
BIT REVERSAL ON UNIPROCESSORS

ALAN H. KARP �

Abstract. Many versions of the fast Fourier transform require a reordering of either the input
or the output data that corresponds to reversing the order of the bits in the array index. There has
been a surprisingly large number of papers on this subject in the recent literature.

This paper collects 30 methods for bit reversing an array. Each method was recoded into a
uniform style in Fortran and its performance measured on several di�erent machines, each with a
di�erent memory system. This paper includes a description of how the memories of the machines
operate to motivate two new algorithms that perform substantially better than the others.
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1. Introduction. There is a wide variety of fast Fourier transform (FFT) al-
gorithms. Some of them require extra working storage; some can be done in place.
Some algorithms use vectors of varying lengths; some use long vectors throughout.
Some algorithms take the input in natural order and produce output in natural order;
some either require scrambled input or produce scrambled output[38]. Since they all
do exactly the same number of arithmetic operations, memory access is the deciding
factor in choosing one over another.

There are con
icting goals when deciding which algorithms to use. On a machine
with a limitedmemory, an in-place algorithm is best. On a vector machine, algorithms
with long vectors perform best. Unfortunately, many of these algorithms require a
so-called bit reversal reordering of the data. If the bit reversal is not done properly,
it can take a substantial fraction of the total time to do the FFT. In fact, it is
common wisdom that bit reversal reordering is too slow to be used on a machine with
a hierarchical memory[37].

Figure 1 illustrates the problem. It shows the time it takes to do the bit reversal
of an array of the indicated length in machine cycles per element. Two methods
are shown, a simple scatter operation[23] and one of the �rst published methods[7].
Also shown is the time it takes to do one FFT butter
y using an algorithm tuned
to the IBM 3090 vector processor used. It is clear that the bit reversal step will
take a substantial fraction of the total time for large arrays. One conclusion drawn
from these measurements is that the performance will be poor if the algorithm is not
designed with the memory structure in mind.

People have looked at measurements like this and concluded that autosort meth-
ods are best. The idea, which is a good one, is to do the data movement required by
the bit reversal while storing the results of each butter
y. Any bit reversal algorithm
that requires log

2
N passes over the data can be combined with the log

2
N butter
y

steps to make an autosort method. However, the problem is not so much with the
amount of data movement as it is with the pattern of data movement.

An autosort method is e�ectively limited to using a multipass bit reversal which
limits the data access patterns available for the FFT. Such methods don't perform
optimally on vector processors because the vector length changes on each butter
y.
Bailey[2] solves this problem by switching between Stockham variant I and Stockham
variant II when the vectors get too short. The downside is that data movement
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Fig. 1. The time it takes to do a bit reversal in units of machine cycles per element versus the
size of the array using two di�erent approaches on an IBM 3090 vector processor. The �rst jump
in time occurs when the array becomes too large to �t into the cache; the second jump occurs when
the data exceeds the translation look-aside bu�er (TLB) size (see text). Also shown is the number
of cycles per element for one butter
y of a high-performance FFT algorithm.

equivalent to a matrix transpose is needed when switching algorithms. This transpose
step is at least as expensive as the best bit reversal described in this paper.

The main point of this paper is to show that bit reversals are not to be feared.
There are quite a few bit reversal algorithms that require only a single pass over the
data. In many cases, a single pass bit reversal is quite fast, leaving more freedom
in selecting an FFT algorithm. My own measurements, as yet unpublished, on a
Cray Y-MP and an IBM 3090 vector processor show that the Pease algorithm with
a separate bit reversal step is every bit as fast as the library routines with their less
favorable data access patterns.

Another reason for this paper is the recent interest in bit reversals. There have
been nearly 20 publications in the last several years on this subject. This study is
the �rst comprehensive review of the literature in the last 15-20 years. (R�osel's[30]
survey is more limited in scope than this one.)

While there is a good deal of interest in bit reversals on parallel processors[9, 15,
19, 20], this paper considers only those written for uniprocessors. I have collected
30 bit reversal algorithms from the literature and from a request made over na-net.
Each has been coded into a uniform style of Fortran, tuned, and run on a number
of machines { one node of an Intel iPSC/860, an IBM RS/6000 workstation, an HP-
9000 workstation, and in vector and scalar modes on both a Cray Y-MP and an IBM
3090J/VF.

Section 2 gives a summary of some ways of viewing the bit reversal. To help
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Table 1
Index Vector by Recursion

0 0
1 0 1
2 0 2 1 3
3 0 4 2 6 1 5 3 7

explain why some of the methods perform poorly, x3 gives a brief description of
the operation of interleaved memory and hierarchical memory systems. Section 4
describes the machines used. Next, x5 describes the algorithms. A new algorithm for
interleaved memory machines is given in x5.3 and a new algorithm which is designed
for hierarchical memories is presented in x5.6. The performance of all these algorithms
measured on all the machines is given next in x6. The paper �nishes with an interesting
historical note, a plot of the speed of the bit reversal versus year of publication.

2. Properties of bit reversal. A bit reversal reordering is a simple operation.1

For an array of length N = 2n, exchange two elements x(k) and x(~k) for

k =
n�1X

j=0

aj2
j and ~kn =

n�1X

j=0

aj2
n�1�j;(1)

where the aj are either 0 or 1. From this equation we see that we need to know the
value of the index and how many bits are involved. For example, a 4-bit reversal of
1 = 0001 is 1000 = 8 while a 5-bit reversal is 10000 = 16.

We can view the bit reversal as a permutation[23]. Let x be the vector of the
x(k), and ~x be the vector of the x(~k). Then we can write ~x = Px where P = P�1.
In other words, the bit reversal of a bit reversed array is the array in natural order.

In practice, the permutation is written as an index vector with components ~k.
The index vector can be computed quite e�ciently by Horner's rule,

~kn = an�1 + 2(an�2 + 2(� � �+ 2a0) � � �):

Our index vector computation produces ~kn for all 0 � kj < N . We can save a lot of
arithmetic if we use the fact that the high-order bits of the binary form of kj are 0

when kj is small. For example, we know that the last n � 2 bits of ~kj are zero for
kj < 4. This approach leads to the recursive algorithm illustrated in Table 1[42]. At
each step we multiply the current list by 2 and concatenate 1 plus the list.

We are primarily interested in bit reversals because many FFT algorithms leave
the result bit reversed or require input in bit reversed order. This means that we can
use the data access patterns of these FFT algorithms to a�ect the bit reversal. For
example[23],

~x =
n�2Y

k=0

Q(2k; N )x:(2)

Here Q(m;N ) is a generalized shu�e that performs a perfect shu�e takingm elements
at a time.

1 While the methods described here can be modi�ed to work for mixed radix problems, we limit
our discussion to radix 2 problems only.
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The bit reversal reordering is also closely related to matrix transposition repeat-
edly applied on matrices of di�erent shape[39]. One scheme is to reshape x into an
N=2 � 2 matrix, transpose it, and copy the elements in row major order. This new
vector is reshaped into an N=4 � 4 matrix. This procedure is repeated n � 1 times
and is identical to the generalized perfect shu�e just described.

These permutation and multiple pass methods touch all the data. In fact, only
some of the elements of x(k) need to be moved, depending on the value of k. Since
we are exchanging elements, we need only consider k < ~k. The next thing to notice is
that we need not look at all the indices. For example, it is obvious that no exchange
is necessary for k = 0 and k = N � 1 since the former is all 0 bits and the latter all 1
bits.

Rodriguez[28] showed that the actual upper bound is the number whose bits are
all 1 except for a 0 near the middle. If n is odd, this number has two more 1 bits to
the right of the 0 than to the left; if n is even, there is one extra 1 bit to the right
of the zero. The actual value for the index of the last exchange is then N � 1 � m,
where m =

p
N for n even and m =

p
2N for n odd.

We don't even have to examine all the indices to see which ones should be
swapped[41]. Consider n even. We can write k = k1

p
N + k2 so that ~k = ~k1+ ~k2

p
N .

If we think of a matrix with
p
N rows and columns and entries consisting of pairs

(k1; ~k2), it is clear we need only exchange elements corresponding to entries below the
diagonal. Those on the diagonal are their own bit reversal, and those above are the
same as those below. If n is odd, we generate separate matrices for the middle bit 0
and for the middle bit 1.

Another approach is to view the bit reversal process as one of �nding the set of
pairs k and ~k that require an exchange. Rutkowska[32] describes a way to �nd this
set recursively. Divide the set of all indices 0 � k < N into four sets. Elements in set
An have n bits and both a leading and trailing 0 in their binary representation; Bn,
a leading 0 and a trailing 1; Cn, a leading 1 and a trailing 0; Dn, both leading and
trailing 1's. Clearly, if k 2 An; ~k 2 An; if k 2 Dn; ~k 2 Dn; if k 2 Bn; ~k 2 Cn. These
sets are simply related to the sets involving the n� 2 middle bits of k. We build up
to the desired set starting with (1,2) and (0,3) for n even and (0,1) for n odd.

3. Memory architectures. As processor speed has increased, computer archi-
tects have been forced to use a number of tricks to keep the cost of their systems down.
For example, they have used memory chips that are considerably slower than those
used in the processor. Since many instructions refer to data stored in memory, slow
memories can only be used e�ectively if there is some way to improve their apparent
performance.

One commonly used approach that is adopted by all the machines studied in this
paper is to use a small amount of high-speed memory to hold the most frequently
used data. These registers may hold as few as four words on some machines and as
many as a few thousand on a vector processor. Since this small amount is not enough
to hide enough of the memory delay, system designers use two other approaches {
interleaved and hierarchical memories. Each of these are described in the following
sections.

3.1. Interleaved memory. If it takes several processor cycles to deliver one
word from memory, then taking consecutive requests from independent memories can
deliver the data fast enough. One way to implement this approach is to have an
interleaved memory.
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An interleaved memory is divided into banks, each of which holds part of the
memory. Consecutive words are stored in consecutive banks in wrap mode. In other
words, data is dealt to the banks as cards are in a bridge game. When a word in
memory is accessed, the associated memory bank starts to deliver the word. The
number of cycles needed until this bank can start to process another request is called
the busy time.

The number of banks is usually a small multiple of the ratio of the processor to
memory speeds. For example, the Cray X-MP/1 uses memory chips that are a quarter
of the speed of the processor chips and has 16 banks[16]. Other systems use more;
the Fujitsu VP-200 uses 256 memory banks. Some machines use more complicated
structures. The Cray 2 has a two-level hierarchy, four sectors with four memory banks
each.

A request to another bank that is not busy can start immediately. Thus, if there
are enough memory banks, stepping through consecutive words in memory, stride 1
access, results in data being delivered to the processor fast enough to keep it busy.
The performance from using other strides will depend on the number of banks and
the relative speeds of the processor and memory. Fortunately, the relationship is easy
to understand.

Let the busy time be m cycles, the number of memory banks be b, and the stride
be s. If the stride is not commensurate with the number of memory banks, data will
be delivered as fast as at stride 1, typically one cycle per element. If the stride is a
multiple of b, then the average time it takes to deliver a word to the processor is m.
If the stride is such that b=s < m is a small integer, the average time will be ms=b.
This last case is easy to understand if we think of the memory as b=s independent
memories each delivering a word every m machine cycles.

It is relatively easy to discover which memory bank contains a speci�c address if
the number of banks is a power of two, simply look at a few bits in the address. Hence,
most machines use a power of two memory banks. However, power of two strides
are quite common in practice, and such strides cause problems for these machines.
Burroughs attempted to address this problem by producing a machine with 17 memory
banks. Special algorithms were used to �nd which bank held a given word[44].

3.2. Hierarchicalmemory. Hierarchical memories are complicated because they
use many tricks to shield the user from delays caused by the slower circuits lower in
the hierarchy[36]. While these techniques speed up the average memory access time,
they make understanding the system more di�cult.

At the top of the memory hierarchy are the registers. The time it takes to
move data between two registers sets the basic unit of time, usually a machine cycle.
Since this is the case on all the machines considered here, the unit of time for all
measurements will be machine cycles.

Next in the hierarchy is the cache memory, sometimes called high speed bu�er
memory. The cache is designed to deliver data to the registers as fast as it is requested,
typically one word per cycle. Such high performance requires that an expensive tech-
nology be used, so cache memories are typically small, 8 KBytes to 256 KBytes.

Below the cache is the main memory. Main memory is typically several cycles
from the cache. This means that a memory reference to a word that is not in the
cache will cause a delay. However, it is possible to pipeline data transfers from main
memory to the cache, which reduces the average access time per word. The amount of
data transferred on each such cache miss is called a cache line. Cache lines typically
contain between one and 32 words.
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Below the main memory is the backing storage, either slow memory or disk. A
reference to a word not in the main memory can take anywhere from hundreds to
thousands of cycles to get the data into the cache. The average delay is reduced by
moving relatively large blocks, typically 4 KBytes, at a time. The data transferred
on each such page fault is called a page. Main memory is divided into frames, each of
which can hold a page of data.

For this discussion, the cache is the most important part of the hierarchy because
all the cases measured �t in the main memory. System designers have a great deal of
freedom in designing their cache system. They can choose the amount of data brought
into the cache as a block, the cache line size. They can also choose the algorithm by
which they replace a cache line when the cache becomes �lled. In addition, they often
speed up the processor by limiting the number of places in the cache that can hold a
speci�c word.

Choosing the cache line size involves a trade-o� between two con
icting goals. We
want a line as short as possible to avoid bringing data that we will never use into the
cache. On the other hand, we want a cache line to be as long as possible to amortize
the cost of going to memory. The machines in this study have cache lines ranging
from 32 to 128 bytes.

In an ideal world, we would be able to put a cache line into any available slot in
the cache. Unfortunately, each memory reference would involve searching the entire
cache for the cache line of interest. Such a search would take so long that memory
references to cached data would take many machine cycles. The process can be sped
up by limiting the number of places that can hold a speci�c address.

We can think of the cache as containing rows and columns of the places the data
can sit. Set associativity is implemented by using a subset of the bits in the address to
select the row, called the class. We can now �nd our entry on a memory reference by
using these address bits to tell us which row to search. Typically, machines are direct
mapped where there is only one slot that can hold a speci�c address (one column), or
n-way set associative (n columns), where n is in the range of 2 to 8. There are also
fully associative caches that allow any cache line to go into any available slot.

When we need to bring a new cache line into a full cache, we must decide which
cache line to replace. The best algorithm is one that replaces the line that will be
used farthest in the future. Since we don't have full knowledge of future memory
references, we need an approximation. If we have a direct mapped cache, there is no
decision to be made; we put our new line into the only slot that can hold it. In a set
associative or fully associative cache, we have a choice of algorithms. Most designers
choose to replace the least recently used cache line (LRU replacement) an algorithm
that needs a good deal of hardware to implement. Surprisingly, simply replacing a
random line works quite well.

These choices impact performance. Consider the following program run on a
machine with a four-way, set associative, 32 KB cache with a 16 word line that uses
LRU replacement.

dimension a(2**13,5)

do i = 1, 100

do j = 1, 5

a(i,j) = 0.0

enddo

enddo

end
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a(i) = b(J(i)) fixed 
a(i) = b(i)

Fig. 2. x

The time to copy an array at stride 1 using two methods. The dotted line is for a(i)
= b(i) while the solid line is for a(i) = b(J(i)) with J(i) = i. The improved
version runs with the start of b o�set 1024 words from the end of a.

Each of the �rst �ve accesses should take a relatively long time since each results
in a cache miss. However, we would expect the next 15� 5 accesses to take only one
cycle each since the data should be in cache. What we �nd is that every access is
slow.

In our example, we are accessing the data with a stride equal to the size of the
cache. Thus, each reference falls into the same row. The �rst four references �nd free
slots in the row, but the �fth 
ushes one of them. Since we are replacing the least
recently used line, the �ft reference 
ushes the cache line that will be used on the
sixth reference. That one 
ushes the line needed for the seventh, and so on.

Other power of two strides will also be bad. A stride of half the cache size gives
only two rows; one quarter of the cache size, four rows; etc. Surprisingly, other strides
can also cause problems[12]. A four-way set associative, 32 KByte cache with a 128
byte line size will perform poorly when the stride is 103!

We can �x our example by changing the stride by a small amount. If the array
in our simple program were dimensioned a(2**13+16,5), each reference would be to
a di�erent row in the cache, and our performance would improve markedly.

Another problem occurs for even larger strides. Figure 2 compares the perfor-
mance of two ways of copying data at stride 1 on the IBM 3090. The dotted line
uses a(i) = b(i); the solid line, a(i) = b(J(i)), with J(i) = i. The intent is to
measure how much more time a gather operation takes than a simple assignment.
The time in cycles per element is constant until the array gets up to 216 words, at
which point it increases by 36 cycles. The problem is not related to the cache which
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Table 2
Parameters for machines studied.

Machine Cycle (ns) Cache(KB) Line(B) Assoc. Replac. TLB (KB)
RS/6000-520 50.0 32 64 4 LRU 512
Intel i860 25.0 32 32 2 Random 128
HP-730 15.2 256 32 1 { 380

IBM 3090J 14.5 256 128 4 LRU 1024
Cray Y-MP 6.0 { { { { {

can hold only 213 words.
To understand this behavior we must look at the virtual memory. Although this

problem �ts into the 128 MByte memory on the machine used, the virtual memory
system still must do address translation, a process that relates the virtual address of
the page to the real address of the frame holding the data. The system keeps a table
in memory to do this translation.

Doing address translation out of a table kept in main memory is slow. The process
is sped up by using a special hardware device, the translation look-aside bu�er (TLB).
The TLB on the 3090 is two-way set associative with 128 entries, i.e., the TLB can be
pictured as having 64 rows and two columns. A reference to an address in the TLB
is resolved in one machine cycle; a TLB miss costs 36 cycles.

Any stride larger than the 64 rows (256 KBytes or 64 KWords) will cause all TLB
references to fall into the same class. Since the loop using a(i) = b(i) has only two
memory references, and the TLB is 2-way set associative, the code runs at full speed.
The other loop has three arrays falling in the same class; thus every memory reference
results in a TLB miss and an increase of 36 cycles per element. As with the cache,
this problem can be avoided by adding an increment to the size of the arrays.

There are many more subtleties of hierarchical memories. Some systems prefetch
data; others move blocks of pages at a time; yet others have multiple level caches.
Fortunately, none of these are important for the algorithms described here.

4. The machines measured. In this section, I will describe the memory sub-
systems of the machines measured. Their characteristics are summarized in Table 2.
Each has some unique features that make its performance di�erent from the others.

4.1. Cray Y-MP. The Cray Y-MP is the only machine in this study that does
not have a memory hierarchy beyond the registers. All addresses refer to the physical
addresses in memory since there is no virtual memory support. The Y-MP can do
two loads and a store every machine cycle, giving it the highest memory bandwidth
of any of the machines studied. The Cray can also chain operations together, such as
load, multiply, add, store, to reduce the time to complete a calculation.

The Y-MP uses a two-stage network to connect each of its eight processors to each
of the 256 memory banks. The �rst stage is an eight-way switch and the second, a
four-way switch. Hence, the memory looks like a 32-way interleave to each processor.
Since the bank busy time is �ve cycles, strides of 2 and 4 su�er no penalty. The time
it takes to complete a load doubles with every doubling of the stride from 4 to 16.
Stride 32 loads take �ve cycles each.

It takes about 17 cycles to get a single word from memory to the registers, either
a scalar or a vector element. Subsequent words on a vector load or store are done at
a rate of one cycle per element barring bank con
icts. Hence, stepping through an
array takes 12 + 63 = 75 cycles for each vector register, an average of 1.2 cycles per
element. If the compiler can generate two independent loads, the rate doubles.
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4.2. IBM 3090. The IBM 3090J has a hierarchical memorywith virtual memory
support that uses a two-way set associative TLB and a four-way set associative cache.
Unlike some other supercomputers, vector memory operations use the cache. The
3090 uses the longest cache line of any of the machines studied. The 3090 is the only
machine studied that has arithmetic operations where one of the operands comes
directly from the memory; all others require the data to be moved to the registers
before it is used.

The memory system is built to deliver entire cache lines. When a cache miss
occurs from either a read or a write, the memory delivers an entire cache line starting
with the requested double word (64 bits). After a startup of approximately 16 cycles,
one double word is put into the cache every cycle; this word is immediately available
for use. Since only one memory operation may be in progress at any time, the next
load or store must wait for the entire 32 cycles it takes to transfer the cache line.

Once the data is in the cache, data is delivered to the registers in the cycle in which
it is requested. Thus, stepping through an array of 32-bit numbers takes 16+31 = 47
cycles for every 32 numbers in the cache line, just less than 1.5 cycles per element.

Since the 3090 has a four-way cache, we never run into a problem of set associa-
tivity as we never reference more than four arrays in any of the loops. However, the
TLB is only two-way set associative. We have seen from Fig. 2 that a gather copy
can take over 45 cycles per element if the three arrays fall into the same associativity
set. To avoid this problem, the measurements were made with arrays o�set from each
other by 1024 words.

4.3. IBM RS/6000-520. The memory subsystem of the RS/6000 model 520 is
similar to that of the 3090. Its cache is smaller, 32 KBytes, and its cache lines are
shorter (64-bytes)[3]. It also has a smaller TLB.

When a reference is made to a word not in cache, a line is transferred from main
memory starting with the quadword (16 bytes) containing the requested byte. The
�rst word is delivered to the register after a delay of eight cycles; the rest of the
quadwords arrive at one cycle intervals. This data can be moved from the cache
to the registers while the rest of the cache line is being moved from memory. The
memory subsystem is busy for 12 cycles on every cache miss. However, up to two
memory requests to independent memory banks can be processed simultaneously.

Once the data is in the cache, data is delivered to the registers in one cycle.
Thus, sequentially stepping through a single precision array takes 8 + 15 = 23 cycles
for every 16 words accessed, an average of 1.5 cycles per element. As with the 3090,
we avoid the set associativity problem in the TLB by o�setting the arrays from each
other by 1024 words. A TLB miss costs about 35 cycles.

4.4. HP/9000-730. The HP/9000 is the only machine studied with a direct
mapped cache, which means that there is only one place in the cache for each piece of
data. To compensate, this machine has the largest cache of the machines studied, 256
KB, and a cycle time shorter than the other RISC processors. We can avoid problems
of having a cache line from one array replace a line from another array by separating
the arrays by the length of a cache line, eight words, from each other.

When a reference is made to a word not in cache, a line is transferred starting
with the word requested. Subsequent double words are delivered on successive cycles.
It takes about 30 cycles to get the �rst word from the memory to the cache. Unlike
the other machines studied, there is a one-cycle delay between loading a word from
the cache to a register and when that word can be used. Fortunately, this delay slot
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can usually be �lled with other work. Hence, stepping through a single precision array
takes 30 + 7 = 37 cycles for every eight words, almost �ve cycles per element.

The TLB is fully associative with LRU replacement and contains 96 entries, mak-
ing this the only machine that has a cache or TLB which is not a power of two. A
TLB miss takes about 30 cycles.

4.5. Intel i860. The Intel i860 processor is the basic compute node of the Touch-
stone Gammamachine. One node was used for the measurements reported here. Un-
like the other machines studied, the i860 will not load a cache line on a write. If the
word is in the cache, it is stored; if not, the data is sent directly to the memory. This
means that stores never su�er a miss penalty.

When a load misses in the cache, the word referenced is delivered to the cache
�rst and forwarded to the register. Each remaining double word (64 bits) is delivered
in subsequent cycles[22]. It takes about 40 cycles to get the �rst word into the
cache. Hence, loading a vector at stride 1 takes about 6 cycles per element. The i860
has a two-way set associative cache that chooses which of the two lines to replace
using a pseudorandom number generator. This replacement rule makes the i860 less
susceptible to problems related to associativity, but can result in higher miss rates in
some circumstances.

The TLB is four-way set associative with 64 entries. Hence, our tests should show
no e�ects of con
ict in the TLB.

5. The algorithms. Even though bit reversal is an inherently simple thing to
do, there is a surprisingly large number of ways to do it. Even more surprising is
how much work is still being done; over half of the algorithms reported here were
published or developed in the last 5 years. Each of the sections that follows describes
algorithms that use similar techniques to perform the reversal.

5.1. Examine the index. These algorithms step through the array of indices
and decide whether the corresponding data element should be exchanged with an-
other. One disadvantage shared by all of these approaches is that they are inherently
sequential and do not vectorize. Also, there is no locality in the data reference pat-
ternm so these approaches do poorly on machines with hierarchical memories. On
the other hand, they are e�cient in their data movement, touching each element to
be moved once and not touching elements that remain in place.

The prototype of this class[7] works with two indices. One increases while the
other is modi�ed until it contains the bit reversal of the other. At this point, the
elements are exchanged if they have not already been exchanged in an earlier iteration
of the loop.

Buneman[6] made three improvements. First, he noted that the last two elements
will never be exchanged with each other, so the loop could be shortened. Secondly,
he replaced the divisions by two that Cooley used with an array of powers of two.
This latter change had no e�ect on the results reported here because I replaced the
divisions with shifts. Finally, he moved the exchange of elements to the end of the
loop, which results in one fewer index computation. Buneman's code runs slower than
Cooley's does because the way Buneman builds the bit reversed index takes one more
step than Cooley's does. Had I been clever enough to optimize Buneman's routine to
use Cooley's version, its performance would have been identical to that of Cooley.

Rodriguez[28] implements Cooley's algorithm by using the actual value of the
index of the last exchanged element as the upper bound on the loop. He showed that
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the loop was made shorter by about
p
N . Unfortunately, the savings are small for

arrays of the length considered in this study.
Rutkowska[31] improved Rodriguez's idea by using some simple identities of an

integer and its bit reversal to do four swaps of elements for each index computation. A
similar modi�cation of Cooley's algorithm results in a similar performance improve-
ment. Yong[43] used a similar trick to improve Cooley's algorithm by exchanging
pairs of elements. This code runs a bit faster than Rutkowska's because it does less
integer work in the inner loop.

Although we normally think of arithmetic operations as taking all the time,
Duhamel[8] noted that the test in the inner loops of many bit reversals takes a sub-
stantial amount of time. He used the close relation between bit reversal and matrix
transpose to completely eliminate the test of whether the two elements had been
previously exchanged.

Brigham[5] took a conceptually simpler approach that, unfortunately, performs
much worse. For each index in the loop, he explicitly computes the bit reversed
value in log

2
N steps. He then tests the values to see if the data elements should be

exchanged. Not only does this approach use many integer operations, it makes the
computer time increase as N log

2
N instead of as N with all the other algorithms in

this section.

5.2. Build an index vector. Since we frequently do many FFTs of the same
length, recomputing the bit reversal indices can be avoided. The methods reported
in this section compute the bit reversal indices once with the intent of using them
many times. There are many ways to generate this list. I timed one that uses an
optimized version of Horner's rule for evaluating polynomials[42], as described in x2.
Once we have the index vector J(i), we can do the bit reversal using a gather, a(i)
= b(J(i)), or a scatter, a(J(i)) = b(i).

Middleditch[24] builds an index vector one-eighth the length of the array. He
determines which segment of the elements to work on from the short index vector,
then does 3 bits worth of reversal explicitly. This approach saves storage, since a
smaller index vector is needed, but it does not vectorize.

One of Van Loan's algorithms from an early draft of his book[39] computes the
index vector inside the loop that exchanges the elements by using the algorithm
described in this section. Odd/even pairs of elements are exchanged on each pass,
and the inner loop does vectorize.

The problem with using these methods is that the memory references are not
localized. Hence, most of the loads on a gather or stores on a scatter do not hit in
the cache. On most machines, the performance of these two is the same. On the Intel
i860, however, the scatter operation runs considerably faster because it does not bring
in a cache line when a store operation misses.

5.3. New gather/scatter method. A di�erent problem occurs on the Cray.
The bit reversal index vector contains all possible power of two strides which leads to
many bank con
icts. All is not lost, though. We can modify the data access patterns
by scrambling the index vector[1]. Of course, since the index vector is scrambled, we
will have to use both a scatter and a gather to do the bit reversal. We will gain by
avoiding memory bank con
icts, but we lose because gathers and scatters take almost
twice as long as straight loads and stores.

Recall that our gather method uses a(i) = b(J(i)). The strategy used is to
replace J(i) with J(mod(k*i,n)) for an array of length n. We can use any value for
k that will break up the bad reference patterns. The choice used for the runs reported
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in this paper is k = n/4 - 1. This choice guarantees that the largest power of two
di�erence on any vector access is four, a value that does not degrade performance on
the Cray Y-MP.

Simply using n/4-1 will cause problems on machines with 32-bit integers since
k*i can over
ow even for arrays of modest size. We are safe if we use the smaller of
n/4-1 and 2**31/n - 1. We prevent the program from crashing if it is fed a very
small or very large value of n. The code used to build the gather vector is

k = max(n/4 - 1,3)

k = min(k,2**31/n-1)

do i = 0, n - 1

G(i) = mod(k*i,n)

enddo

Since we have scrambled the data on gather, we must reorder the data we store.
Fortunately, this part is easy; we simply use the standard index vector for bit reversal
for the scatter. The bit reversal is then done with both a gather and a scatter,
a(J(G(i))) = b(G(i)). While this scheme runs a bit slower in scalar mode due to
the extra memory tra�c, it reduces the time in vector mode by about 1/3.

5.4. Make log
2
N passes. The bit reversal step is needed because many of the

FFT algorithms bit reverse the data in log
2
N passes. This observation means that

we can also do a bit reversal in log
2
N passes as was done by Singleton[34], whose

algorithmwas designed to minimize the amount of words transferred between memory
and backing storage. His code uses the perfect shu�e on successively smaller segments
on each pass. The loops are arranged to keep a block of data in main memory as
long as possible. Not surprisingly, this approach works well on hierarchical memory
machines.

Swarztrauber[37] presented two algorithms that are similar to Singleton's but are
coded to look like matrix transposes. Routine ctsort is an inverse perfect shu�e;
successive elements are stored in separate halves of the output array. Routine ptsort
implements a perfect shu�e similar to Singleton's, but the inner loop is coded in such
a way that the data is always accessed at large stride. No special blocking is done in
either implementation.

Van Loan[39] has implemented the same algorithms as Swarztrauber has by using
explicit computation of the indices instead of transposing elements in an array with
three indices. There is a saving in not needing a subroutine call, but on manymachines
explicit address computation is not as e�cient as array indexing is.

A bit reversal can be done by a sequence of shu�es as shown, by Korn and
Lambiotte[23]. First do a perfect shu�e of the two halves of the array. Next do
a perfect shu�e taking pairs of elements. Repeat this process, doubling the size of
the groups shu�ed for log

2
N steps. Each step is implementable using the merge

operation on the STAR 100 they used.
Polge's usbin algorithm[27] does multiple passes over the data but does not need

any auxiliary storage. However, some elements may be moved more than once. At
step k elements are moved when the bits of k and log

2
N � k di�er. Since blocks

of elements share these bits, the blocks can be exchanged as units, making the algo-
rithm vectorizable. While Polge describes higher radix versions of this algorithm, his
published code is for radix-2 exchanges only.

Rutkowska[32] makes the recursive nature of these multistep bit reversals explicit.
The recursions are based on looking at the elements with odd and even indices sep-
arately and splitting these two sets into a top and a bottom half. The bit reversal
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of an element in one set puts it into another or the same set. For example, the bit
reversal of an even index in the lower half of the array results in another element in
the same set. Rutkowska presents two implementations that apply this scheme recur-
sively and use only a few shift and add operations. The �rst recursively calls itself
until it has identi�ed a pair of elements to exchange, a version that is done in place.
Since some machines do not execute recursive algorithms e�ciently, she also presents
an implementation that uses a work array but handles the recursion implicitly. This
latter version vectorizes.

5.5. Use a short index vector. It is possible to do a bit reversal with an
index vector that is much shorter than we might think. The methods described here
are based on the observation that the bit reversal of an integer k = k2 + k1

p
N is

~k = ~k2
p
N + ~k1 when N is even. When k is odd, we do the same thing for the two

halves with di�ering middle bits. This approach is used in Polge's usone algorithm[27].
Evans[10] independently discovered Polge's approach and produced a slightly sim-

pler implementation. Evans later improved the algorithm very slightly by reducing
the number of multiplications needed[11].

Evans's papers generated a 
urry of improvements. Walker[41] observed that the
array indices and their bit reversals can be written as a matrix. Given the idempotency
of the bit reversal operation, it is easy to show that one need only consider the sub-
diagonal part of this matrix. The observation allowed Walker to reduce the size of the
index vector by a factor of two when log

2
N is odd and reduce the run time marginally.

Biswas[4] presents an algorithm virtually identical to that of Walker, even including
a matrix showing the symmetry of the transformation.

Vesely[40] studied the properties of mixed radix bit reversals and concluded that
the best performance comes from using three index vectors of length about 3

p
N . The

fully symmetric version used here is similar to Evans's algorithm for odd n except that
the middle section is wider than one bit and an additional reversal stage is needed to
process these bits.

Khan[21] formulates the bit reversal in a manner similar to that of Rutkowska[32],
splitting the indices into a top and a bottom half of the even and odd values. He breaks
up the bit reversal into groups of elements that can be processed together, and an
index vector of order

p
N in size.

The algorithm Heller[14] uses was designed for the CM-2, so some of the details
are a bit obscure. However, the structure is similar to that of Khan's in the way
groups of elements are handled. Heller starts with a base version that computes a bit
reversal index vector of length 32. Then groups of 1024 elements are bit reversed in
groups of 32. Heller tried a number of variants { explicit unrolling of the inner loop,
reordering the statements to improve locality, using temporaries to keep data in the
registers longer. The measurements show that the simplest code produced the best
results on all machines.

5.6. New hybrid method. It is clear from Fig. 1 and the results in x6 that the
standard approaches to bit reversal reordering don't performwell for arrays larger than
the cache. With only one exception[34], none of the methods previously published
take explicit account of the structure of the various parts of the memory hierarchy.
In this section, I describe a two-step approach that runs close to the in-cache rate. In
the �rst step, the data is loaded with �xed stride and stored at stride 1. The second
step does a bit reversal that works on data in the cache.

In what follows I will use the following de�nitions. The cache can hold somewhat
more than C data elements, and the cache line size is L data elements. I will assume



14 A. H. Karp

Table 3
Cycles for a bit reversal that �ts entirely in the cache and one that does not.

In Out of
Cache Cache

Do k = 0 to N-1 by L
Load J(k) D+B D+B
Load b(k) D+B D+B
Store a(J(k)) D+B+1D+B+1
Do j = 1 to L-1

Load J(j+k) 1 1
Load b(j+k) 1 1
Store a(J(j+k)) 2 D+B+1

End Do
End Do

it takes one machine cycle to load an element from the cache to a register. If the
data is being gathered, one additional machine cycle is needed per element. Thus, it
takes 2L cycles to gather L elements from the cache. If the data is not in the cache,
I assume it takes B cycles for the data to reach the cache and D additional cycles
before the memory can start the next request, a total of D +B cycles. If a gather or
scatter is used, each load of an element takes one additional cycle.

The number of cycles it takes to complete the bit reversal is shown in Table 3.
The �rst iteration is done separately to account for the di�erence in access time
between the �rst reference to data on a cache line and subsequent references. The
average time to do the bit reversal if all the data �ts in the cache can be seen to be
4+3(B +D�1)=L cycles per element. For the RS/6000-520 with B = 8, D = 4, and
L = 16 this simple model predicts 6.1 cycles per element compared to the 7.2 cycles
measured.

We should expect the model to underestimate the time because all it includes are
memory accesses; other work that must be done is ignored. The limits of this simple
model can also be seen by comparing the time for a gather and that for a scatter.
According to the model, the performance should be the same. Instead, they di�er
because the CPU must wait for the data on a load but not on a store. Note that the
Intel i860 does not bring data into the cache on a store. Hence, the scatter operation
is considerably faster than the gather when the data does not �t into the cache.

We can now see why a straightforward scatter operation does not perform well
on a machine with a cache. Consider a large bit reversal of length N � C. The �rst
few elements of J are 0; N=2; N=4; N=2 + N=4. Thus, when storing a(J(0)), data
elements a(0) through a(L-1) are brought into the cache; a(J(1)) brings elements
a(N/2) through a(N/2+L-1), etc. Since each element of a is used only once, the
average access time per element is D + B cycles. The indirect addressing used costs
an additional cycle per element.

The elements of b and J must also be brought into the cache before being stored,
but they are accessed contiguously. The sum of these times gives the total for the
bit reversal. The best performance from the simple gather operation will be about
D+B+3+2(B+D�1)=L cycles per element as shown in Table 3. For the RS/6000-520
the model predicts 16.4 cycles per element, compared to the 24 cycles measured.

To improve the cache performance of the bit reversal reordering, we must make
better use of the data when it is brought into the cache. The approach used here is to
do one or more large-radix bit reversals followed by a series of radix-2 bit reversals.
For example, Table 4 shows how to do a radix-4 digit reversal of 16 elements.
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Table 4
Radix-4 digit reversal by recursive transposes.

1 d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 da db dc dd de df

d0 d1 d2 d3

2 d4 d5 d6 d7

d8 d9 da db

dc dd de df

d0 d4 d8 dc

3 d1 d5 d9 dd

d2 d6 da de

d3 d7 db df

d0 d4 d8 dc

4 d2 d6 da de

d1 d5 d9 dd

d3 d7 db df

5 d0 d4 d8 dc d2 d6 da de d1 d5 d9 dd d3 d7 db df

Row 1 is the data in natural order, row 2 is the data written as a 4�4 array, and
row 3 is the transpose of row 2. Row 4 represents a step needed when the radix is not
prime; the indices of the rows must be bit reversed. (In the code, steps 3 and 4 are
combined.) Finally, row 5 represents the radix-4 bit reversal reordering of the data.
If C = 4, we can �nish the radix-2 bit reversal by bit reversing each segment in turn.

The indices in row 5 can be looked at as four sequences, the elements of each
sequence being parts of the original array accessed at stride 4. The scheme proposed
here uses the data patterns present in the indices of the large-radix bit reversal. These
segments are exactly the same as the groups described by Khan[21].

I will now describe the algorithm for a sequence of length N = LC. Since the
cache line is L elements long, I will use a radix-L bit reversal.

First, load Z = C=L data elements at stride L starting at element 0. (If my
vector registers can hold Z elements, this sectioning loop is done automatically.)
These elements get stored into another array at stride 1 starting at element 0. Since
each number used results in L numbers being transferred into the cache, I will have
loaded C elements into the cache.

Next, I load another set of Z elements from the cache to the register at stride L
starting at element 1. This data is stored in the other array at stride 1 starting at
element ZL=2, where L=2 is obtained by reversing the bits in 1. The next set of Z
elements goes into the output array starting at element ZL=4, L=4 coming from the
bit reversal of 2. This process is repeated in chunks of Z elements until the entire
array has been processed, i.e., a total of L times.

At the end, I will have produced a radix-L bit reversal reordering of the original
data. Now, I can take each of the L segments of the output array and do a radix-2
bit reversal on the N=L = C elements using any method that performs well when the
data �ts into the cache.

Even though I make two passes over the data instead of one for the conventional
algorithm, the new approach is much faster. Cycle counting explains the improvement.
The �rst load takes D + B cycles per element since each number is on a di�erent
cache line. The next C � 1 loads take only one cycle per element since the data has
already been put into the cache. Each store is done at stride 1 and, therefore, takes
1 + (B +D � 1)=L cycles per element. The average time for the radix-L part is only
a little more than 2 + (B + D � 1)=L cycles per element as shown in Table 5. The
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Table 5
Cycles for large radix bit reversal.

Do k = 0 to N-1 by C
Load b(k) D+B
Store a(k) D+B
Do j = 1 to L-1

Load b(L*j+k) D+B
Store a(j+k) 1

End Do
Do j = 1 to C-1 by L

Load b(j+k) 1
Store a(j+k) D+B
Do i = 1 to L-1

Load b(L*i+j+k) 1
Store a(i+j+k) 1

End Do
End Do

End Do

predicted value of 2.7 cycles per element is a bit smaller than the measured value of
4 on the RS/6000-520.

The length C radix-2 bit reversals are also e�cient since all the data �ts in the
cache. All measurements were made using the algorithm that performs best on data
that �ts in the cache. On the RS/6000, HP-9000, and Intel i860 I used walker[41];
on the 3090 scalar run I used unsone[27]; and on the 3090 vector run I used gather.

If N=L is too large to �t in the cache, we must repeat the process as many times
as necessary to allow an e�cient reordering. Each �xed stride pass over the data will
take an additional Tf = 2 + (B + D � 1)=L cycles per element. However, since we
are decreasing the length of the sequence by a constant factor, the time grows only
as logLN . In fact, we will rarely have to worry about when to use another method.
The total time needed by this hybrid method is

Th = 4 +
3(B +D � 1)

L
+ Tf logL

N

C
:

Equating this time to the time for a simple scatter and solving for the break-even
point N� gives

logL
N�

C
=

(D +B � 1)(1� 1=L)

2 + (B +D � 1)=L
:

For the RS/6000-520 with C = 4096, L = 16, D = 4, and B = 8, log
2
N� = 27;

for the HP-9000 with C = 262144, L = 8, D = 8, and B = 30, log
2
N� = 27. The

situation is even better for the 3090; with C = 16384, L = 32, D = 16, and B = 16,
log

2
N� = 48, which is an impractically large value.
The full algorithm is presented in Table 6. Here N is the length of the array, C is

somewhat less than the number of elements that �t in the cache, and L is the size of
the cache line. In addition, we take m=min(L,nr/C) instead of simply L to ensure that
we always do length C bit reverses in the next phase. J(j) is the m-bit bit reversal
of j.

In routine trans the shapes of the arrays are changed on each entry. Thus, on the
�rst pass we deal with one array of length N; on the second pass, L arrays of length N/L;
etc. Note too that the order of the loops is important. One might think that because
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Table 6
Two stage bit reversal reordering.

nr = N
Do While ( nr > C )
m = min(L,nr/C)
trans(a,b,m,C,nr,N)
nr = nr/L
! Interchange meaning of a and b

End Do
Do i = 0 to N-1 by C
! Bit reverse b(i:i+C)

End Do
End
Routine trans(a,b,L,C,nr,N)
Dimension a(C/L,nr/C,L,N/nr)
Dimension b(L,C/L,nr/C,N/nr)
Do m = 1, N/nr
Do k = 1, nr/C
Do j = 1, L
Do i = 1, C/L
a(i,k,j,m) = b(J(j),i,k,m)

End Do
End Do

End Do
End Do
End

i,k appears on both sides of the assignment these two loops could be coalesced. Doing
so would spoil the optimal use of the cache. The additional dimension that does not
appear in Swarztrauber's[37] code accounts for the performance di�erence.

The performance of the algorithm can be improved slightly by violating one of
the constraints, namely, that we load the array with a stride equal to the cache line
size. We can reduce the number of passes made over the data by increasing the stride.

Figure 3 shows that we can increase the stride much more than might be expected,
up to 256 on a machine with 16 word cache lines, before the performance degrades
dramatically. To understand this phenomenon, we must look at the load and store
operations separately.

Consider using a stride of S = pL. The loads proceed as before; each load brings
in a full cache line, all of which gets used. However, we will be forced to store fewer
than L consecutive words { L/p words instead of L.

The optimum stride can now be predicted. If a larger stride means we can do the
�xed stride work in one pass instead of two, we save time if the large stride version
takes less than half the time of the stride L version. From our discussion in x3.2 we
reach this point on the RS/6000 when we store an eighth of a line, a stride of 256,
just the value measured. A similar argument holds for the HP-9000 which has higher
memory latency and a shorter cache line. On this machine, the cut-o� stride is also
256. In this case, the �xed stride part is so slow that we can a�ord to have the gather
step run partly outside the cache if it saves an extra pass over the data.

This approach can be extended to machines with more memory levels { either
second-level caches, electronic backing storage, or even distributed memory parallel
machines. All we need do is hierarchically nest the bit reversal with successively
smaller values for C and L. For example, we might do a radix-1024 bit reversal to
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Fig. 3. The time to copy an array at the indicated stride using the segmented copy of the new
bit reversal method. Note that the time per element does not increase dramatically until the stride
exceeds 256 words.

optimize the use of the second-level cache. Next, we would call a bit reversal routine
to work on segments that �t entirely in the second-level cache. Since these segments
would not �t in the �rst-level cache, we could do a radix-32 bit reversal on them.
Finally, we could use a gather on the subsegments that �t into the �rst-level cache.

6. Measurements. The reports in the literature were coded in di�erent lan-
guages and were run on a variety of machines over more than 20 years. To be fair, I
coded each of them into more or less modern Fortran 77. Thus, any di�erences due
to coding style and quality of compilers have been removed.

Second, I made a reasonable attempt to tune the codes. For example, using shift
operations instead of multiplications and divisions by powers of two sped up some
codes more than three times. Reordering loops to improve the locality of reference
sped up others by an even larger factor. However, if a code was presented with certain
computations in the inner loop, those were left there. I also did not unroll loops, a
procedure which is known to improve performance on some machines. I did check the
results for correctness for every case run.

Di�erent approaches were taken to time the runs on di�erent machines. Since I
could not get the 3090 standalone, I measured CPU times which 
uctuated somewhat
due to the heavy load on the machine. (We shared the machine with chemists.) In
addition, to get higher clock resolution, I used an experimental version of the timer.
When the system was heavily loaded, this timer sometimes forgot to tick. To account
for this problem, I took the largest CPU time of several runs.

On the RS/6000 Model 520 and HP-9000 Model 730 I ran when I was the only
user. Unfortunately, Unix d�mons kept rearing their ugly heads, so an occasional
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Table 7
Baseline measurements for log

2
N = 20 ( log

2
N = 17 on i860)

Machine
3090J 3090J RS/6000 HP-730 Intel Y-MP Y-MP

Case scalar vector Model 520 i860 scalar vector
Empty loop 5.0 5.0 2.0 2.0 2.0 11.0 0.3
Straight copy 9.1 3.2 3.4 14.0 6.1 24.2 1.4
Stride copy 10.2 3.2 3.4 38.3 27.0 23.4 2.4
Transpose copy 10.2 3.2 3.4 37.8 27.0 6.4 1.9
Gather copy 16.2 6.1 7.2 17.3 11.8 33.2 2.0
Scatter copy 17.6 5.4 6.2 17.1 12.0 26.3 1.8
Index vector 16.0 5.6 7.8 72.7 12.8 32.1 2.8

measurement was clearly spurious. These were the short runs; there is no way I can
be sure that the longer runs were not a�ected. In all cases I report the shortest
measured elapsed time of several runs.

The iPSC/860 returns the elapsed time on the single node I used. Even here,
there were 
uctuations, albeit small onesm from one run to the next. Again, I report
the shortest elapsed time of several runs. The times on the Cray were very repeatable.

6.1. Base Measurements. First, I made some measurements to discover the
base performance of the machines. Table 7 summarizes the results.

The empty loop is just that, a loop with no executable statements. Only the
Cray compiler completely eliminated this loop. Straight copy refers to a(i) = b(i).
Stride copy and transpose copy both move the data at �xed stride. Stride copy treats
the arrays as one dimensional and computes the o�sets; transpose copy treats them
as two dimensional and lets the compiler do the address arithmetic.

Gather copy is a(i) = b(J(i)), and scatter copy is a(J(i)) = b(i), both with
J(i) = i. Once the TLB problem described in x3.2 was �xed, the time per element
for these loops was independent of the number of elements.

Since many users of FFTs compute many transforms of the same length, I did
not include the computation of the index vector in the timings presented in the next
section. The index vector J(i) was computed using the method described in x2. This
approach performs poorly on the HP-9000 because there are many con
icts in the
direct mapped cache. A di�erent algorithm should be used on this machine.

6.2. Measurements. The measurements made are summarized in Tables 8{13.
For each machine, I measured the largest bit reversal that would �t entirely in the
cache up to the largest that would not cause excessive paging. On the Cray the largest
run was limited by the 10 MWord allowed for interactive use.

The table entries are divided into groups separated by horizontal lines. The �rst
group of algorithms are those that step through the index values and exchange the
appropriate elements. None of these methods vectorize, so this group is denoted by
a double horizontal line in Table 10. Group 2 methods use an index vector of order
N . Multiple passes over the data are used by the methods in Group 3, while Group
4 consists of methods that use a small seed table. The new method described in x5.6
is presented last.

Double vertical lines are used in the tables of machines with hierarchical memories
to delineate the various levels in the memory hierarchy. The left section is for arrays
that �t in cache, the middle section is for those that �t in the TLB, and the right
section is for larger arrays. In general, the methods do worse on larger arrays. Those
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Fig. 4. Time to do a bit reversal of an array of length 220 words on an IBM RS/6000 Model
520 versus the year the algorithm was published.

that use less memory do better longer while those that need extra memory degrade
sooner.

Some comments on the tables are in order. The Cray times are so stable and vary
so little with problem size that only the four largest cases are shown. The code perm1
uses recursive calls. Due to a bug in the RS/6000 Fortran compiler, this code did not
run correctly. Also, even following the recommended procedures for recursive calls on
the Intel i860, the code would not run. I did not use the C versions of this method on
these machines because the performance was poor on the machines where it did run,
and the di�erences between the C and Fortran compilers would have been an issue.

7. Conclusions. The idea that the memory structure is an important factor in
determining the performance of the bit reversal algorithm is not new[34]. However,
this fact seems to have been forgotten in the 25 years since its �rst publication;
few of the methods described in this paper consider the memory structure of the
machines. Some authors even publish performance numbers without actually moving
the data[4, 21]! Further evidence of the problem is illustrated in Fig. 4 which shows
the time in cycles per element versus year of publication. I have chosen to show the
performance on the RS/6000 for an array with log

2
N = 20.

I am being somewhat unfair since many of the algorithmswere written for PCs and
I am running them on a high performance, scienti�c workstation. On the other hand,
the average number of citations to previous work in these papers is disappointingly
small. Of course, bit reversals are not the most important thing in the world so the
lack of rigor in searching out citations may well be justi�ed.

The two new methods presented show the importance of considering the memory
structure. The improvement is particularly dramatic for the machines having long
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cache lines.
While this paper has concentrated on radix-2 bit reversals, most of the algorithms

used have mixed-radix analogs, some of which have been reported in the literature[26,
35]. However, it is di�cult to predict their performance because their memory access
patterns are quite di�erent from those of the radix-2 methods. Perhaps a followup
study is needed.
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Table 8
Bit reversals on Cray Y-MP in cycles per element.

Scalar Vector
Version 17 18 19 20 17 18 19 20
cooley[7] 80.1 80.1 80.2 80.2 78.7 78.7 78.7 78.8
r-cooley[31] 30.6 30.7 30.6 30.8 30.9 30.9 30.8 30.9
yong[43] 28.1 28.1 28.1 28.2 28.2 28.2 28.1 28.2
buneman[6] 112.4 112.4 112.4 112.5 112.5 112.3 112.4 112.5
rodrig[28] 87.2 87.1 87.2 87.4 87.1 87.1 87.4 87.5
r-rodr[31] 37.4 37.4 37.4 37.5 37.3 37.3 37.4 37.5
brigham[5] 405.2 448.2 491.2 534.2 400.6 440.7 480.7 520.8
duhamel[8] 37.0 37.1 37.1 37.1 37.1 37.1 37.1 37.2
middled[24] 73.7 73.7 73.7 73.7 72.3 72.2 72.2 72.4
cvl143[39] 32.5 32.6 32.4 32.4 8.2 8.3 8.2 8.2
gather 29.3 29.4 29.3 29.3 6.6 6.7 6.7 6.7
scatter[23] 26.3 26.4 26.4 26.3 6.0 6.0 6.0 6.1
gatscat[1] 34.4 34.5 34.4 34.4 4.8 4.8 4.8 4.8
singl[34] 72.5 80.3 80.1 87.7 10.8 11.7 11.8 12.3
ctsort[37] 173.6 179.1 184.6 190.0 27.5 28.9 30.7 31.8
psort[37] 207.9 213.2 219.3 225.7 103.4 104.9 106.6 109.0
cvl154[39] 343.5 364.2 383.9 404.7 42.3 44.3 46.8 48.3
cvl153[39] 344.4 365.3 385.2 405.7 39.1 41.0 43.1 44.6
kornlam[23] 205.3 211.5 216.7 222.6 53.4 58.2 63.3 69.6
unsbin[27] 65.2 72.7 79.8 87.4 50.5 51.0 51.6 52.3
perm1[32] 124.5 123.9 124.3 124.4 124.7 123.8 124.3 124.2
perm2[32] 38.5 38.6 38.7 38.7 7.0 7.0 6.8 6.6
unsone[27] 17.8 17.9 17.7 17.7 7.3 7.3 6.6 6.4
evans[10] 17.7 17.8 17.7 17.7 8.2 8.2 8.1 8.1
walker[41] 16.3 17.9 16.2 17.7 7.9 8.1 8.1 8.2
biswas[4] 20.5 20.8 20.5 20.7 20.5 20.7 20.5 20.7
vesely[40] 56.8 55.8 55.4 55.6 15.4 13.0 13.0 13.1
khan[21] 15.0 16.9 15.1 16.8 13.1 8.1 13.0 8.1
heller[14] 28.0 27.7 27.7 27.9 7.2 7.1 7.0 7.3
hybrid 24.7 24.3 24.2 24.0 8.8 8.7 8.6 8.6
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Table 9
Bit reversals on IBM 3090 scalar in cycles per element.

Version 15 16 17 18 19 20 21 22
cooley[7] 48.9 50.6 58.4 61.9 62.8 69.9 74.6 76.6
r-cooley[31] 22.4 22.4 27.2 29.0 29.5 32.6 35.9 36.6
yong[43] 18.9 20.3 28.9 29.3 30.9 39.0 41.9 42.5
buneman[6] 60.7 61.2 71.1 75.2 75.4 82.1 86.4 88.7
rodrig[28] 47.1 47.6 57.2 61.5 61.9 68.7 74.1 75.7
r-rodr[31] 22.8 23.0 27.5 29.5 30.3 33.3 36.1 37.2
brigham[5] 238.0 254.5 274.1 290.4 304.0 323.8 342.1 357.0
duhamel[8] 24.5 24.6 38.9 38.6 39.3 53.9 54.3 55.9
middled[24] 30.4 31.1 41.2 43.3 44.4 53.5 58.5 62.0
cvl143[39] 29.8 40.5 55.0 54.7 55.5 78.5 83.8 86.2
gather 15.4 22.0 40.5 42.1 41.8 59.9 64.0 67.2
scatter[23] 16.3 24.2 44.8 46.6 46.6 67.6 71.5 74.2
gatscat[1] 36.3 86.1 106.0 112.0 161.8 199.6 211.8 196.6
singl[34] 24.6 31.3 34.4 38.0 38.1 41.3 41.3 44.2
ctsort[37] 124.4 136.4 140.0 144.4 146.9 151.2 154.6 155.0
psort[37] 130.7 153.3 161.2 173.0 180.8 189.3 197.6 204.0
cvl154[39] 115.5 137.4 145.6 155.7 164.1 171.9 180.2 188.7
cvl153[39] 114.8 136.9 146.0 155.4 163.9 171.5 179.8 187.1
kornlam[23] 119.0 137.8 147.0 155.0 166.0 176.3 185.6 192.8
unsbin[27] 31.9 36.7 40.6 44.0 44.0 47.2 48.1 50.2
perm1[32] 10.9 103.9 108.3 108.1 108.0 115.0 115.3 114.6
perm2[32] 21.5 24.0 29.0 37.3 43.9 51.1 57.0 60.7
unsone[27] 10.0 10.2 22.8 23.2 23.3 33.7 35.3 37.4
evans[10] 9.9 10.3 20.4 24.6 24.9 32.4 37.3 38.8
walker[41] 11.7 11.4 22.8 23.1 26.4 34.2 42.6 41.2
biswas[4] 12.3 14.1 26.0 28.4 28.5 26.8 42.9 42.6
vesely[40] 29.9 80.6 82.1 86.6 95.2 102.1 108.4 121.8
khan[21] 12.8 14.2 23.3 24.2 25.1 34.4 36.9 37.8
heller[14] 18.7 20.8 43.3 44.3 47.3 63.6 63.3 64.6
hybrid 10.0 10.4 20.6 22.3 22.2 22.0 22.5 22.4

Table 10
Bit reversals on 3090 vector in cycles per element.

Version 15 16 17 18 19 20 21 22

cvl143[39] 30.2 39.4 54.8 55.8 56.5 78.9 84.3 86.8
gather 6.5 12.4 41.3 42.8 41.8 54.4 58.9 60.5
scatter[23] 12.4 22.7 46.7 47.8 46.5 69.4 74.1 75.5
gatscat[1] 39.2 94.7 122.2 128.5 168.1 210.0 213.7 202.1
singl[34] 12.7 14.1 18.8 20.3 20.0 21.8 21.7 22.3
ctsort[37] 42.8 113.2 115.5 122.9 124.5 132.2 136.0 136.1
psort[37] 98.4 124.8 132.9 143.6 151.1 159.3 166.7 172.6
cvl154[39] 53.1 69.7 73.0 77.2 80.2 84.4 87.7 88.7
cvl153[39] 59.7 77.2 80.4 85.5 88.3 92.8 96.7 97.9
kornlam[23] 101.7 113.5 122.9 132.3 143.6 153.7 162.9 170.7
unsbin[27] 48.0 52.4 54.7 56.2 56.3 58.1 58.9 59.2
perm2[32] 17.2 19.3 30.6 46.8 54.9 69.9 83.2 89.5
unsone[27] 9.9 9.6 42.3 44.5 43.6 59.4 61.4 62.7
evans[10] 7.5 10.0 22.2 42.2 42.8 56.3 60.5 60.6
walker[41] 9.8 10.3 36.2 42.1 53.1 59.9 63.6 65.7
vesely[40] 20.5 74.8 86.9 84.9 106.6 111.0 116.1 138.0
heller[14] 19.7 32.5 52.7 51.9 54.1 54.1 51.2 64.8
hybrid 6.8 9.6 10.5 10.5 10.4 10.5 11.0 10.7
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Table 11
Bit reversals on RS/6000-520 in cycles per element.

Version 12 13 14 15 16 17 18 19 20 21
cooley[7] 15.9 16.6 20.0 21.1 21.8 22.1 30.9 34.7 35.8 36.1
r-cooley[31] 6.9 6.9 9.4 10.7 11.0 11.1 14.6 17.5 18.3 18.6
yong[43] 6.4 6.3 10.8 11.3 11.6 11.8 20.1 22.4 22.5 22.6
buneman[6] 27.0 26.5 29.9 31.1 31.7 32.0 41.4 45.7 46.9 47.2
rodrig[28] 16.5 17.0 20.9 21.6 22.1 22.5 31.6 35.9 37.1 37.5
r-rodr[31] 8.0 8.1 10.4 12.0 12.4 12.5 16.0 18.9 19.7 20.0
brigham[5] 59.9 63.8 71.9 77.1 81.9 86.0 99.7 107.7 135.5 117.5
duhamel[8] 7.5 7.5 12.5 12.7 12.6 12.9 27.0 27.1 27.0 27.0
singl[34] 10.8 11.4 17.6 16.9 18.3 18.7 20.1 20.1 21.7 21.6
ctsort[37] 30.0 53.0 53.8 59.1 62.3 66.9 74.1 78.5 82.9 89.5
psort[37] 38.9 56.3 58.9 61.9 66.5 70.2 76.4 80.2 84.2 88.2
cvl154[39] 29.5 49.3 52.4 56.2 60.7 65.3 73.2 77.2 81.4 88.0
cvl153[39] 28.3 45.9 48.6 51.2 54.7 59.2 66.1 69.9 73.6 77.7
kornlam[23] 35.2 60.0 59.2 62.3 66.5 77.9 81.4 85.4 89.3 93.7
unsbin[27] 12.5 12.3 18.2 18.2 19.9 20.0 21.6 21.6 23.2 23.2
perm1[32]
perm2[32] 10.6 12.6 17.8 23.3 27.2 28.7 32.2 38.1 41.5 45.3
middled[24] 16.8 16.9 20.3 21.7 22.9 22.7 32.1 36.1 37.3 37.7
cvl143[39] 12.1 16.7 22.4 22.2 23.6 25.1 52.6 52.9 53.3 53.9
gather 7.8 10.5 17.4 17.4 17.9 18.8 46.2 46.5 46.7 46.6
scatter[23] 7.2 12.3 24.2 23.7 23.8 24.9 47.2 47.5 47.5 47.5
gatscat[1] 21.7 36.4 36.9 36.6 39.8 93.3 128.1 127.8 128.0 129.6
unsone[27] 4.6 4.6 12.7 12.3 12.4 12.6 23.9 23.9 23.9 23.9
evans[10] 4.6 4.8 9.2 11.0 11.2 13.7 15.3 17.2 23.8 24.0
biswas[4] 5.5 4.5 10.5 10.4 10.6 10.7 24.7 19.5 24.9 23.7
walker[41] 4.4 4.2 8.8 11.1 11.1 11.4 15.3 17.1 23.6 24.0
vesely[40] 12.0 33.1 36.6 35.9 48.5 47.7 50.3 72.7 77.4 78.1
khan[21] 5.5 5.1 9.0 10.0 10.8 11.2 15.7 15.8 21.7 21.0
heller[14] 6.4 10.7 23.7 23.5 21.0 24.2 46.5 46.8 46.8 46.5
hybrid 4.4 4.2 8.1 8.3 8.3 8.8 9.4 10.0 11.4 12.6
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Table 12
Bit reversals on HP-730 in cycles per element.

Version 12 13 14 15 16 17 18 19 20 21
cooley[7] 19.4 19.4 19.3 19.5 19.6 30.4 46.7 53.7 55.9 57.4
r-cooley[31] 11.2 11.2 11.3 11.3 11.3 33.7 40.9 45.2 47.8 47.4
yong[43] 10.5 10.6 10.6 10.6 10.7 28.8 40.9 44.1 45.5 48.3
buneman[6] 23.3 23.8 23.3 23.4 23.5 33.9 50.4 57.1 59.4 61.0
rodrig[28] 19.6 19.6 19.6 19.8 19.9 31.7 48.1 57.0 58.5 58.8
r-rodr[31] 11.5 11.5 11.5 11.5 11.8 33.8 41.9 45.9 48.2 48.6
brigham[5] 113.8 122.1 130.8 141.3 147.1 167.8 193.2 211.8 219.0 233.9
duhamel[8] 11.5 11.4 11.3 11.5 11.4 35.2 44.9 45.1 46.2 46.3
middled[24] 21.8 21.8 21.7 21.8 21.9 33.7 49.8 57.1 60.0 62.5
cvl143[39] 31.2 36.9 31.4 31.3 37.0 81.7 97.3 102.8 102.6 104.5
gather 17.4 17.4 17.4 18.2 20.1 65.2 80.3 85.2 85.8 87.6
scatter[23] 17.6 18.9 17.5 17.6 20.7 70.4 83.4 85.9 87.4 89.8
gatscat[1] 48.4 48.5 48.7 49.4 130.4 176.0 199.0 230.5 233.6 255.0
singl[34] 19.1 19.0 21.3 21.3 25.3 55.4 74.2 90.2 94.7 94.9
ctsort[37] 81.6 86.0 90.7 96.3 221.4 282.4 325.8 369.3 422.7 463.2
psort[37] 69.6 73.0 76.8 81.3 219.9 281.8 319.8 360.9 416.2 432.2
cvl154[39] 77.6 84.0 90.0 98.4 223.9 286.2 329.4 380.3 429.9 467.8
cvl153[39] 78.1 84.4 90.2 98.2 232.6 285.7 317.8 366.3 405.9 434.3
kornlam[23] 65.9 69.1 73.0 77.7 143.5 567.5 633.5 707.2 782.6 848.4
unsbin[27] 21.6 22.0 23.7 23.8 26.2 57.2 75.8 91.1 96.0 97.1
perm1[32] 20.5 21.0 20.5 20.3 20.3 40.7 41.0 41.7 42.3 41.9
perm2[32] 28.6 28.6 29.0 29.0 29.3 44.6 54.0 63.9 70.8 92.1
unsone[27] 8.7 8.6 8.5 8.6 8.4 31.2 42.5 42.7 43.6 45.2
evans[10] 9.6 9.5 9.5 9.6 9.5 17.8 31.5 35.6 47.1 48.1
walker[41] 8.7 8.5 8.6 8.6 8.6 18.7 32.6 34.3 45.4 47.3
biswas[4] 9.5 8.7 9.4 8.7 9.4 26.5 43.4 44.8 45.7 45.7
vesely[40] 22.1 21.6 22.0 21.3 133.2 139.8 140.0 141.2 149.3 151.8
khan[21] 8.7 8.4 8.5 8.4 8.6 22.4 30.9 32.7 41.3 41.7
heller[14] 14.3 14.2 14.2 14.3 14.8 44.1 44.0 43.9 44.3 44.5
hybrid 8.7 8.5 8.6 8.7 8.6 37.3 37.5 37.4 37.7 38.1
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Table 13
Bit reversals on Intel i860 in cycles per element.

Version 8 9 10 11 12 13 14 15 16 17
cooley[7] 27.3 26.3 25.6 26.1 29.0 32.5 33.5 33.9 34.1 42.7
r-cooley[31] 14.9 13.4 12.5 13.3 16.2 18.8 19.3 19.4 19.2 23.7
yong[43] 14.1 12.5 12.1 12.9 16.8 18.8 19.9 19.9 20.0 28.1
buneman[6] 33.8 32.9 32.5 32.9 36.1 39.1 40.5 40.9 41.2 50.0
rodrig[28] 27.1 25.7 25.7 25.8 29.6 32.8 33.8 34.3 34.6 43.2
r-rodr[31] 14.9 13.6 13.1 13.8 17.0 19.7 20.1 20.3 20.4 24.7
brigham[5] 83.9 89.5 95.8 103.1 114.3 123.9 132.1 139.6 147.1 163.1
duhamel[8] 16.9 15.2 14.0 14.2 19.8 20.8 20.7 20.7 20.8 28.1
middled[24] 26.4 24.9 24.3 24.7 27.7 30.4 31.4 31.7 32.5 41.8
cvl143[39] 32.4 29.3 28.3 31.9 38.6 38.1 38.0 38.0 42.6 57.2
gather 18.6 17.3 17.3 19.9 28.5 29.7 29.6 29.7 31.4 45.2
scatter[23] 19.0 20.6 19.8 17.6 16.2 15.4 15.0 15.1 17.4 31.4
gatscat[1] 27.8 25.6 27.6 44.8 46.3 46.3 46.2 53.7 83.0 103.7
singl[34] 35.0 31.5 32.6 33.9 47.3 47.8 51.9 51.7 54.9 54.9
ctsort[37] 57.1 56.6 65.5 92.4 108.3 120.8 132.8 145.1 157.5 169.9
psort[37] 80.6 80.7 85.0 110.6 116.1 120.3 126.5 133.0 140.1 146.6
cvl154[39] 53.9 54.9 63.7 89.0 99.9 112.1 124.1 136.4 148.9 161.6
cvl153[39] 53.1 54.5 60.2 81.1 86.3 91.5 98.8 106.2 113.9 121.5
kornlam[23] 80.8 80.1 84.6 128.4 136.4 149.2 161.8 176.1 190.0 203.0
unsbin[27] 28.8 24.0 25.1 24.5 36.8 38.8 42.5 42.1 45.5 45.7
perm1[32]
perm2[32] 25.6 22.1 21.6 23.7 30.6 36.6 38.9 40.0 41.2 45.0
unsone[27] 13.3 11.5 9.6 9.8 16.7 17.8 17.7 17.7 18.5 32.5
evans[10] 11.4 10.0 9.1 10.1 14.8 18.1 19.2 19.9 20.1 22.4
walker[41] 10.8 9.3 9.0 9.4 14.5 18.4 19.5 19.7 19.7 21.1
biswas[4] 12.5 9.8 9.3 9.1 16.5 17.9 17.9 17.6 18.5 28.6
vesely[40] 29.4 23.9 22.0 27.2 39.0 42.1 42.9 44.1 47.2 48.1
khan[21] 12.2 10.3 8.7 9.8 13.8 16.3 16.4 17.2 16.9 19.2
heller[14] 11.9 10.0 14.4 14.7 14.9 14.3 14.0 14.5 18.1 36.2
hybrid 12.2 10.3 8.7 9.8 13.8 16.3 17.8 19.3 22.8 30.5
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Update. As the reader may have inferred from the machines used for the mea-
surements, this work was completed a number of years ago. A combination of Cor-
porate legal departments and a slow refereeing process delayed publication. Since
my search for the relevant literature was completed in the middle of 1989, more bit
reversal papers have been published.

This section contains those new algorithms found during a less than thorough
literature search. In addition, I have added a citation to a version published in an
archival publication in addition to the conference proceedings originally cited[29].
Unfortunately, I no longer have access to the machines used for the extensive mea-
surements. Instead, I'll report performance numbers on an HP-755 workstation.

I stumbled on a paper[13] describing a scheme that is very similar to the hybrid
method described in x 5.6. It was designed for out-of-core problems, which is not
unlike the out-of-cache problem described in this paper. However, the older work is
done inplace, leaving blocks of data out of order. This ordering problem presents no
serious di�culty when reading from a disk, but would be awkward to incorporate in
a program working on memory resident data.

Table 14
Index vector by recursion.

0 0
1 0 4
2 0 4 2 6
3 0 4 2 6 1 5 3 7

Elster[17] presented an interesting derivation of an algorithm that is identical to
cvl143[39]. The bit reversed index is written as rn(k) = ck2

t�q, where n = 2r and
1 � q < t. The ck can be computed recursively. An interesting o�-shoot of this
algorithm is a procedure for computing the index vector to be used for the gather or
scatter operations. Recall that routine reorder used in the body of this paper used the
\double and add one" algorithm. Elster instead uses the \add half" procedure which
involves halving an integer instead of doubling an array. Table 14 can be compared
with Table 1 to see the di�erence in the way the index vector is built. Since Elster's
approach never changes an entry once it has been computed, it saves arithmetic and
time, as shown in Table 15.

Elster's algorithm and that in Table 1 are both special cases of a more general
formulation that comes from the idea of a tensor sum[33]. The tensor sum of two
vectors w = u � v is de�ned as w = [u+ v0; u+ v1; . . . ; u+ vn]. The general form of
the bit reversal index vector is de�ned as

Bk(V
k
2
) =

k�1M

j=0

2jV2;

where V2 = [0; 1]. Now, the \double and add one" algorithm comes from a Horner's
rule applied to Equation 7. Elster's approach is a simple right-to-left summation. For
the case k = 4 we have

B4 = 23[0; 1]� 22[0; 1]� 21[0; 1]� 20[0; 1]
= 2(2(2[0; 1]� [0; 1])� [0; 1])� [0; 1]
= 2(2[0; 2; 1; 3]� [0; 1])� [0; 1]
= 2[0; 4; 2; 6;1; 5; 3;7]� [0; 1]
= [0; 8; 4; 12;2; 10; 6; 14; 1; 9;5;13;3;11;7; 15]
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for the \double and add one" and

B4 = ((23[0; 1]� 22[0; 1])� 21[0; 1])� 20[0; 1]
= (([0; 8]� [0; 4])� [0; 2])� [0; 1]
= ([0; 8; 4; 12]� [0; 2])� [0; 1]
= [0; 8; 4; 12;2; 10; 6; 14]� [0; 1]
= [0; 8; 4; 12;2; 10; 6; 14; 1; 9;5;13;3;11;7; 15]

for Elster's approach. Other orderings can now be seen quite easily. For example, a
tree-like reduction could be used on a parallel machine or a di�erent ordering used
for machines with direct mapped caches.

Jeong's[18] approach combines the data movement with the computation of the
index. While it seems unfair to compare it with a routine like gather which doesn't
count the time to set up the index array, the algorithm is actually a good deal faster.
A clever trick helps us avoid computing all the elements of the index array and moving
data that doesn't need to be moved.

The idea is based on splitting the binary representation of a number with an even
number of bits into two parts H and L, i = [H L]. (The odd case is handled by �rst
setting the middle bit to 0, then to 1.) Clearly, i = [H 0] + [0 L], so the bit reversal
of i is

r(i) = r([H 0]) + r([0 L]) = [0 r(H)] + [r(L) 0];

where r is the index array used for the gather algorithm. Note that there is no overlap
in the bits that might have value 1 so the addition can be done by taking the bit-wise
OR of the two numbers.

We have computed r(i) for 2k�1 � i, which is always possible since r(0) = 0.
We can bit reverse the elements with index values 2k�1 � i < 2k by noting that
r(i) = 2n�k + r(i � 2k�1), which is identical to Elster's algorithm[17]. The elements
to be swapped are just x(r(i) + j) and x(i+ r(j)) for 0 � j < i. Only n=2 stages are
needed to complete the bit reversal for an array with 2n elements.

The bit reversal proposed by Orchard[25] is similar to the methods that step
through the index values. However, instead of stepping through the integers by
counting, these methods use the properties of Galois �elds to step through the in-
tegers using shift and exclusive OR operations. The advantage of this approach is
that the same algorithm generates both the integer and its bit-reversed version. The
proposed approach takes successive powers of a root of the primitive polynomial mod-
ulo the number of elements. Because of the properties of the roots, only shift and
exclusive OR operations are needed. Because of the modulo arithmetic inherent in
these operations, several tests for end conditions are saved. It should be noted that
complexity comparisons between this and other approaches will be strongly in
u-
enced by the relative costs of shifts and exclusive OR operations verus addition and
increment operations on a speci�c architecture. Table 15 shows how this procedure
performs when incorporated in a scheme like that of Cooley[7], nbrv1, and in one like
that of Evans[10], nbrv2.

One other, rather obvious idea occurred to me while looking at these algorithms.
The gather algorithmmoves all the elements from one array to another. However, the
data movement can be done in place if we simply use the index vector to control which
elements get swapped. We may not see much improvement on a vector processor, but,
as the numbers in Table 15 show, the saving is considerable on a cache based machine.
The new algorithm
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Table 15
Performance of new algorithms on HP-755.

Version 12 13 14 15 16 17 18 19 20
reorder 11.7 11.7 11.7 11.7 11.8 60.3 88.2 102.1 109.2
Elster[17] 9.0 9.0 9.0 9.0 9.1 51.2 74.1 86.2 91.7
Cooley[7] 20.9 20.9 20.9 20.9 21.1 31.7 41.5 44.9 45.5
nbrv1[25] 15.4 15.4 15.4 15.4 15.8 36.2 50.9 58.5 62.3
nbrv2[25] 11.7 11.0 11.7 11.0 11.9 27.6 34.1 36.3 37.3
Jeong[18] 10.1 9.7 10.1 10.8 10.9 27.7 32.7 33.3 32.6
gather 21.0 20.9 21.3 21.1 24.8 56.2 62.2 63.2 66.1
gather2 20.0 20.0 20.1 20.3 20.2 32.5 41.9 49.3 50.0
hybrid 10.1 10.6 9.8 9.8 9.9 26.4 27.2 27.8 25.6

if ( i .gt. irev(i) ) swap(x(i),x(irev(i)))

does a compare and branch but avoids some data movement. The performance di�er-
ence is most dramatic where the original doesn't �t in the cache but where the new
version does.
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