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Abstract

In his classic work on radiative transfer, Chandrasekhar introduced

the discrete ordinates method for solving the integro-di�erential equation

of radiative transfer; the spherical harmonics method is a spectral analog

of this method. Not surprisingly, there is a close connection between the

spherical harmonics and discrete ordinates methods.

The spherical harmonics method raises some interesting questions.

How are the boundary conditions de�ned? How can we evaluate the

amount of radiation moving in speci�c directions if all we know are the

moments? What solution method is best? How can the method be ap-

plied to more complex models and in more complex geometries? This

paper reviews new work on the spherical harmonics method since around

1980 as it applies to these questions.

1 Introduction

We would like to solve the equation of radiative transport for a general, three
dimensional scattering medium such as the one illustrated in the left half of
Figure 1. The governing equation is

@I

@t
� 1

�
(
 � r)I+ I = S (1)

where I = I(t;x;
) is a 4-element vector of the Stokes parameters of the speci�c
intensity, the amount of radiation traveling at a point in space, traveling in a
certain direction, at a speci�c time. Here, � is the sum of the volume scattering
and absorbtion coe�cients, and S is the set of sources.
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Since this problem is too di�cult to be solved, we simplify the situation as
illustrated in the right half of Figure 1 with the governing equation

�
dI

d�
= I � !

2

Z 1

�1

P (�; �0)I(�; �0)d�0 + S; (2)

where d� = �dz, � is the cosine of the zenith angle, ! is the fraction of the
radiation that is scattered on each interaction, and P (�; �0) describes how the
radiation changes direction when it is scattered. The boundary conditions spec-
ify the angular distribution of the radiation incident on both sides.

Even this much simpler problem is hard to solve. Figure 2 shows the scatter-
ing phase function for two types of particles and illustrates one of the problems.
Representing a function with such a sharp peak (note the logarithmic scale on
the ordinate) while retaining the detail in the backscatter direction is di�cult.

Chandrasekhar[1] proposed replacing the integral in Equation (2) with a
quadrature sum and solving the resulting system of equations for the speci�c
intensity at a number of discrete ordinates, the Discrete Ordinates Method
(DOM).

The spherical harmonics method (SHM) is the spectral analogue of the dis-
crete ordinates method. Much in the way we use sines and cosines to represent
functions with Fourier transforms, we use spherical harmonics (Legendre poly-
nomials in their simplest form) to represent the speci�c intensity and scatter-
ing phase function. Just as the orthogonality of sines and cosines makes the
Fourier transform useful for solving di�erential equations, the orthogonality of
the spherical harmonics makes it easier to solve Equation (2).

This paper will examine what's been going on with the SHM in the recent
past. In preparing this review, I did an on-line search of 15 databases in July
1996. Some databases went back as far as 1970, most only as far as 1980. This
latter date is a convenient starting point for a talk on \recent" advances because
it covers the development of the analytic and linear algebraic methods.

Since I was more interested in �nding all relevant articles than in avoiding
reading abstracts not relevant to this review, I used rather general search cri-
teria. The initial search found 523 matches; a re�nement of the search reduced
the count to 470 articles. The topics covered, as determined from the abstracts,
are summarized in Table 1. As can be seen, I still had 53 false hits, such as a
paper dealing with a spherical harmonics expansion of convective heat 
ow in
the Earth's core. Unfortunately, we can't infer that a large number of false hits
guarantees that I didn't miss any relevant papers.

Not surprisingly, the SHM is used most in nuclear engineering and atmo-
spheric sciences. The most interesting case is the use of the SHM in well logging,
a means of analyzing the potential productivity of an oil well using sensors put
down the bore hole. The second column shows that there is a lot of interest
in models that go beyond the basic model of Equation (2). The third column
shows that improvements are still being made in the method even for the basic
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problem. Note that the numbers don't add up to 470 since a paper describing
a 3 dimensional study of nuclear reactors in the P1 approximation was counted
three times.

This review will focus on the \method" in the SHM. Hence, nothing more
will be said about speci�c applications. Furthermore, the papers that simply
compare a method against a previously described version of the SHM won't be
discussed.

I've also made the rather arbitrary decision to exclude those papers that
describe the SHM only in speci�c orders; I have found generalizing the work
in these papers to arbitrary order is not easy. This choice has the unfortunate
consequence of eliminating almost all the papers dealing with complex, 3D sys-
tems. On the other hand, the excluded papers focus on aspects of the problem
not related to the SHM.

Even with all these exclusions, this review encompasses some 30 papers.
Hence, the discussion will be brief and often imprecise, leaving out signi�cant
details. The reader is referred to the cited literature for more complete infor-
mation.

2 Spherical Harmonics Method

Long before Chandrasekhar proposed the discrete ordinates method, Jeans[2]
wrote down what we now call the spherical harmonics method. The key idea is
to expand I(�; �) and P (�; �0) in orthogonal polynomials such that the integral
in Equation (2) is replaced by an orthogonality condition. Write

I(�; �) =
nX

n=0

fn(� )Pn(�); (3)

and

P (�; �0) =
KX
k=0

�kPk(�)Pk(�
0); (4)

where the �k are known quantities that depend on the type of scattering particle
and Pk(�) is the Legendre polynomial that satis�es the standard recurrence
relations and orthogonality condition[3]. Substituting Equations (3) and (4)
into Equation (2) gives us the system of equations

k + 1

2k + 1

dfk+1

d�
+

k

2k + 1

dfk�1

d�
+

�
!�k
2k+ 1

� 1

�
fk = sk: (5)

We can write Equation (5) in matrix notation as

A
df

d�
+ Cf = s; (6)
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where the components of the vector f are the fk, A is a tridiagonal matrix
with zeros on the diagonal, and C is a diagonal matrix. The solution to the
homogeneous problem can be written as

f = e�A
�1C� f0: (7)

Although in general it is di�cult to compute a matrix exponential[4], knowledge
of the physical problem allows a numerically accurate solution to be obtained[5].

The vector f0 is determined by the boundary conditions. Recall that the
boundary conditions for Equation (2) are expressed in terms of the angular dis-
tribution of the incoming radiation. Equation (6) doesn't refer to the speci�c
intensity, so we have to make a choice. If we compute values of f0 at the bound-
ary that force the intensity to match at speci�c values of �, we have the Mark
boundary conditions. Alternatively, and more in the spirit of a spectral method,
we can force moments of the intensity to match those of the boundary condi-
tion. This latter formulation gives us the Marshak conditions. The Mark and
Marshak conditions are the most widely used, but others have been proposed.
Numerical experiments show little di�erence among the various options once the
expansion includes more than about 20 terms. Regardless of the formulation
we choose, we have a two-point boundary problem so that some, typically half,
of the moments are determined at each boundary.

There are two kinds of boundary conditions that are normally treated sep-
arately. When the Earth's atmosphere is illuminated by the sun, the incoming
radiation is unidirectional. If the scattering phase function is highly peaked,
the intensity distribution is also highly peaked. Since it is di�cult to represent
such a function with a polynomial, we usually solve for this component of the
radiation �eld separately, replacing the �-function angular distribution with the
source term

sk;s(� ) = �1
2
Fe��=�0Pk(��0) �k

2k + 1
; (8)

where F is the magnitude of the solar radiation. The remaining part of the
solution is much smoother. Treating the solar radiation this way often lets
us use fewer terms in the expansion than we need to approximate the phase
function.

The second kind of boundary condition that is treated specially is the ground.
We usually assume a Lambert surface which scatters radiation isotropically. The
corresponding source term is

sk;g(� ) =
�Rg�k
2k + 1

Z 1

0

e�(�0��)=�Pk(�)d�; (9)

where Rg is the re
ectivity of the ground. Later, we'll return to the integral in
Equation (9), which is hard to compute accurately.

Say that we've computed the fk by some method. What now? In some
situation, we're done since certain moments have physical meaning. For exam-
ple, f0 is proportional to the mean intensity, f1 is the net radiative 
ux, and
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f2 is proportional to the radiation pressure. In applications where the radia-
tion �eld is needed only as part of an energy 
ow calculation, such as in stellar
atmospheres or climatology studies, these few moments su�ce.

What if we want the intensity at a predetermined set of zenith angles? If we
evaluate Equation (3), we get a plot like the wavy line Figure 3. A number of
methods have been proposed to evaluate I(�; �) more accurately at all �[6], but
only the integration of the source function[7] is accurate in all situations. This
approach simply solves Equation (2) with a known right hand side. Namely,

I(�; � > 0) =
1

2

KX
k=0

�kPk(�)fk

Z �0

�

e�(t��)=� dt

�
; (10)

with a similar equation for � < 0. For vertically inhomogeneous atmospheres
approximated by piecewise constant layers, the integration is done separately
over each layer. The solid line in Figure 3 was computed using Equation (10).
The dots in that �gure are at the Gauss quadrature points, illustrating the close
connection between the SHM and DOM.

Thus far, the description of the SHM has looked only at the azimuthally
independent part of the solution. Fortunately, taking the Fourier transform
of the azimuthally dependent equation gives us a set of independent equations
to be solved. We need only replace the Pk(�) in Equations (3) and (4) with
the spherical harmonics Y m

k (�) to get equations di�ering only in some constant
terms from the ones described thus far.

3 Methods

Numerical work in solving the spherical harmonics equations largely started in
the 1950's. This section describes some of the more recent solution schemes
proposed since 1980.

3.1 Linear Algebra Approach

One approach is to use the rules of linear algebra to compute the matrix expo-
nential of Equation (7)[5]. We note that the matricesX and X�1 have the same
eigenvectors and that the eigenvalues of one are the inverse of the eigenvalues of
the other. Hence, we can work with the matrix C�1A from Equation (7) which
has some nice properties. In particular, this matrix is tridiagonal with zeros on
the diagonal, so we know that its eigenvalues come in � pairs.

If we symmetrize C�1A and do an odd-even sort of the rows and columns
of the resulting matrix, which just happens to be a similarity transform, we get
a matrix with the structure �

0 Bh

BT
h 0

�
; (11)
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where Bh is bidiagonal. We can now do a singular value decomposition of Bh

which allows us to construct the eigenvalues and eigenvectors of C�1A in only
O(K3=8) operations. Once we know the eigen-decomposition of the matrix, we

can write the matrix exponential as e�A
�1C� = U�1e���U , where U is the

matrix of eigenvectors, and � is a diagonal matrix of the eigenvalues.
One problem with all solutions of Equation (2) arises when the gas is conser-

vative, i.e., when ! = 1. Now, the (1,1) element of C = 0 leading to a repeated
pair of eigenvalues at 0 and making the matrix A�1C defective. An e�ective
approach is to split o� the two equations represented by the zero eigenvalues
and solve the remaining system as before.

In the linear algebra approach, we instead reduce the matrix to Jordan
canonical form, J = V �1C�1AV , where V replaces the missing eigenvector
with a �rst order principle vector. Now, the matrix exponential becomes

e�J� =

2
664

0 � 0 0
0 0 0 0
0 0 e��2� 0
0 0 0 e�2�

3
775 : (12)

A more serious problem is when 1 � ! = � is very small. Mathematically,
the matrix C�1A is diagonalizable, but the eigenvector matrix becomes poorly
conditioned. The solution[5] is to reduce the matrix to quasi-Jordan form

exp

�
�
�
�0 a
0 ��0

�
�

�
=

�
e�0� a(e�0� � e��0� )=2�0
0 e��0�

�
�; (13)

where only the �rst two rows and columns are shown for brevity. We can simply
write down the missing eigenvector by noting the form of the eigenvectors of
the diagonalized system.2

664
1 1 0 0
� �� 0 0

O(�2) O(�2) a b
O(�2) O(�2) c d

3
775 =)

2
664

1 �� 0 0
� 1 0 0
0 0 a b
0 0 c d

3
775 ; (14)

where we ignore terms of O(�2).
If we let J+ be the part of the Jordan matrix containing the positive eigen-

values of A�1C, we can write the system of equations to be solved as2
664

G I 0 0
��eJ+� ��eJ+� �e�J+� �e�J+�

�
e�J+� ��e�J+� 
eJ+� �eJ+�

0 0 �G I

3
775 ; (15)

where the matrixG comes from the boundary conditions, I is the identity matrix
of order K=2, and the four matrices denoted by Greek symbols depend only on
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the properties of the material. The extension to a set of homogeneous layers is
obvious.

Since the growing exponentials in Equation (15) would cause problems for
large � , we algebraically scale by the matrix diag[I e�J+� e�J+� I]. (I stress
the word algebraic because some investigators have gone to great lengths to
avoid this transformation.) Note that, after the scaling, the 2� 2 blocks in the
upper left and lower right decouple as � !1. In fact, these blocks are closely
related to the re
ection matrices used in other methods.

3.2 Classical Method

A more standard approach, at least to mathematicians, is to guess a form for
the solution and prove that it satis�es the equation of interest. In this case, we
write the solution as[8]

I(�; �) =
KX
k=0

2k + 1

2
Pk(�)

JX
j=1

[Aje
��j� + (�1)kBje

��j(�0��)]gk(�j): (16)

Here Aj and Bj are constants determined by the boundary conditions and gk(�)
are the Chandrasekhar polynomials de�ned by the 3-term recurrence

(k + 1)gk+1(�) =
2k + 1� !�k

�
gk(�) � kgk�1(�): (17)

The �j in Equation (16) are the inverses of the positive roots of gK+1(�) = 0.
Note that the gk(�j) are the eigenvectors referred to in Section 3.1.

We now substitute Equations (16) and (4) into Equation (2), ignoring the
source term to get the solution to the homogeneous problem. We end up with
the system of equations

KX
k=0

JX
j=1

Mnk[Aj + (�1)kBje
��j�0 ]gk(�j) = rn(0); (18)

KX
k=0

JX
j=1

Mnk[(�1)kAje
��j�0 + Bj ]gk(�j) = rn(�0) (19)

to be solved for the unknowns Aj and Bj .
Next, we need a particular solution that incorporates the various source

terms. Particular solutions have been given for solar illumination, di�use and
specular re
ective boundaries, and thermal radiation[8, 9, 10], as well as for
polarization problems[11] and spherical symmetry[12]. In the later works, these
particular solutions take the form

Ip(�; �) =
KX
k=0

2k + 1

2
Pk(�)

JX
j=1

Cj�j[Aj(� ) + (�1)kBj(� )]gk(�j): (20)
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The Cj are known, and the functions Aj(� ) and Bj(� ) are determined by the
source terms.

3.3 Other Methods

Several other solution methods have been proposed since the linear algebra and
classical approaches were published. Unfortunately, most of them do not achieve
the accuracy and numerical stability achieved in the earlier work. Still, each
has an interesting perspective worthy of attention.

Wells and Sidorowich[13] reexamined the closure condition needed for the
system of equations (5). Most investigators simply set fK+1 = 0 to eliminate
the extra unknown. Wells and Sidorowich instead use the 3-term recurrence for
Pk(�) to write Equation (5) as

(k + 1)

�
dfk+1

d�
+
Pk+1

�Pk
(! � �k)fk

�
+ k

�
dfk�1

d�
+
Pk�1

�Pk
(! � �k)fk

�
= 0: (21)

Each of the two terms in Equation (21) is nearly zero in the direction of the
sun. Using the second term in place of the equation for fK+1 closes the system.
The method is accurate to slightly better than 1% in high order for sharply
peaked phase functions. This paper shows that trying other closure conditions
may lead to improved solutions in speci�c situations.

Kamiuto[14] formally integrates Equation (5) to get

(k + 1)fk+1(�) + kfk�1(�) + �k

Z 1

�1

fk(�)d� = rk(�); (22)

where the change of variables to � = (2� � �0)=�0 makes the range [�1; 1]. The
problem is solved by expanding fk(�) in a Chebyshev series

fk(�) =
NX
n=0

bknTn(�) (23)

and solving the resulting system of (N + 1)(K + 1) linear equations. Clearly,
this method will become computationally ine�cient for rapidly varying fk(�)
which will happen when �0 is large, but results accurate to 3 signi�cant digits
were obtained for �0 as large as 200 with reasonable computational e�ort.

There is yet another way to rearrange Equation (5)[15]. Sort the vector f
into vectors of the even components fe and the odd components fo to give the
equations

Ae
dfe
d�

= Cofo; and Ao
dfo
d�

= Cefe; (24)

where the coe�cient matrices are simple rearrangements of the elements of the
matrices in Equation (5). These two, �rst order equations can be combined into
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the second order equation

S
d2f̂e
d�2

= f̂e: (25)

The solution to Equation (25) for the moments at any depth is

�
ge(� )
go(� )

�
=

"
cosh[�(�0��)]
cosh(��0)

� sinh(��)
cosh(��0)

sinh[�(�0��)]
� cosh(��0)

cosh(��)
cosh(��0)

# �
ge(0)
go(�0)

�
; (26)

where �
ge(� )
go(� )

�
=

�
V �1
e 0
0 V �1

o

� �
fe(� )
fo(� )

�
; (27)

and Ve = C
�1=2
e Ue with a similar term for Vo. Note that Equation (26) properly

handles the limit as one of the eigenvalues approaches zero. However, one row
of Ve and Vo gets arbitrarily large because the (1,1) element of Ce approaches
zero. To avoid this problem the eigenvectors for the small eigenvalues are split
o� from the rest of the system as in the linear algebra approach. The apparent
over
ow for large � in Equation (26) is not a problem in practice; simple al-
gebraic manipulations reduce it to terms involving only decaying exponentials.
The results presented are indistinguishable from those computed using the linear
algebra and classical approaches.

This paper also suggests a novel scheme for handling the oscillating intensity
values obtained from Equation (3). Instead of using that equation, use

I(0; �) =
KX
k=0

fk(0)sgn(�)Pk(�) (28)

when � < 0. Now, there are no negative intensities in the solution, an impor-
tant result if the solution is to be imbedded in some larger calculation. One
unfortunate side e�ect is that the resulting curve no longer crosses the correct
solution at the Gauss quadrature points.

4 Mathematical Relations

Several papers have appeared that examine the mathematical and computa-
tional properties of some aspects of the SHM. In particular, I'll review papers
on computing an integral arising from re
ecting boundaries and various aspects
of the Chandrasekhar polynomials.
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4.1 Re
ecting Boundary

First, let's look at the re
ecting boundary condition of Equation (9). It is
straightforward to write

Z 1

0

e��=�PK(�)d� =
KX
k=0

akEk+2(� ); (29)

where Ek is the k-th exponential integral[3]. Unfortunately, the coe�cients ak
vary widely in magnitude and di�er in sign making the summation numerically
unstable. Earlier investigators used Simpson's rule between zeros of PK(�)[16]
and a 50-point Gauss quadrature[5] to evaluate this integral. While accurate
and e�cient, neither of these approaches is esthetically pleasing.

More than a decade passed with no further publications in this area until
Settle[17] derived a 5-term recurrence relation for a generalization of the integral
that includes a factor of �r in the integrand. Hence, any re
ectivity that can
be expressed as a polynomial in � can be computed. The backward recurrence
of

(n+ 2)(n+ r + 3)(2n� 1)Sn+2 + � (2n� 1)(2n+ 3)Sn+1

+(2n+ 1)(2n2 + 2n� 3� r)Sn � � (2n� 1)(2n+ 3)Sn�1 + (30)

(2n+ 3)(n � 1)(n� r � 2)Sn�2 = 0

is stable allowing e�cient evaluation of the integral. When the scattering is
isotropic, r = 0, and Equation (30) can't be used to evaluate S0. Fortunately,
this term is simply the second exponential integral E2(� ).

Settle also examined the behavior of Sn as n ! 1. In the limit of very
large n, S behaves like a cosine function in n. In this context, n = 5 can be
considered very large because the asymptotic solution is within a few percent of
the exact result.

Another approach[18], taken by Gander, is to note that the integral can be
viewed as integrating a polynomial over a �nite interval with a positive weight.
It is always possible to derive a Gauss-type integration rule in this situation[19].
The idea is to �nd the coe�cients �k and �k of the 3-term recurrence of the
polynomial that is orthogonal on this interval under the given weight function,

�k(x) = (x� �k)�k�1(x)� �k�k�2(x); (31)

where

�k =
(x�k; �k)

(�k; �k)
and �k =

(�k; �k)

(�k�1; �k�1)
; (32)

and (f; g) =
R 1
0 f(�)g(�)e

��=�d�. Unfortunately, until Gander's paper all
known methods for �nding the 3-term recurrence were numerically unstable.
For example, the simple bootstrap method of using �0 to derive �1, etc. be-
comes unstable beyond k = 10.
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Gander's contribution is to note that the coe�cients of the 3-term recurrence
can be computed in a stable manner using the ORTHPOL package[20]. The
coe�cients are shown to converge to constants as k gets large. The eigenvalues
of the tridiagonal matrix of these coe�cients are the Gauss points and the �rst
components of the normalized eigenvectors are the weights.

Gander used these points and weights to evaluate the integral for � = 1 and
k up to 200. The absolute accuracy is good, but as k increases, the value of
the integral decreases causing the relative accuracy to su�er. Beyond k = 100
the value of the integral is less than 10�12 and no signi�cant digits are left.
Fortunately, the computed intensity is insensitive to such small contributions.

4.2 Chandrasekhar Polynomials

The Chandrasekhar polynomials de�ned in Equation (17) are another area of
interest. Dehesa, et al.[21] derived the di�erential equation satis�ed by the
Chandrasekhar polynomials. While their solution is only valid for a certain
choice of the scattering coe�cients, �k, with this restriction, they are able to
show that these polynomials are hyper-geometric in nature and that the only
classical polynomials in the same class are the Jacobi polynomials. These ob-
servations lead to interesting conclusions on the distribution of their roots.

Recall that the Chandrasekhar polynomials are the eigenvectors of a matrix
that is similar to a symmetric, tridiagonal matrix. This observation allows a
number of identities to be derived[22]. For example,

Cj

MX
k=m

hkg
m
k (�i)g

m
k (�j) = 2�i;j; (33)

where hk = 2k + 1� !�k, and Cj is a normalization constant. This identity is
easily derived from the orthogonality of the eigenvectors of a symmetric matrix.
Other identities, such as

hk

N+1X
k=1

Cjg
m
n (�j)g

m
k (�j) = 2�n;k; (34)

have less obvious connections to the matrix formulation.
These identities will provide good checks on the correctness of programs used

to compute the Chandrasekhar polynomials. They may also be used to reveal
interesting properties.

Of course, the Chandrasekhar polynomials are not just mathematical cu-
riosities; we need to compute them. Since they are the eigenvectors of a known
matrix, we can use linear algebra techniques, but these methods have two prob-
lems. They are slow, needing O(N3) operations, and their accuracy leaves
something to be desired. To be precise, eigensolvers produce results of high
absolute accuracy which leaves small components with high relative errors.

11



A better approach is to compute the polynomials directly from the 3-term
recurrence. Unfortunately, great care is needed[23], especially for high order
terms in the Fourier expansion of the azimuthal dependence. When evaluating
gmk (�) for j�j > 1, a range that corresponds to the continuous spectrum of
the in�nite dimensional problem, the forward recurrence is stable for all k and
m. However, when j�j � 1, the gmj (�) get large enough to over
ow the numeric
range of the computer arithmetic. A simple work-around is to keep the exponent
and mantissa in separate words.

When �1 � � � 1, backward recurrence can be used most of the time.
However, it can become unstable. The key idea is to use backward recurrence
as long as the ratio of successive terms is less than unity, say as far as K�.
Forward recurrence can be used as long as this ratio is greater than unity, say
as far as k�. The remaining terms are found by solving a linear system of order
K��k�. This di�erence is not always small. When using a highly peaked phase
function appropriate for modeling a cloud, a linear system of order 200 had to
be solved.

5 Extensions to the Basic Model

While the basic model presented in Section 2 is useful in many domains, there is
a great deal of interest in including other e�ects. Nuclear engineers want to keep
track of neutrons that change energy, the multi-group problem. Atmospheric
scientists want to include polarization. Many physical problems are not well
represented by plane parallel layers. Everyone would like to �nd an e�ective
solution scheme for three dimensional problems. Progress has been made in all
these areas in the time covered by this review.

5.1 Multi-group

There are situations in which the particles or photons described by Equation (2)
have a �nite probability of changing energy whenever they interact with the
medium. The governing equation can be written as[24]

�
@I�
d�

+ �I� = !T(�; �0)

Z 1

�1

I�(�
0)P (�; �0)d�0 +Qnu(�; �); (35)

where there is one component of the vectors I andQ for each energy group. The
matrixT(�; � 0) gives the probability that a particle with an energy � changes its
energy to �0 on each interaction, and the diagonal matrix � gives the probability
the particle at a given energy will be absorbed or scattered on each interaction.

As in the classical method, we write the solution as

I(�; �) =
NX
n=0

2k + 1

2
Pk(�)

JX
j=1

[Aje
��j� + (�1)kBje

��j (�0��)]Tk(�j); (36)
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where Tk = GkN, andG is a generalization of the Chandrasekhar polynomials.
The vector N is a null vector of GK+1, i.e., GK+1N = 0. The �j are the
eigenvalues of a block, tridiagonal matrix of order N (K+1), where the expansion
has K + 1 terms, and we are dealing with N energies. The diagonal blocks of
this matrix are tridiagonal while the sub- and super-diagonal blocks are upper
and lower bidiagonal, respectively. Siewert found his solution scheme to be
su�ciently fast that he made no e�ort to use the special structure of the matrix.

5.2 Polarization

The Earth's atmosphere polarizes the radiation passing through it, so there is
a lot of interest in including the e�ect in the radiative transfer problem. The
governing equation can be written as[25]

�
dI

d�
+ I =

!

4�

Z 2�

0

Z 1

�1
P(�; �0; �� �0)I(�; �0; �0)d�0d�0: (37)

The Stokes vector I = [I Q U V ]T , and P(�; �0; ���0) is a 4�4 matrix. The
Fourier transform that separates the di�erent orders is a bit more complicated
because we're dealing with a system of equations. We de�ne

�m1 (x) = (2� �0;m)diag[cosmx; cosmx; sinmx; sinmx]

�m2 (x) = (2� �0;m)diag[� sinmx;� sinmx; cosmx; cosmx] (38)

and let

I(�; �; �) =
KX
k=0

[�m1 (�� �0)I
m
1 (�; �) + �m2 (�� �0)I

m
2 (�; �)] (39)

with a similar expansion for P (�; �0; �; �0).
As in the scalar case, the terms in the Fourier series decouple leaving us with

equations of the form

�
dIm�
d�

+ Im� =
!

2

Z 1

�1

Km(�; �0)Im� (�; �
0)d�0 + Sm� (�; �) (40)

to solve. The spherical harmonics expansion becomes

F(�; �) =
MX

k=m

Pm
k (�)G

m
k (�)M(�)e��� ; (41)

whereM is a 4-element null-vector ofGm
K+1. The choice of boundary conditions

is clear for polarization problems since the Marshak condition give correct results
only when m = 0. Why this happens is a topic yet to be studied.
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The matrices Gm
k are a generalization of the Chandrasekhar polynomials

with the recurrence relation

Am
k G

m
k�1+B

m
k G

m
k +Cm

k G
m
k+1 = Gm

k =�: (42)

The matrices A;B, and C in Equation (42) have a simple structure if we apply
an even-odd sort of their rows and columns with A and C becoming block
diagonal and B becoming block skew diagonal. We end up needing to �nd the
complex eigenvalues of a matrix of order 2K. Particular solutions for a variety
of source terms have been derived[11].

5.3 Spherical Symmetry

The radiative transfer equation becomes

�
@I

@�
+
1� �2

�

@I

@�
+ I =

!

2

Z 1

�1

I(�; �0)P (�; �0)d�0 + S (43)

in spherical symmetry. Using the expansions in Equations (3) and (4) gives us
the spherical harmonics equations

ak
dfk+1

d�
+ bk

dfk�1

d�
= ck

fk�1

�
� dk

fk+1

�
� (1� !�k)fk + sk; (44)

where ak, bk, ck, and dk are known functions of k. The fundamental solutions
to this equation are the modi�ed spherical Bessel functions ik(x) and kk(x). In
the limit of large k, ik(x) � sinh(x) and kk(x) � e�x.

While a number of solution schemes have been proposed, all �nd that the
linear system to be solved for the unknown coe�cients gets worse as K=r0
increases, where r0 is the inner radius of the spherical shell. Perhaps the form
of the modi�ed spherical Bessel functions in the limit of large k is responsible
for this instability.

Li and Tong[26] looked at this problem when the scattering phase function
as only two terms in its expansion, �0 and �1, including the e�ects of thermal
emission and radiating boundaries. They present an analytic form for the solu-
tion in the P1 problem and use an ordinary di�erential equation (ODE) solver
for higher order terms. They were able to compute problems having thin shells
and shells or solid spheres with optical thicknesses up to 200 up to the P11

approximation.
Siewert and Thomas[27] express the solution in terms of the Bessel functions

as Ik(�j� ) and Kk(�j� )=� . They derive particular solution for emission and
specular and di�use re
ection at the boundaries. Tine, et al.[28] write the
solution in terms of the functions h�k = I�k�1=2 � Ik+1=2. They, too, note the

instability in high order. Could the reason be that hk(0) � ek as k  1?
An interesting trick, called the sphere to plane transform, can be used when

we only need the �rst couple of moments. For example, to couple the heat 
ow
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equation with the radiation transport we need only compute the radiative 
ux,
f1. The form of the governing equation (43) is changed by writing

f1(� ) =
1

�

Z 1

�1

��(�; �)d�+
1

�2

Z 1

�1

�2�(�; �)d�; (45)

where �(�; �) is a solution to the plane parallel problem.

5.4 Multiple Dimensions

Well, after a long, roundabout trip, we're ready to return to general geometries
as expressed in Equation (1), except that we'll ignore the time dependence and
polarization. If we make the spherical harmonics expansion for I(x;
) and
P (
;
0), we get

KX
k=0

kX
m=�k

Y m
k

�
� 1

�
(
 � r)fmk +

�
1� !�k

2k + 1

�
fmk

�
= 0: (46)

We now multiply by Y p
q (
) and integrate over 
 to get a set of equations to

solve. The form of the resulting coe�cients depends on the coordinate system.
In two dimensions, we can write

(
 � r)I = �
@I

@z
+
p
1� �2 cos�

@I

@z
; (47)

where �
�
@I

@z

�
km

= a�km
@fmk�1

@z
+ a+km

@fmk+1

@z
: (48)

The x-term has derivatives of fm�1
k�1 . The resulting system of equations is

A
@f

@z
+ B

@f

@x
+Ef = S: (49)

In the Spherical Harmonics Spatial Grid method[29], Evans now discretizes
Equation (49) in space and solves the resulting linear system with the conjugate
gradient method. The quantities of interest for atmospheric modelling are the
directional 
uxes, Fx =

p
4�=3f11; Fz =

p
4�=3f10, and the mean intensity,

�I =
p
4�f00.

The most recent paper covered by this review[30], dated 9 July 1996, de-
scribes the Spherical Harmonics Discrete Ordinates Method for 3D problems.
This method is very similar to the method of successive orders of scattering
used in the 1950's, but it accelerates the iteration. It takes its name from the
fact that the integration of the source function is done over a set of discrete
ordinates, but the source function is evaluated in the spherical harmonics form.

The method is quite simple. Start with a guess for the spherical harmonics
moments, fmk (x). Then iterate
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1. J(x) =
P

k;m Y m
k [!�kfmk =(2k+ 1) + Smk ]

2. I(s) = I(0)e��(s) +
R s
0
e�[�(s)��(s0 )]J(s0)�(s0)ds0

3. fmk (x) =
R 1

�1 I(x; �)Y
m
k (�)d�

until converged. The integration step is carried out over a 3D grid.
The iteration can be written as J(n) = AJ(n�1)+B. Hence, the convergence

rate depends on the largest eigenvalue of A. Evans shows that the convergence
is accelerated by replacing J with

J0
(n)

= J(n) + a[J(n) � J(n�1)] (50)

on every second iteration. Here a depends on the residuals of this and the
preceding iteration.

Since the integration is carried out in speci�c directions, we can monitor the
optical depth of the grid blocks. When they become too large, the grid can be
re�ned until the solution is su�ciently accurate.

6 Conclusions

We have seen that the spherical harmonics method is widely used in a variety
of disciplines. It is well understood for plane geometry and provides e�cient,
numerically stable solutions. The basic method has been extended to include
such things as conduction, polarization, and energy changes.

There are still some open issues. For example, applying the SHM in spherical
symmetry doesn't work very well. It's bad enough that we don't have a method
that works in high order or with solid spheres; we don't even know why the
current approaches become unstable.

There are also problems with the methods used for 3D problems. We know
that the radiation falls o� exponentially with distance from some point, yet
our solution schemes assume a polynomial representation. (That's all a spatial
discretization does.) Hence, these methods may become intractable with large
optical thicknesses and highly peaked scattering phase functions.

Throughout this review, I've noted where there are unsolved problems. I
can only hope that those students looking for a good thesis topic were paying
attention.
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Figure 1: Left: General form of problem to be solved. Right: Simpli�ed form.

Figure 2: Examples of scattering phase functions.

Figure 3: Evaluating the intensity from the expansion in spherical harmonics
(oscillating line) and by integration of the source function (solid line). The dots
are at the Gauss quadrature points.
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