The Global Computer

Document Number (320-3544
January 10, 1991
Alan H. Karp

IBM Scientific Center
1530 Page Mill Road
Palo Alto, CA 94304

(KARP at PALOALTO)

Abstract

Imagine having access to more computer power than in hundreds of supercomputer
centers, having available more memory than most computers have disk space, having
more disk space than in most tape libraries. Further, imagine being able to travel
anywhere in the world, sit down at any available terminal, and have your entire envi-
ronment available — profiles, mail, configurations. Imagine, now, how nice it would be
if you could access all your files as quickly as if you were at home. Such a system is
not an idle dream; we are building it today and have part of it running now.

Index terms: Network computing, distributed computing, collaboration

Introduction

Until recently programs were written by
people in a single location. Now, however,
networks have made it possible for collab-
orators to be spread out over the entire
globe, and it is not unusual to find papers
listing authors on three continents. Un-
fortunately, it is hard to collaborate when
people are on different computers. The
problem is so severe that the NSF is fund-
ing research to address the problem.[2]

Since it is easier to collaborate with
someone on the same computer than with
someone on a different computer, the so-
lution is obvious.

Put everyone in the world on the
same computer.

This distributed operating system spans
the world so let’s call it the Global Com-
puter. I hope to convince you that the
Global Computer is no idle dream. In fact,
we are beginning to assemble it today.

A good example of how the Global Com-
puter should work is the way printers are
handled in most Unix shops. A user sim-
ply says print file and the file magically
appears on a printer. There is no need to
know which machine controls the printer,
nor is there any need to move files around
the network. All the details are handled
by the system. FEach user acts exactly
as if the printer is locally connected. If
the Global Computer is implemented cor-
rectly, all computer services — printing, ex-
ecuting, accessing files — will be this easy
to use.

What are some of the advantages of the
Global Computer? First of all there is the
aggregate resource available.
will have the computer power of hundreds
of supercomputers, more physical mem-
ory than most computers have disk space,
and more disk space than in many tape li-
braries. In addition, there will no longer
be a problem of incompatible versions of
software since all updates can be centrally
managed. Backups can also be provided
at a central location with special facilities
to handle the volume of data.

Fach user

The user will see some less tangible ben-
efits as well. Imagine traveling to another
city and being able to sit down at any ter-
minal, log on, and have access to all your
files. Since there is only one computer,
you will not have to beg access to someone
else’s account so you can remotely log in to
your home computer. Since you are doing
all your work in your own account, you
have your own environment with things
configured the way you like. Furthermore,
if the Global Computer is implemented
properly, you will be able to access your
data as quickly as if you were home.

System support services will also im-
prove. Since the Global Computer spans
the world, it will always be daylight some-
where. Thus, systems support personnel
working first shift in Brazil can help a
user running in the middle of the night in
Manila. When they fix a piece of broken
software, it will be available to the user au-
tomatically. Language differences will be
a problem. Perhaps the Global Computer
will spur the development of automatic,
on-the-fly translation.

The Global Computer

One thing the Global Computer is not is
a panacea. There are problems collaborat-
ing with people even when everyone is on
the same machine; the Global Computer
will do nothing to alleviate these prob-
In fact, the success of the Global
Computer will be measured by how well
it reduces the problem of collaboration to
exactly this set.

lems.

Application Development

The applications that are of interest to
users of the Global Computer typically
consist of tens or hundreds of thousands of
lines of code, hundreds of subroutines, and
a number of data files, some quite large.
These programs have had many contribu-
tors, most of whom have moved to other
locations. For example, it is not unusual
for a university professor to have a single
application program worked on by many
generations of graduate students. FEach
makes some improvements and then moves
on. After a while there is no one who un-
derstands more than a small part of the
code.

The problem is exacerbated by the trend
toward interdisciplinary research. Not
only does each individual not know much
about most of the program, no individual
even understands much of the underlying
science.

Consider the example of a climate mod-
eling code.
experts in the microphysics; others, the
macrophysics; someone else, the numeri-
cal methods; and yet another person, the

A few contributors will be

visualization techniques. The problems of
maintaining and upgrading the program
are bad enough if everyone works on the
same computer; they are magnified when
the collaborators must work on different
machines.

Look at what it takes to improve an ex-
isting code. One of the contributors will
edit a few routines, rebuild the executable,
run some small tests, and examine the
output. This procedure will be repeated
many times until the researcher is con-
vinced that the changes will have the de-
sired effect. Next, the new code will be run
through the test suite to check both cor-
rectness and performance. The test suite
will also be run several times, typically to
tune the code’s performance. Often, bugs
or a serious performance problem will re-
quire going back to the small test runs one
or more times.

Now look at the problems working on
a major, interdisciplinary program with
contributors from many locations. First of
all, each person will almost certainly have
a complete copy of the code, the required
input data sets, and the output from at
least a few runs. Since there are multiple
copies of the code, researchers will have to
reconcile differences periodically.

For example, in order to improve the mi-
crophysics in a climate code, it might be
necessary to know how much methane is
in the air. This change will almost cer-
tainly require a change to the input data
and corresponding routine. The next day,
another researcher may be improving the
macrophysics by including, say, the effect
of ocean waves on the radiation flow. If

The Global Computer

this change also requires a modification to
the input data format, there will now be
two, incompatible versions of the applica-
tion.

This problem is much more manageable
if everyone is working on the same com-
puter. Since it is no harder to access a
shared copy of the input routine than it
is a private version, it is more likely that
both users will work from a single copy.
There will be no conflict unless both re-
searchers try to make the changes at the
same time. The problem is much more dif-
ficult when there are several copies floating
around, and people are out of touch with
each other. For example, software man-
agement systems are much more likely to
be used if everyone is on the same com-
puter. It is just too tempting to update a
local copy than to get the “official” version
from a remote machine.

The same problem arises when the small
tests have been completed and it is time
to run the test suite. While the small
runs can be made on each person’s local
computer, a comprehensive test suite will
require a supercomputer. FEach run can
take several hours of machine time, and
several runs are typically made. Two re-
searchers at different locations may each
be trying to run incompatible new versions
on the same supercomputer. While there
are mechanisms to avoid collisions, such as
using separate directories for each individ-
ual, everything is much simpler if all the
work is done on the same computer.

What is a Computer?

It is clear that no conventional computer
architecture can be used to build the
Global Computer; it will by necessity be
made up of a network of machines made
to look to the user like one computer. If
we are to succeed, we must agree on what
the applications programmer thinks is a
computer.

I contend that a computer is really a
simple device when viewed from the out-
side. It consists of

1. A means of talking to the machine; a
keyboard.

2. A means for the computer to talk to
us; a video display.
3. Something to do the work; one or

more CPUs.

4. Volatile storage; both real and virtual
memory.

5. Nonvolatile storage; magnetic tapes
and magnetic and optical disks.

6. Software

(a) File systems so users can name
their files.

(b) Command environments so users
can manipulate their files.

(c) Text editors for creating and
modifying files.

(d) Compilers for turning source
files into executable files.

(e) Applications for turning input
files into output files.

The Global Computer

If we can present these pieces to the
users, they will think they have a com-
puter no matter what is under the covers;
only their perception of the quality of the
computer will be affected by our imple-
mentation. If we do it poorly, our machine
will be awkward to use and slow; if we do it
well, users will not know or care that they
are running jobs on a distributed machine.

Key Building Blocks

There are three key pieces to a good im-
plementation of the Global Computer —
a global name space, a common execu-
tion environment, and file replication with
caching. Without the first two, we won’t
have a Global Computer; without the
third, no one will be willing to use it until
networks become considerably faster than
they are today.

Global Name Space

One of the problems with working with a
variety of systems is finding the files you
need. A global name space on the Global
Computer simply means that you (and
your application) will be able to find any
file no matter what machine is being used.
In other words, the absolute path name of
any file is knowable. This simple feature
makes it possible to run any program on
any machine since the program and any in-
put and output files can always be found.
In addition, procedures that build appli-
cations, e.g., makefile, can run on any
machine.

I'include in the concept of a global name
space that of uniqueness; there is only one
version of any file. While it would be pos-
sible for different machines to have differ-
ent versions of a file at the same location
in the file system, the Global Computer re-
quires that all copies be identical. If they
are not, the user will need to know which
version is on which machine, and one of
the key features of the Global Computer
will be lost.

Since each file is unique, a global name
space means that software updates can
be made where appropriate.
ple, the Global Computer could have a
group in Nigeria responsible for the C
compiler and a group in Norway handling
Fortran. Other groups in other locations
could maintain application specific pack-
ages. The point is that, once a module
is updated, all users on the Global Com-
puter see the new version. Backups can
also be handled easily at any location, par-
ticularly those set up with special devices
to handle the volume of data.

A global name space also makes work-
ing while traveling easier. Today you must
beg for a user id on the local machine or for
someone to give you access to an account
so you can log in to your home system.
Even if you find a way to get to your home
machine, the network delays are a problem
since all commands have to traverse the
network. With the Global Computer you
don’t have these problems. Since there is
only one password file, you need only find
an unused terminal to log on. All com-
mands are executed on the local machine.

For exam-

Further, if file replication is done properly,

The Global Computer

all the files needed will be on locally con-
nected disks.

Common Execution Environment

A common execution environment means
that a program can be run on any of the
machines making up the Global Computer
that meets the program’s requirements. If
the Global Computer is to be truly useful,
it will consist of machines from a variety
of vendors, preferably all of them. In such
a heterogeneous environment a program
that requires Cray vector registers will be
able to run only on those machines. Since
we don’t want the user to have to know all
the requirements of the job, there will be
a mechanism for attaching this informa-
tion to each program. If an application has
been enabled for a variety of machines, the
system will be capable of finding a suit-
able machine and starting the correspond-
ing version.

Other things are possible with a com-
mon execution environment. Since the
Global Computer appears to be one ma-
chine to the user, we should be able to use
all the tools we would use on a single ma-
chine. In Unix we can fork processes and
pipe output between them. A common ex-
ecution environment will allow us the same
freedom across physical machines. Thus,
parallel processing of applications will be
just as easy (hard?) as if done on a single
computer.

Another nice feature of a common exe-
cution environment is the ability to do dy-
namic load balancing. Jobs can be sched-
uled to run where they will complete the

fastest. For example, consider a code en-
abled for both a vector supercomputer and
a high performance workstation. If the
supercomputer is heavily used, and the
workstation is idle, the scheduler can send
the job to the workstation. The user will
not need to know where the job ran.

Consider also an application that takes
many hours of CPU time. It might be
started at night when there are few users
on the system. However, if it does not
finish by morning, it will either interfere
with interactive users or be pushed so far
into the background that it will make little
progress during the day. With a common
execution environment we should be able
to find a computer somewhere else in the
world that is lightly loaded, presumably
because it is the middle of the night there.
We can then migrate the application to
that machine. I like to call this heliopho-
bic computing, i.e. “Keep your applica-
tions in the dark.”

Of course, there will be times when the
user will want more control. For example,
the user may want the job to run on a spe-
cific machine, perhaps because 20 GBytes
of non-replicated data are known to reside
there. The Global Computer will provide
for this requirement, perhaps automati-
cally as part of its scheduling algorithm.

It is unfortunate that the actual hard-
ware always shows through our beautiful
systems software, but any time we want to
optimize something, performance for ex-
ample, we become aware of the compo-
nents of the system. The Global Com-
puter is no exception. (Even Unix print
services occasionally require the user to di-

The Global Computer

rect a file with special characteristics to a
specific printer.) The point is that a user
may treat it as a single system; the ex-
tra control will be provided for those who
need it.

There are other advantages of a com-
mon execution environment. Systems peo-
ple can migrate running jobs to other ma-
chines before taking a system down for
maintenance. If a machine is lost, only
a small part of the aggregate resource
becomes unavailable. Also, as machines
join the Global Computer the users see
more and different resources made avail-
able without needing to do anything spe-
cial to use them. Since there will always
be a computer available somewhere in the
world, a business with a critical applica-
tion can rely on the Global Computer to
handle most of its disaster recovery.

File Replication and Caching

The hardest part of making the Global
Computer interactive response time suffi-
ciently short is dealing with network delay,
both latency and transfer time. The best
way to hide network delay from the user
is to make it occur when the user is doing
something else. This is where file replica-
tion comes in.

Since the Global computer has a global
name space, and there is a unique ver-
sion of each file, that file can be copied
to other sites. The copying can be done
either when the file is modified or when
it is requested. If copied when needed by
a remote user, that user will pay the net-
work delay which can be quite long if the

data is being moved a long way. (If the file
is cached, the user only waits on the first
access.) Thus, the only way to provide fast
enough access to data, aside from greatly
improving network speeds, is file replica-
tion.

File replication implies that a current
copy is sent out to other machines each
time the file is changed. Since most files
are not used interactively for a long time,
say several seconds, after they are modi-
fied, users will rarely have to wait for the
network to deliver the data; it will be there
by the time they ask for it. Of course, the
operating system is responsible for main-
taining data integrity.

It is clear that we don’t want a copy of
each file on each machine in the Global
Computer. Instead, we want to be able
to specify a replication list for each file or
group of files. Thus, groups working on a
project would share a set of files. Other
groups working on other projects would
share another set of files. Key files like
compilers, system commands, text proces-
sors, etc. would be replicated to all sites.

We might see a structure like that in
Figure 1. A person on machine A might
be collaborating with someone on machine
B; someone else on machine B might be
collaborating with people on machines C,
D, and E; yet anther person on machine
D might be working with a group using
machines F., G, and A. This figure shows
only the selectively replicated files; there
will also be files, like compilers, replicated
to all sites. In addition, any user on any
machine can access any file simply by nam-
ing it; the only difference from accessing a

The Global Computer

replicated file will be a delay in getting the
data.

File replication involves some trade-offs.
It can reduce network traffic by having
copies of commonly used files close to the
machines using them. For example, each
machine in the Global Computer will have
a copy of the C compiler even though it
will typically be modified only at a sin-
gle site. On the other hand, replication
can increase network traffic. It is not un-
common to modify a single routine many
times while upgrading a code. All these
changes will be sent across the network
even though only the last one need be.

At first glance, disk space is another
concern; all those copies of all those appli-
cations will take up space. In fact, though,
I believe the increase in disk space will be
small. Remember our application develop-
ment scenario? Fach collaborator almost
certainly has a complete copy of the code
and data files. Replicating them simply
means that everyone sees the same ver-
sion, but there will be no net increase in
disk space needed.

It is also possible that the Global Com-
puter will lead to a reduction in the
amount of disk space used. Since there
is a global name space, it is quite easy to
access a non-replicated file on another sys-
tem. If users must pay for disk space, they
may choose to keep infrequently accessed
files, such as archival output, at a single
site. All they will need do is wait a few
seconds for the data to come across the
network. If the file is then cached locally,
they will only have to pay the delay every
once in a while. Thus, multiple copies of

large files may become unnecessary.

File replication can provide automatic
disaster recovery if the replication list is
chosen properly. The loss of a single ma-
chine will not result in the loss of any repli-
cated data. Nor will access to the repli-
cated data be lost if one machine is down.
If replication is handled properly, it can be
used to eliminate much conventional back-
ing up; only archival data need be trans-
ferred to more permanent storage.

Evolution

Tools available today, particularly those
shipped with Unix, have both made long
distance computing a reality and led to
the current state of affairs. Without these
tools, long distance collaboration would
not be widely used enough to be a prob-
lem; with these tools, we are exposed to
all the problems discussed earlier. There is
an evolution toward the Global Computer
that follows the identification of problems.

TCP /IP

Although there are other examples of net-
work computing, those based on Unix
with TCP/IP are the most widely used.
TCP/IP provides tools for logging in to
a remote machine, telnet and rlogin,
moving files between machines, ftp and
rcp, and executing procedures on remote
machines, rsh and rexec.

These are the tools that made network
computing practical.
space on each machine, the need to ex-
plicitly copy files between machines, the

The distinct name

The Global Computer

Figure 1: Possible file replication pattern in a large cluster. Individual files can be

replicated at the user’s convenience. A user on machine B would replicate some files
to a collaborator’s machine, say D. Another user on B might replicate some other
files to collaborator’s machines E and D. In this way, a large network of interlocking

replications will be built up.

inability to hide network delays, and the
lack of version control for application code
make collaboration across the network dif-
ficult.

NFS

Network File System (NFS) was built to
address the problems exposed by doing
network computing with TCP/IP. A file
system or directory may be mounted at
any point in a user’s hierarchical file sys-
tem. Once the mount has been done, all
files on the remote system are accessed ex-
actly as if they were local. Programs that
exist only on the remote machine can be

run (if the binary is suitable for the host),
and data files are available to applications.

Although NFS addresses many of the
problems of network computing, it is not
a complete solution. A global name space
can be maintained only by convention
since each user can mount a given remote
directory at a different point in the hierar-
chy. This problem makes it hard to write
both applications and makefiles since the
absolute path names are not knowable
ahead of time. In addition, the program-
mer must explicitly take some action to
run a command on another computer, i.e.,
rexec. While not a serious problem, it is

The Global Computer

just one more thing that gets in the way
of applications work.

NFS was not designed to connect sys-
tems on different continents with network
latency measured in seconds. Every time a
remote file is accessed, it is sent across the
network. While not often a problem for lo-
cally connected workstations, network de-
lay can be a serious problem for geograph-
ically dispersed systems. Most users will
balk at a 5 or 10 second delay every time
they attempt to edit a file. These delays
will lead them to copy files to their local
systems, defeating the purpose of creating
NFS in the first place.

Network delays raise an interesting
question for those people using a remote
supercomputer. Where do you keep the
source files? If you keep them close to
the programmer, the supercomputer will
pay the network delay on every compile; if
you keep the files close to the supercom-
puter, the programmer pays the network
delay on each access. Some attempts are
being made to address this issue, such as
the file caching used by the Andrew File
System.[3]

TCF

Making files easily accessible from many
machines led people to try using remote
machines to do their work, but they found
it inconvenient. The need for more trans-
parency was translated into the LOCUS
Distributed System Architecture[5] which
became the Transparent Computing Facil-
ity (TCF) delivered as part of the IBM
AIX product. It is the facilities of TCF

that led us to the idea of the Global Com-
puter.

TCF incorporates the three key features
needed by the Global Computer — a global
name space, a common execution environ-
ment, and file replication with caching. As
described later, we have implemented a
system based on TCF as a prototype for
the Global Computer.

There are a number of shortcomings,
though. The current design limits the
number of machines in the cluster to 31
nodes. Also, there is only one superuser
password for the entire cluster. While this
is not a serious problem if we are cluster-
ing a few supercomputers within a single
company, it does make life difficult if the
cluster includes individually owned work-
stations or supercomputers from different
enterprises.

A more serious problem is the way files
are tagged with the resources they need to
run. Today, programs only say if they can
run on a PS/2 or a S/370 machine. There
is no way to indicate that a vector facil-
ity or special PS/2 board is needed. This
problem will be even worse on a Global
Computer that is made up of machines
from many vendors.

Increasing the number of nodes in the
cluster is simple to fix. It should also be
possible to come up with a scheme for hav-
ing a separate superuser password on each
machine. Deciding what information is
needed to allow the system to find a suit-
able machine for every job is more difficult.
There are simply too many machines with
too many different architectures and con-
figurations. Some sort of extensible defi-

The Global Computer

nition will be needed.

Others

There are many projects attempting to
make network computing easier.[3][1] Al-
most any one of them can be used to im-
plement the Global Computer. Unfortu-
nately from our point of view, none of
these projects has been used to build a
system as large and comprehensive as we
would like to see. Further, while each has
important pieces, none is complete enough
to make the Global Computer a reality.
I hope this discussion will encourage the
developers of these systems to address the
problems of global computing, particularly
supercomputing.

Management

There are no technical barriers to build-
ing the Global Computer. If there is any-
thing that will prevent it from becom-
ing a reality it is management issues. In
fact, the technical part is quite easy when
compared to questions of security, charge-
backs, and control.

Security

The Global Computer raises some serious
security issues. With machines spread out
over the world, how will users be autho-
rized and how will their access be termi-
nated? How can we protect proprietary
data from accidental or purposeful expo-
sure? How can we prevent unauthorized

users from accessing the Global Computer
and stealing resources or planting viruses?

In spite of the fact that a geographi-
cally dispersed machine is harder to pro-
tect than one in a secure environment, I
contend that security on the Global Com-
puter will be better than we have today.
Look at the Internet worm that crippled
a large number of computers[6] or the
penetration of U.S. Government comput-
ers by German hackers.[7] In the former
case, known security holes in Unix were
exploited to plant the worm. The latter
security problem was uncovered by acci-
dent by someone worried about small ac-
counting discrepancies.

The main reason that the security holes
exploited by the Internet worm were not
plugged is the inability of many sites to
provide adequate support. With thou-
sands of machines, many used by only a
few people, the majority of installations
have no security procedures or only part
time security people. While large ma-
chines at major installations have security
staffs, even they find sharing information
difficult. The German hackers exploited
another problem that arises when there
are lots of machines; small organizations
don’t want to devote more than minimal
resources to accounting.

If there is only one computer for the
entire world, it will certainly have full
time security and accounting organiza-
tions. The Internet worm would not have
penetrated the Global Computer because
this staff would have fixed any known holes
immediately. Furthermore, all systems
would have been protected; there would

10

The Global Computer

be no need to communicate the changes
to every Unix shop in the world.

The accounting group would have a
similar mission. The Global Computer
will be able to afford a professional staff
that knows how to do computer account-
ing, how to insure that audit trails exist,
and with the mission of discovering any
anomalies.

The Global Computer will be a very at-
tractive target for hackers. Not only will
the resources available be worth stealing,
but the challenge of going after such a
large configuration will be a real incentive.
Unlike many systems with only minimal
thought given to security, the security staff
of the Global Computer should be able to
put up a good fight. Of course, a system
as large as the Global Computer will have
its own set of new vulnerabilities. Security
work should be quite interesting.

Charging

Most computer centers in the world are
run on a cost recovery basis. They pro-
vide a system that users are expected to
pay for. Often these payments are funny
money, accounting tricks used to allocate
the costs of the system to the users. Many
other installations insist that real money
be used to pay for resources.

As long as all the computers you use
are owned by your organization, charging
is merely difficult. When you start using
someone else’s computers, the problem be-
comes intractable. FEither you come up
with real money or you arrange for funny
money.

The whole point of the Global Com-
puter is to make it easy to use someone
Two tacks can be taken.
Users can be limited to use only certain
processors and disks in the Global Com-
puter. They will still have access to all the
files they need, but their jobs will only run
on a subset of the machines. This subset
could be as small as their personal work-

else’s machine.

stations or as large as the entire system.
As now, users would be responsible for
paying real money for the resources they
use or arranging, on a case by case basis,
access to the processors they want to use.

Another approach is to treat the Global
Computer as a utility. Billing will be han-
dled much the way long distance charges
are today in the U.S. Users will receive a
bill itemizing their costs for the resources
they used and would make a single pay-
ment to their local system. The local sys-
tem would then disburse the funds. Each
system participating in the Global Com-
puter will receive an allocation that rep-
resents its contribution to the total. (A
Macintosh might receive one Cray minute
per year.)

I hope that a scheme could be devised
to encourage the use of lightly loaded ma-
chines. For example, if I run a job on a
specific machine, I get charged at the full
rate; if I run the job on the least heav-
ily loaded machine, I should get a dis-
count. Similarly, I would hope that a pri-
ority scheme would be put in place to al-
low users to get discounts for running at
low priority. In fact, a 100% discount for
running at the lowest priority would make
it possible to do some interesting but un-

The Global Computer

11

fundable work without adversely affecting
others.

Control

Problems of security and charging are mi-
nor when compared with the question of
control. Will Berkeley let Stanford control
part of its computer? Will Yale let Har-
vard add users to its system? How will
Israel feel about Syria allocating space on
Israeli disks? If there is an issue that will
limit the universality of the global com-
puter, control of resources is it.

I have no answers to this question.
Clearly, each participating organization
will want some method to reserve part of
its resources for its own people. Further,
as much as we all hate to see it, organi-
zations will allow open access to their sys-
tems except for certain others. Of course,
computers owned by the Computer Util-
ity will be much easier to manage; [hope
this paper will stimulate discussion on how
best to resolve this issue.

Virgo SuperCluster

It has been said that, “A job worth doing
is worth doing badly.”[4] which means, get
on with it and fix what you don’t like later.
We have taken this advice and are building
a world-wide system within IBM using the
available software, AIX with TCF. It is
only by doing it wrong that we will find
out how to do it right.

Configuration

We currently have three sites on our
Virgo SuperCluster, the Palo Alto Scien-
tific Center (PASC), Almaden Research
(ARC), both in northern California, and
Yorktown Heights Research (YKT) in
New York. PASC is running AIX enabled
to use 3 processors of its 3090-30E/VF
configured with 256 MB of memory; YKT
is using 2 processors of a 3090-50S/VF also
with 256 MB of memory for AIX; ARC
has allocated 16 MB of memory on a 3090-
180. Although we could have implemented
this cluster using the AIX product cur-
rently being shipped by IBM, Virgo is im-
plemented using an experimental version
that incorporates several extensions useful
for supercomputer users.

Since projects like this are easier to get
going if we don’t tell management about
them, funding is quite limited. A con-
sequence of this decision is the rather
strange network configuration shown in
Figure 2. It is an example of what you
end up with by piggy-backing on someone
else’s network.

Each 3090 has a channel connected to
a PC/AT class machine. The AT is con-
nected to an Ethernet which, in turn is
connected to another AT which connects
to a T1 line. This configuration is re-
peated on the other end of the T1. Since
we have no direct connection between Palo
Alto and Yorktown, we must pass through
8 PC/AT class machines with a delay
of about 0.25 seconds per machine. In
addition, the T1 line between Almaden
and Yorktown is shared with other traf-

12

The Global Computer

Palo Alto

3090 j——tAT|

AT

AT|——AT]

Legend

Ethernet
T1 line
Channel

3090

3090
Almaden

AT AT

Yorktown

Figure 2: Virgo SuperCluster network configuration. In order to avoid management

involvement, we connected the machines by piggy-backing on existing networks. Fach
PC/AT class machine adds about 0.25 seconds to the latency. Further, the T1 line
between Almaden and Yorktown is heavily used for other purposes.

fic. Measurements indicate that our clus-
ter traffic is getting about 10% of the rated
bandwidth, about 20 Kbytes per second.

We have structured our file systems as
shown in Figure 3. Each machine has a
number of local file systems denoted by
the short lines. Shared file systems include
the root and system commands, /, /usr,
/bin, etc.. Thereis also a file system repli-
cated between Palo Alto and Yorktown.
We have not yet found it necessary to use
file-level replication.

One person in Yorktown is responsible
for supporting Virgo. The only other help
comes from someone in Palo Alto who
helps out on a time available basis; there
is no one at Almaden Research support-
ing this SuperCluster. We have had no
problems of security since Virgo is com-
pletely within IBM. In addition, problems
of charge backs and control have not arisen
because we have been able to keep man-
agement out of the loop. So far, every-
thing has been handled on a good faith

The Global Computer

13

basis. My only hope is that IBM upper
management does not read this Journal.

Experiences

We have had very positive experiences us-
ing Virgo. (If we hadn’t, this paper would
not have been written.) Our successes
with Virgo lend support for the viability
of the Global Computer. There have been
a number of cases in which we found it
easier to do our work on the SuperCluster
than using more conventional methods.

One of our staflf members is collaborat-
ing with a Yorktown researcher on a cir-
cuit simulation project. She installed the
package they are using in the file system
replicated between Palo Alto and York-
town. Now each of the collaborators has
access to the software at local disk speeds,
yvet there is only one version of the code.
When a change is made, it is available in
a matter of seconds at the other site.

Another occasion where the Super-
Cluster made our lives easier occurred
while preparing for a customer bench-
mark. Most of the work was being done
on a 3090-E in Palo Alto, but the bid was
to be for a 3090-S. In order to know if the
jobs would meet the performance targets
set in the benchmark we had to make the
runs on an S-model.

Since we were using Virgo, the job was
trivial. We simply moved the work to a
replicated file system. All runs were made
on the Yorktown S-model by simply typ-
ing on 1 a.out in the TCF syntax. We
had the advantage of local disk speeds, the
ability to keep working even when the net-

work was down, and it was easy to com-
pare the performance of the two machines.
(We won the benchmark.)

One other example of the use of Virgo
involved parallel processing. One of the
Palo Alto researchers has developed an it-
erative solver for linear equations that is
parallelizable with large granularity. Over
the course of a week, we converted his
shared memory program into a message
passing version using Unix fork and pipe
commands. It was then a simple matter
to change the standard Unix fork com-
mand to an AIX/TCF rfork command to
run across the cluster. One case finished
in 75 seconds on all 6 processors available
to us. The best we did on the 3 processors
in Palo Alto was 130 seconds.

Lessons Learned

In spite of the poor network we are forced
to use, I almost never see any network de-
lays. I now believe that, while faster net-
works are better than slower ones, almost
any network connection will be acceptable.
(A 100 baud line may be pushing things
just a bit. Is there anybody out there will-
ing to try it?)

In one test, we took a large memory pro-
gram and put in an immediate exit. Run-
ning it locally took less than half a second
(measured with time a.out). Next, we
put the file in a nonreplicated file system
and ran it on the Yorktown system, time
on 1 a.out, and found that the job took
11 seconds, a data transfer rate of 1 MByte
per minute. Next, we installed the job in
a replicated file system and ran it on the

14

The Global Computer

Yorktown system; it finished in under 3
seconds, most of that time being network
latency. The fact that the network transit
time is about 10 seconds was confirmed by
changing the file and immediately running
it on the remote system. We have been
working with this code for several weeks
now (with the immediate exit removed, of
course) and almost never become aware of
the network delays.

We have made heavy use of the remote
system services. Remember, we have no
official support in Palo Alto. When our
part time person went on vacation, we
were able to continue working using sup-
port from Yorktown. In fact, those of us
who often show up before normal work-
ing hours appreciate being able to get help
when we need it. Now, if we can only bring
Japan on line, the night owls will be able
to get help, too.

The redundancy provided by file repli-
cation also proved useful. The day of an
important customer demonstration one of
our system’s programmers inadvertently
deleted our AIX system. We did not have
to wait for it to be restored; the person
running the demo simply used a worksta-
tion to log on to the Yorktown machine
and ran the demo from there. Not only
was the program and its data available,
but the single password file meant that a
valid login was ready to go.

We have also found some things that
need fixing. FEach replicated file has a
primary site and one or more secondary
sites. Users can only update the primary
site; the system controls the copies. Un-
fortunately, writing a file with a remote

primary site takes just as long as if the
file were not replicated. We have been in-
formed that this delay is a feature which
we hope to convince the developers to re-
move. There is a similar delay when ex-
amining the directory using 1s which we
have been assured is a bug. The fact that
there is a single superuser password for the
entire cluster has not been a problem for
Virgo but has been one for our other clus-
ter of PS/2s.

The current method for updating files
in TCF presents problems. There is one
primary site that holds the writable ver-
sion; secondary sites hold the replicated
copies. If the primary site is unavailable,
users can only read their files; they can
not update them. A replicated backbone
file system can be converted by a supe-
ruser to be a new primary site if need be,
but user replicated files will be read-only
until the primary site rejoins the cluster.

Other problems are more interesting.
The first time I tried to do a make with files
from two different file systems with differ-
ent primary sites, the system kept recom-
piling files I had not changed. The prob-
lem, of course, was that the time stamps
were set using local time, a difference of
three hours. We now have daemons run-
ning to keep the clocks synchronized. Fur-
thermore, each user on the system sees
time stamps as local time.

A more difficult problem is vector jobs.
TCF was designed to cluster PS/2s with
a single mainframe, not to cluster vector
processors. Thus, the header information
in each program tells only if it is for a 386
machine or a 370 machine. Vector jobs

The Global Computer

15

need to know whether a given 3090 has a
vector unit and how long the vector reg-
When the user asks the sys-
tem to schedule the job to the least heav-
ily loaded system on which the program
can run, the system currently assigns vec-
tor jobs to any 370 machine regardless of
whether it can execute vector instructions.
Thus, jobs started this way can fail. A
similar problem prevents us from migrat-
ing vector jobs between machines with dif-
ferent vector register lengths.

isters are.

Future

We are pursuing the SuperCluster concept
on three fronts, within IBM, outside of
IBM, and through standards committees.

We hope to expand Virgo by adding
IBM sites as quickly as we can to learn as
much about the problems as we can. Can-
didates include the IBM European Center
for Scientific and Engineering Computing
in Rome, ITtaly, the benchmarking center
in Gaithersburg, Maryland, and the Dal-
las code porting center. We also plan to
add sites ad hoc as Virgo users start col-
laborations with other IBMers.

If we can build a large cluster we can
study such things as how people choose to
replicate files, and how much disk space
and network traffic all this generates. It
is clear that we will not be able to repli-
cate every file to every site, but it will
be interesting to see the actual replication
patterns. These patterns may be quite
different if we require users to determine
the replication list or do it automatically
based on usage. My best guess is that we

will see something like the pattern shown
in Figure 1, but we won’t know until the
cluster is large.

We are also looking for candidates out-
side of IBM who we can help form Su-
perClusters. Today, we only know how to
cluster machines running IBM AIX. This
has limited our search but we have found
a multinational oil firm, a major environ-
mental research project, a state university
system, and a state government agency.

We also want to make sure that the
Open Software Foundation incorporates
the parts needed to build the Global Com-
puter. For example, the original proposal
for OSF/1 did not provide for a com-
mon execution environment. Fortunately,
a mini-RFP was put out later and suffi-
cient hooks will be in place so that any
vendor that wants to support clustering
will be able to do so.

Other work is being done to make work-
ing on the Global Computer even more
like having everyone in the same place.
We have some experimental code that al-
lows multiple machines access to the same
X window. Anyone looking at this win-
dow can grab the chalk and modify the
window’s contents. We will also be exper-
imenting with voice boards so that peo-
ple in different locations can talk using the
Internet while looking at the same screen
image. (We have no idea what packetized
speech will sound like.)

16

The Global Computer

Conclusion

Scaling a distributed operating system to
support a world-wide community is a dif-
ficult problem than has yet to be solved.
Providing location transparency and repli-
cation transparency are also problems that
have not been completely solved for large
systems.1

I believe that the best way to address
these points is to start building the Global
Computer and fix the problems as they
arise. There are no insurmountable tech-
nical barriers, only social ones. If we can
overcome these problems, our productiv-
ity will improve. By making long distance
collaboration significantly easier than it is
today, we will see, not just an expansion of
the collaborations in place today, but en-
tirely new ways of working. We will also
see people addressing problems they would
not even have considered in the absence of
the Global Computer.

We will have to find the answers to some
difficult questions. How much support
staff will be needed and how will it be dis-
tributed? How will security be managed?
What about language differences? Must
all machines run the same operating sys-
tem? Is there a danger of a “Big Brother”
coming to power using the Global Com-
puter? There are also some more mundane
questions. For example, if everyone in the
world is truly on the same computer, what
will happen when you list the users on the
system, e.g., when you type who?

Although the Global Computer will be

!Quoted from the referee’s report.

built to address technical problems, it may
also help to alleviate social ones. By re-
moving borders, people will concentrate
more on shared interests and less on the
national origin of the ideas. Who knows,
romance may even bloom as evidenced
by a recent marriage between two IBMers
who fell in love via electronic mail.

The Global Computer

17

PASC

/, Jusr, /bin, etc.

/palocal
ARC

/, Jusr, /bin, etc.

Figure 3: Virgo SuperCluster file systems. All system files contained in directories like
/bin and /etc have their writable copies at Yorktown (YKT) and are replicated to
the Palo Alto Scientific Center (PASC) and Almaden Research Center (ARC). There
is one file system, /palocal, with its writable copy in Palo Alto replicated only to
Yorktown.

18 The Global Computer

Acknowledgements: I got the idea for the Global Computer from R. J. Creasy. F.
Tung has given the Virgo project management support, but not so much as to impede
progress. S. Handelman of Yorktown and B. Lint of Palo Alto have provided system
support service for the Virgo SuperCluster. I would also like to thank H. P. Flatt, R.
Laprade, R. Nevin, and P. Newman for their help in improving the manuscript.

References

[1] G. A. Champine, D. E. Geer Jr., and W. N. Ruh. Project athena as a distributed
computer system. [EEE Computer, 23(9), September 1990.

[2] Towards a national collaboratory, report of an invitational workshop. Rockefeller
University, 17-18 March 1989.

[3] Special issue on operating systems. IEEE Computer, May 1990.
[4] Thomas Peters. San Jose Mercury News, December 3 1990.

[5] G. J. Popek and B. J. Walker. The LOCUS Distributed System Architecture. MIT
Press, Cambridge, Massechusetts, 1985.

[6] E. H. Spafford. The internet worm: Crisis and aftermath. Comm. ACM, 32(9),
September 1989.

[7] Clifford Stoll. Stalking the wily hacker. Comm. ACM, 31(5), May 1988.

Trademarks

A number of trademarks and registered trademarks have been used in this paper.

Unix is a registered trademark of AT&T.
Network File System and NF'S are registered trademarks of Sun Microsystems.

Transparent Computing Facility, TCF, PS/2, and AIX are registered trademarks of
the International Business Machines Corporation.

OSF is a registered trademark of the Open Software Foundation.

The Global Computer 19

