------------------------------------------
function control(me,nt,n,aj,ak)
double precision aj(n,*), ak(n), t
mycol(k) = (k+nt-1)/nt
kreal(k) = me + nt*(k-1)

C
C ROW ELIMINATION WITH COLUMN INDEXING
C

control = 0.0
c
c Read in my subset of the columns
c

ncol = mycol(n)
t1 = second()
do i = 1, ncol

k = kreal(i)
if ( k .le. n ) then

c--------------> in("col",k,?aj(1,i):n)
call incol(n,k,aj(1,i))

endif
enddo
write(*,*)me,’: ’,second()-t1,’ seconds to read columns’
call update(me,nt,n,aj,ak)
RETURN
END

c-----------------------------------------------------------------
subroutine update(me,nt,n,aj,ak)
double precision aj(n,*), ak(n), t
mycol(k) = (k+nt-1)/nt
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metest(k) = 1 + mod(k-1,nt)
kreal(k) = me + nt*(k-1)

c
c Loop over cycle
c

t3 = second()
if ( me .eq. 1 ) call pivcol(nt,1,n,aj)
do k = 1, n - 1

c-----------> rd("pivot",k,?l,?t,?ak:(n-k+1))
call rdpiv(k,l,t,ak)

c
c Update the next column and get the pivot out ASAP
c

if ( metest(k+1) .eq. me ) then
j = mycol(k+1)
T = Aj(L,j)
IF (L .ne. K) then

Aj(L,j) = Aj(K,j)
Aj(K,j) = T

endif
CALL DAXPY(N-K,T,Ak(K+1),1,Aj(K+1,j),1)
call pivcol(nt,k+1,n,aj(1,mycol(k+1)))

endif
c
c Update my columns using the given pivot
c

do j = mycol(k+2), mycol(n)
if ( j .le. n ) then

T = Aj(L,j)
IF (L .ne. K) then

Aj(L,j) = Aj(K,j)
Aj(K,j) = T

endif
CALL DAXPY(N-K,T,Ak(K+1),1,Aj(K+1,j),1)

endif
enddo

enddo
tot = second() - t3
write(*,’(a,i5,a,f12.6)’)’update:’,me,’: total time =’,tot

c
end

c-----------------------------------------------------------------
subroutine pivcol(nt,k,n,a)
double precision a(n), t
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C
C FIND L = PIVOT INDEX
C

L = IDAMAX(N-K+1,A(K),1) + K - 1
C
C ZERO PIVOT IMPLIES THIS COLUMN ALREADY TRIANGULARIZED
C

IF (A(L) .ne. 0.0D0) then
C
C INTERCHANGE IF NECESSARY
C

IF (L .EQ. K) GO TO 10
T = A(L)
A(L) = A(K)
A(K) = T

10 CONTINUE
C
C COMPUTE MULTIPLIERS
C

T = -1.0D0/A(K)
CALL DSCAL(N-K,T,A(K+1),1)

endif
c--------> out("pivot",k,l,t,a(k+1):(n-k))

call outpiv(nt,k,l,n,t,a)
c--------> out("result",k,l,a:n)

call outres(k,l,n,a)
end

D Parallel Linpack 100 Code with Blocking

SUBROUTINE DGEFA(A,LDA,N,IPVT,INFO)
INTEGER LDA,N,IPVT(1),INFO
parameter ( iwmax = 2**14 )
DOUBLE PRECISION A(LDA,1), w(iwmax)
DOUBLE PRECISION T
INTEGER IDAMAX,J,K,KP1,L,NM1

C
C GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING
C

data if/0/
if ( if .eq. 0 ) then

if = 1
read(1,*) nt
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write(*,*)nt,’ tasks.’
close(1)
if ( nt .eq. 0 ) call exit

endif
INFO = 0
IF (N-1 .ge. 1) then

call init(%val(n),%val(nt))
do i = 1, nt

c --------> eval("evals",ccontrol(i,nt,n))
call spawn(i,nt,n)

enddo
t1 = second()
iwsize = min(iwmax,n*(n+nt-1)/nt)
call grpcols(a,lda,n,iwsize,w,nt)
write(*,*)second()-t1,’ seconds to output columns’
t1 = second()
do k = 1, n + nt

c ------------------------> in("pivot",k,?ipvt(k),?t,?a(1,k):nn)
if ( k .le. n ) ipvt(k) = inres(k,l,t,a(1,k))

c -------------------------> in("pivot",k-nt,?int,?double,?double *:)
if ( k .gt. nt ) call inpiv ( k - nt )

enddo
write(*,*)second()-t1,’ seconds to input results’
do i = 1, nt

c --------> in("evals",?int)
call cleanup

enddo
endif
end

c-----------------------------------------------------------------
subroutine grpcols(a,lda,n,iwsize,w,nt)
double precision a(lda,*), w(n,*)

c
nc = iwsize/n
do it = 1, nt

ic = 0
iout = 1
do j = it, n, nt

ic = ic + 1
do i = 1, n

w(i,ic) = a(i,j)
enddo
if ( ic .eq. nc ) then

c -----------> out("col",it,iout,w:(n*ic))
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call outcol(it,n*ic,iout,w)
iout = iout + ic
ic = 0

endif
enddo

c ----------------------> out("col",it,iout,w:(n*ic))
if ( ic .ne. 0 ) call outcol(it,n*ic,iout,w)

enddo
end

c-----------------------------------------------------------------
function control(me,nt,n,aj,ak)
double precision aj(n,*), ak(n), t
mycol(k) = (k+nt-1)/nt
kreal(k) = me + nt*(k-1)

C
C ROW ELIMINATION WITH COLUMN INDEXING
C

control = 0.0
c
c Read in my subset of the columns
c

ncol = mycol(n)
t1 = second()
icol = 1
do while ( kreal(icol) .le. n)

c -----> in("col",me,icol,?aj(1,icol):nn)
call incol(me,icol,aj(1,icol),nn)
icol = icol + nn/n

enddo
write(*,*)me,’: ’,second()-t1,’ seconds to read columns’
call update(me,nt,n,aj,ak)
RETURN
END

E C-wrapper code for Linpack

/* C wrapper code for plinpackd.f */
#
#include <stdio.h>
#include <time.h>
#
int ME = 0;
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void init(n,nt)
int n, nt;

{
setlinebuf(stdout);

}

void spawn(me,nt,n)
int *me, *nt, *n;

{
int ccontrol();
eval("evals",ccontrol(*me,*nt,*n));

}

int ccontrol(me,nt,n)
int me, nt, n;

{
int work_size;
double *w, *ak;
ME = me;
setlinebuf(stdout);
system("hostname");
work_size = n*(n+nt-1)/nt;
w = (double *) malloc(work_size*sizeof(double));
ak = (double *) malloc(n*sizeof(double));
control(&me,&nt,&n,w,ak);

}

void outcol(me,n,col,w)
int *me, *n, *col;
double *w;

{
out("col",*me,*col,w:*n);

}

void incol(me,col,a,n)
int *me, *col, *n;
double *a;

{
in("col",*me,*col,?a:*n);

}

void outpiv(nt,k,l,n,t,a)
int *nt, *k, *l, *n;
double *t, *a;
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{
out("pivot",*k,*l,*t,(a+(*k)):((*n)-(*k)));

}

void outres(k,l,n,a)
int *k, *l, *n;
double *a;

{
out("result",*k,*l,a:*n);

}

int rdpiv(k,l,t,a)
int *k, *l;
double *t, *a;

{
int nn;
rd("pivot",*k,?*l,?*t,?(a+*k):nn);
return(*l);

}

int inres(k,l,a)
int *k, *l;
double *a;

{
int nn;
in("result",*k,?*l,?a:nn);
return(*l);

}

void inpiv(k)
int *k;

{
in("pivot",*k,?int,?double,?double *:);

}

void cleanup()
{

in("evals",?int);
}
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