
Hybrid Checkpointing using Emerging Non-Volatile
Memories for Future Exascale Systems

XIANGYU DONG and YUAN XIE

Pennsylvania State University

and

NAVEEN MURALIMANOHAR and NORMAN P. JOUPPI

Hetlett-Packard Labs

The scalability of future massively parallel processing (MPP) systems is being severely challenged
by high failure rates. Current centralized hard disk drive (HDD) checkpointing results in overhead
of 25% or more at petascale. As system becomes more vulnerable as the node count keeps
increasing, novel techniques that enable fast and frequent checkpointing are critical to the future

exascale system implementation.
In this work, we first introduce one of the emerging non-volatile memory technologies, Phase-

Change Random Access Memory (PCRAM), as a proper candidate for the fast checkpointing

device. After a thorough analysis of MPP systems failure rates and failure sources, we then use
PCRAM to propose a hybrid local/global checkpointing mechanism, which not only provides a
faster checkpoint storage, but also boosts the effectiveness of other orthogonal techniques such
as incremental checkpointing and background checkpointing. Three variant implementations of

the PCRAM-based hybrid checkpointing are designed to be adopted at different stages and to
offer a smooth transition from the conventional in-disk checkpointing to the instant in-memory
approach. Analyzing the overhead by using a hybrid checkpointing performance model, we show
the proposed approach only incurs less than 3% performance overhead on a projected exascale

system.

Categories and Subject Descriptors: B.7.1 [Integrated Circuits]: Types and Design Styles—
Memory Technologies; B.8.1 [Performance and Reliability]: Reliability, Testing, and Fault-

Tolerance; C.5.1 [Computer System Implementation]: Large and Medium Computers—Super
Computers; D.4.5 [Operating Systems]: Reliability—Checkpoint/restart

General Terms: checkpoint, petascale, exascale, phase-change memory, optimum checkpoint model

Additional Key Words and Phrases: hybrid checkpoint, in-memory checkpoint, in-disk checkpoint,
incremental checkpoint, background checkpoint, checkpoint prototype

Extension of Conference Paper.

The conference paper is published in 2009 International Conference for High Performance Com-
puting, Networking, Storage and Analysis with the title “Leveraging 3D PCRAM Technologies to
Reduce Checkpoint Overhead for Future Exascale Systems [Dong et al. 2009].” As an extension
of the conference paper, this paper adds actual experiment data of hybrid checkpoint overhead

obtained from self-developed prototype platforms and demonstrates how the proposed hybrid
checkpointing scheme can revive incremental checkpoints and enable background checkpoints.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c⃝ 2004 ACM 0000-0000/2004/0000-0001 $5.00

ACM Journal Name, Vol. 2, No. 3, 10 2004, Pages 1–0??.

2 · Xiangyu Dong et al.

1. INTRODUCTION

MPP systems are designed to solve complex mathematical problems that are highly
computation intensive and typically take many days to complete. Although the
individual nodes in MPP systems are designed to have a high Mean-Time-to-Failure
(MTTF), the reliability of the entire system degrades significantly as the number of
nodes increases. One of the extreme examples is that the “ASCI Q” supercomputer
at Los Alamos National Laboratories had an MTTF of less than 6.5 hours [Reed
2004]. This system reliability issue will be amplified in the future exascale era
where the system will likely have five to ten times more nodes compared to today’s
petaFLOPS systems.
Checkpoint-restart is a classic fault-tolerance technique that helps large-scale

computing systems recover from unexpected failures or scheduled maintenance. As
the scale of future MPP systems keeps increasing and the system MTTF keeps
decreasing, it is foreseeable that the checkpoint protection with higher frequency is
required. However, the current state-of-the-art approach, which takes a snapshot of
the entire memory image and stores it into a globally accessible storage (typically
built with disk arrays), as shown in Fig. 1, is not a scalable approach and not feasible
for the exascale system in the future. The scalability limitations are twofold. Firstly,
the conventional storage device, such as the hard disk drive (HDD), is extremely
hard to scale further due to physics limitations; secondly, storage modules used in
modern MPP systems are designed to be separate from the main compute node,
which ensures the robustness of the data storage but is inherently not scalable
for checkpointing since the it limits the available bandwidth and causes compute
nodes to compete for the global storage resource. Due to these reasons, lots of
contemporary MPP systems have already experienced a non-negligible amount of
performance loss when using the checkpoint-restart technique. Table I [Cappello
2009] lists the reported checkpoint time of some MPP systems, which clearly shows
the checkpoint time can be as long as 30 minutes. As the application size grows
along with the system scale, the poor scaling of the current approach will quickly
increase the checkpoint time to several hours. As this trend continues, very soon
the checkpoint time will surpass the failure period, which means the risk of ending
up with an infinite execution time.

Network

I/O NodesProcess Nodes

Storage

Fig. 1. The typical organization of the con-
temporary supercomputer. All the perma-

nent storage devices are taken control by
I/O nodes. There is no local permanent
storage for each node.

Network

I/O NodesProcess Nodes (with local storage)

Storage

Fig. 2. The proposed new organization that
supports hybrid checkpoints. The primary

permanent storage devices are still con-
nected through I/O nodes, but each process
node also has a permanent storage.

ACM Journal Name, Vol. 2, No. 3, 10 2004.

Hybrid Checkpointing using Emerging Non-Volatile Memories for Future Exascale Systems · 3

Table I. Time to take a checkpoint on some machines of the Top500
Systems Max performance Checkpoint time (minutes)

LLNL Zeus 11 teraFLOPS 26

LLNL BlueGene/L 500 teraFLOPS 20
Argonne BlueGene/P 500 teraFLOPS 30
LANL RoadRunner 1 petaFLOPS ∼ 20

Although the industry is actively looking at ways to reduce failure rates of com-
puting systems, it is impractical to manufacture fail-safe components such as pro-
cessor cores, memories, etc. Therefore, the only feasible solution is to design more
efficient checkpointing schemes.
In this work, we leverage the emerging non-volatile memory technology like phase-

change RAM (PCRAM) and propose a hybrid checkpointing scheme with both
local and global checkpoints. The proposed PCRAM-based checkpointing scheme
fully takes advantage of the PCRAM fast access property and keeps the check-
point/restart technique still effective for the future exascale MPP systems1. A
hybrid checkpointing performance model is established to evaluate the overhead of
using this technique. It shows that the PCRAM-based hybrid checkpointing only
incurs less than 3% performance loss on a projected exascale system. In addition,
as a bonus effect, this new checkpointing scheme also boosts the effectiveness of
incremental checkpointing and enables background global checkpointing, both of
which further reduce the checkpoint overhead.

2. BACKGROUND

In this section, we first discuss the scalability issue of the conventional checkpointing
mechanism and then give the background information on PCRAM, which is the key
technology that enables low-cost hybrid checkpointing.

2.1 Scalability Issues of Checkpointing

Checkpoint-restart is the most widely-used technique to provide fault-tolerance
for MPP systems. There are two main categories of checkpointing: coordinated
checkpointing takes a consistent global checkpoint snapshot by flushing the in-
transit messages and capturing the local state of each process node simultaneously;
uncoordinated checkpointing reduces network congestion by letting each node take
checkpoints at different time but maintaining all the exchanged messages among
nodes a in log to reach a consistent checkpoint state. For large-scale applications,
coordinated checkpointing is more popular due to its simplicity [Oldfield et al. 2007].
However, neither of them is a scalable approach. There are two primary obstacles
that prevent performance scaling.

1Fault detection and silent data corruption is another significant problem by itself in the super-
computing community, and it is out of the scope of this work. However, it is still reasonable to
assume that the time required to detect a failure is much less than the checkpoint interval, even in

this work the interval might be as fast as 0.1 seconds. Therefore, we neglect the overhead caused
by failure detection when we evaluate the performance of our approaches.

ACM Journal Name, Vol. 2, No. 3, 10 2004.

4 · Xiangyu Dong et al.

30

40

50

60

70

80

90

100

110

0 500 1000 1500

W
ri

te
 S

p
e

e
d

 (
M

B
/s

)

Write Size (MB)

Region 1: Write size fits

into the HDD buffer

Region 2: Sustained

bandwidth for large-size

write operations

Fig. 3. The hard disk drive bandwidth with
different write size.

0

1000

2000

3000

4000

5000

6000

0 500 1000 1500

W
ri

te
 s

p
e

e
d

 (
M

B
/s

)

Write size (MB)

Region 1: Random small-

size write operations

Region 2: Sequential big-

size write operations

Fig. 4. The main memory bandwidth with
different write size.

2.1.1 Bottleneck 1: HDD Data Transfer Bandwidth. As shown in Fig. 1, the
in-practice checkpoint storage device is HDD, which implies that the most se-
rious bottleneck of in-disk checkpointing is the sustained transfer rate of HDDs
(<150MB/s). The significance of this problem is demonstrated by the fact that
the I/O generated by HDD-based checkpointing consumes nearly 80% of the to-
tal file system usage even on today’s MPP systems [Oldfield et al. 2007], and the
checkpoint overhead accounts for over 25% of total application execution time in
a petaFLOPS system [Grider et al. 2007]. Although a distributed file system, like
Lustre, can aggregate the file system bandwidth to hundreds of GB/s, in such sys-
tems the checkpoint size also gets aggregated by the scale of nodes, nullifying the
benefit.
As the HDD data transfer bandwidth is not easily scaled up due to its mechanical

nature, it is necessary to change the future checkpoint storage from in-disk to in-
memory. In order to quantify speed difference between the in-disk and in-memory
checkpointing, we measure their peak sustainable speed using a hardware configu-
ration with 2 Dual-Core AMD Opteron 2220 Processors, 16GB of ECC-protected
registered DDR2-667 memory, and West Digital 740 hard disk drives operating at
10,000 RPM with a peak bandwidth of 150MB/s reported in the datasheet.
As a block device, the HDD has a large variation on its effective bandwidth

depending upon the access pattern. In our system, although the data sheet reports
a peak bandwidth of 150MB/s, the actual working bandwidth is much smaller. We
measure the actual HDD bandwidth by randomly copying files with different sizes
and use system clock to track the time spent. The result is plotted in Fig. 3, which
shows all the points fall into two regions: one is near the y-axis, and the other
is at the 50MB/s line. When the write size is relatively small, the effective write
bandwidth of the HDD can be as high as 100MB/s and as low as 60MB/s depending
on the status of the HDD internal buffer. However, it can be observed that when
the write size is in megabyte scale, the effective write bandwidth of HDD drops
dramatically and the actual value is 50MB/s, which is only one third of its peak
bandwidth of 150MB/s.
On contrary, the result of in-memory checkpointing speed is shown in Fig. 4.

Similar to the HDD bandwidth, all the collected data fall into two regions. However,
unlike the relationship between the HDD bandwidth and write size, the attainable
bandwidth is higher when the write size is large due to the benefit achieved from

ACM Journal Name, Vol. 2, No. 3, 10 2004.

Hybrid Checkpointing using Emerging Non-Volatile Memories for Future Exascale Systems · 5

spatial locality. This is desirable for checkpointing since checkpoints are usually
large. In addition, the achievable bandwidth is very close to 5333MB/s, which is
the theoretical peak bandwidth of the DDR2-667 memory used in this experiment.
Therefore, compared to the in-disk checkpointing speed, the attainable in-memory
speed can be two orders of magnitude faster.
In section 2.2, we discuss how to leverage the emerging PCRAM technology to

implement the in-memory checkpointing.

2.1.2 Bottleneck 2: Centralized Checkpoint Storage. Another bottleneck of the
current checkpointing system, as shown in Fig. 1, comes form the centralized check-
point storage. Typically, several nodes in system are assigned to be the I/O nodes
that are in charge of the HDD accesses. Thus, the checkpoints of each node (includ-
ing computer nodes and I/O nodes) have to go through the I/O nodes via network
connections before reaching their final destinations, which consumes a large part
of the system I/O bandwidth and causes burst congestion. As the system scale
keeps grows, the physical distance between the checkpoint sources and targets is
increasing. Thereby, it only causes unacceptable performance, but also wastes lots
of power consumption on data transfers.
To solve this bottleneck, later in this paper, we propose a hybrid checkpointing

mechanism that uses both local and global checkpoints, in which the local check-
point is fast and does not need any network connection while the global checkpoint
is still preserved to provide the full fault coverage. The details of this hybrid check-
pointing mechanism is discussed in Section 4.

2.2 Phase-Change Memory (PCRAM)

Recently, many emerging non-volatile memory technologies, such as as magnetic
RAM (MRAM), ferroelectric RAM (FeRAM), and phase-change RAM (PCRAM),
show their attractive features like the fast read access, high density, and non-
volatility. Among these new memory technologies, PCRAM is considered to be
the most promising one since compared to other emerging nonvolatile memories
such as MRAM and FeRAM, PCRAM has excellent scalability, which is critical
to the success of any emerging memory technologies. More importantly, as a non-
volatile memory technology, it is highly feasible to use PCRAM as the hard disk
substitution with much faster access speed.

2.2.1 PCRAM Mechanism. Unlike SRAM, DRAM or NAND flash technologies
that use electrical charges, PCRAM changes the state of a Chalcogenide-based
material, such as alloys of germanium, antimony, or tellurium (GeSbTe, or GST),
to store a logical “0” or “1.” For instance, GST can be switched between the
crystalline phase (SET or “1” state) and the amorphous phase (RESET or “0” state)
with the application of heat. The crystalline phase shows high optical reflectivity
and low electrical resistivity, while the amorphous phase is characterized by low
reflectivity and high resistivity. Due to these differences, phase-change materials
can be used to build both memory chips and optical disks. As shown in Fig. 5,
every PCRAM cell contains one GST and one access transistor. This structure has
a name of “1T1R” where T refers to the access transistor, and R stands for the
GST resistor.
To read the data stored in a PCRAM cell, a small voltage is applied across

ACM Journal Name, Vol. 2, No. 3, 10 2004.

6 · Xiangyu Dong et al.

WL

SL

BL

GST

‘RESET’

WL

SL

BL

GST

‘SET’

GST

WL

N+ N+

WL

N+ N+

SL BL

WL

Fig. 5. The schematic view of a PCRAM cell with NMOS access transistor (BL=Bitline,
WL=Wordline, SL=Sourceline).

Crystallizing SET pulse

Melting point (~600 C)

Crystallization transition

temperature (~300 C)

Amorphizing RESET pulse

Fig. 6. The temperature-time relationship during SET and RESET operations.

the GST. Since the SET state and RESET state have a large variance on their
equivalent resistances, data are sensed by measuring the pass-through current. The
read voltage is set sufficiently high to invoke a sensible current but low enough
to avoid write disturbance. Usually, the read voltage is clamped between 0.2V
to 0.4V [Hanzawa et al. 2007]. Similar to traditional memories, the word line
connected to the gate of the access transistor is activated to read values from
PCRAM cells.
The PCRAM write operation is characterized by its SET and RESET operations.

As illustrated in Fig. 6, the SET operation crystallizes GST by heating it above its
crystallization temperature, and the RESET operation melt-quenches GST to make
the material amorphous. The temperature during each operation is controlled by
applying the appropriate current waveform. For SET operation, a moderate current
pulse is applied for a longer duration to heat the cell above the GST crystallization
temperature but below the melting temperature; for REST operation, a high power
pulse heats the memory cell above the GST melting temperature. Recent PCRAM
prototype chips demonstrate that the RESET latency can be as fast as 100ns and
the peak SET current can be as low as 100µA [Pellizzer et al. 2004; Hanzawa et al.
2007].
The cell size of PCRAM is mainly constrained by the current driving ability

of the NMOS access transistor. The achievable cell size can be as small as 10 −
40F 2 [Pellizzer et al. 2004; Hanzawa et al. 2007], where F is the feature size. When
NMOS transistors are substituted by diodes, the PCRAM cell size can be reduced
to 4F 2 [Zhang et al. 2007]. Related research [Pirovano et al. 2003] shows PCRAM
has excellent scalability as the required SET current can be reduced with technology
scaling. Although multi-bit cell is available recently [Bedeschi et al. 2009], we use
single-bit cell in this work for faster access.
Comparing to other storage technologies, such as SRAM, DRAM, NAND flash,

and HDD, PCRAM shows its relatively good properties in terms of density, speed,
power, and non-volatility. As listed in Table II, the PCRAM read speed is compara-

ACM Journal Name, Vol. 2, No. 3, 10 2004.

Hybrid Checkpointing using Emerging Non-Volatile Memories for Future Exascale Systems · 7

Table II. Comparison among SRAM, DRAM, NAND flash, HDD, and PCRAM.

SRAM DRAM NAND flash PCRAM HDD

Cell size > 100F 2 6− 8F 2 4− 6F 2 4− 40F 2 -
Read time ∼ 10ns ∼ 10ns 5µs− 50µs 10ns− 100ns ∼ 4ms

Write time ∼ 10ns ∼ 10ns 2− 3ms 100− 1000ns ∼ 4ms
Standby power Cell leakage Refresh power Zero Zero ∼ 1W
Endurance 1018 1015 105 108 − 1012 1015

Non-volatility No No Yes Yes Yes

ble to those of SRAM and DRAM. While its write operation is slower than SRAM
and DRAM, it is still much faster than its non-volatile counterpart – NAND flash.
More importantly, the PCRAM write endurance is within the feasible range for the
checkpointing application. Pessimistically assuming the PCRAM write endurance
of 108 and checkpoint interval of 10s, the lifetime of the PCRAM checkpointing
module can still be more than 30 years, while the lifetime of its NAND flash coun-
terpart is less than 30 hours. We expect the PCRAM write endurance will be higher
than 1010 in 2017, so that an even more aggressive checkpoint interval, i.e. 0.1s,
would not be a problem for PCRAM lifetime.

3. INTEGRATING PCRAM MODULES INTO MPP SYSTEMS

PCRAM can be integrated into the computer system in the similar way to the tra-
ditional DRAM Dual-Inline Memory Modules (DIMMs). In this section, PCRAM-
DIMM is proposed to integrate the PCRAM resources into MPP systems without
much engineering effort. An in-house PCRAM simulation tool, called PCRAM-
sim [Dong et al. 2009], is used to simulate the performance of this approach.
While some of the PCRAM prototypes show the PCRAM read latency is longer

than 50ns [Pellizzer et al. 2004; Hanzawa et al. 2007; Zhang et al. 2007; Bedeschi
et al. 2009], the read latency (from address decoding to data sensing) can be re-
duced to around 10ns by cutting PCRAM array bitlines and wordlines into small
segments [Dong et al. 2009]. However, the PCRAM write latency reduction is lim-
ited by the long SET pulse (∼ 100ns), and in order to improve the write bandwidth,
the data word width has to be increased. As a result, the conventional DRAM-
DIMM organization cannot be directly adopted as each DRAM chip on the DIMM
only has the word width of 8 bits, and thus the write bandwidth is only 0.08GB/s,
far below the DDR3-1333 bandwidth of 10.67GB/s.
To solve the bandwidth mismatch between the DDRx bus and the PCRAM chip,

two modifications are made to organize the new PCRAM-DIMM,

(1) As shown in Fig. 8, the configuration of each PCRAM chip is changed to x72 (64
bits of data and 8 bits of ECC protection), while the 8x prefetching scheme is
retained for compatibility with the DDR3 protocol. As a result, there are 72×8
data latches in each PCRAM chip, and during each PCRAM write operation,
576 bits are written into the PCRAM cell array in parallel;

(2) The 18 chips on DIMMs are re-organized in an interleaved way. For each data
transition, only one PCRAM chip is selected. A 18-to-1 data mux/demux is
added on DIMMs to select the proper PCRAM chip for each DDR3 transition.

Consequently, the PCRAM write latency of each PCRAM chip can be over-
lapped. The overhead of this new DIMM organization includes: (1) one 1-to-18

ACM Journal Name, Vol. 2, No. 3, 10 2004.

8 · Xiangyu Dong et al.

DRAM DRAM DRAM DRAMDRAM

Chip 0

x64

DRAM

Chip 1

x64

DRAM

Chip 7

x64

DRAM

Chip 8

x64
8x prefetch 8x prefetch 8x prefetch 8x prefetch

……

x8 x8 x8 x8……

Rank 0 DDR3-1333 bus (64-bit data

w/ 8-bit ECC)

8x prefetch 8x prefetch 8x prefetch 8x prefetch

x8 x8 x8 x8……

Rank 1

DRAM

Chip 9

x64

DRAM

Chip 10

x64

DRAM

Chip 16

x64

DRAM

Chip 17

x64
p p p p

……

Fig. 7. The organization of a DRAM
DIMM.

PCRAM PCRAM PCRAM PCRAMPCRAM

Chip 0

x576

PCRAM

Chip 1

PCRAM

Chip 6

PCRAM

Chip 8

8x prefetch 8x prefetch 8x prefetch 8x prefetch

……

x576 x576 x576

x72 x72 x72 x72……

18-to-1 Mux/Demux

8x prefetch 8x prefetch 8x prefetch 8x prefetch

x72 x72 x72 x72……

18 to 1 Mux/Demux

DDR3-1333 bus (64-bit data w/ 8-bit ECC)

PCRAM

Chip 9

PCRAM

Chip 10

PCRAM

Chip 16

PCRAM

Chip 17

p p p p

……

x576 x576 x576 x576

Fig. 8. The organization of the proposed
PCRAM DIMM.

Table III. Different configurations of the PCRAM chips.

Process Capacity # of Bank Read/RESET/SET Leakage Die Area

65nm 512Mb 4 27ns/55ns/115ns 64.8mW 109mm2

65nm 512Mb 8 19ns/48ns/108ns 75.5mW 126mm2

45nm 1024Mb 4 18ns/46ns/106ns 60.8mW 95mm2

45nm 1024Mb 8 16ns/46ns/106ns 62.8mW 105mm2

data mux/demux; (2) 576 sets of data latches, sense amplifiers, and write drivers
on each PCRAM chip. The mux/demux can be implemented by a circuit that
decodes the DDR3 address to 18 chip select signals (CS#). The overhead of data
latches, sense amplifiers, and write drivers are evaluated using PCRAMsim.
Various configurations are evaluated by PCRAMsim and the results are listed in

Table III.
Based primarily on SET latency and area efficiency, we use the 45nm 1024Mb

4-bank PCRAM chip design as a guide, and all the PCRAM-DIMM simulations
in Section 6 are based on this configuration. Meanwhile, the write bandwidth of
PCRAM-DIMM is 64bit × 8 × 18/106ns = 10.8GB/s, which is compatible with
the DDR3-1333 bandwidth 10.66GB/s. In addition, according to our PCRAM-
sim power model, for each 576-bit RESET and SET operation, it consumes to-
tal dynamic energy of 31.5nJ and 19.6nJ , respectively. Therefore, assuming that
“0” and “1” are written uniformly, the average dynamic energy is 25.6nJ per 512
bits, and the 1024Mb PCRAM-DIMM dynamic power under write operations is
25.6nJ/512b × 10.8GB/s ≈ 4.34W . The leakage power of the 18-chip PCRAM-
DIMM is estimated to be 60.8mW × 18 = 1.1W .

4. LOCAL/GLOBAL HYBRID CHECKPOINT

Integrating PCRAM into future MPP systems and using PCRAM as the fast in-
memory checkpoint storage remove the first performance bottleneck, the slow HDD
speed. However, the second bottleneck, the centralized I/O storage, still exists. To
further remove this bottleneck, a hybrid checkpointing scheme with both local and
global checkpoints is proposed. This scheme works efficiently as it is found that
most of the system failures can be locally recovered without the involvement of

ACM Journal Name, Vol. 2, No. 3, 10 2004.

Hybrid Checkpointing using Emerging Non-Volatile Memories for Future Exascale Systems · 9

other nodes.

4.1 Motivations

Historically, most of the contemporary MPP systems use diskless nodes as it is
easier to provide the reliability service (such as striped disks) at large scale instead
of at each node. As a result, there is no local storage device and all the check-
points are stored globally. While the centralized storage can be well-provisioned
and maintained such that 24x7 availability is achieved, this solution is not scalable
and the checkpointing overhead is too severe when the node count keeps increasing
and all the nodes compete for the single resource at the same time. Another reason
why local storage device is not provided at each node locally is due to the slow
access speed of HDD, which is the mainstream storage today. Since the peak band-
width of HDD (less than 200MB/s) is lower than the typical network bandwidth
(e.g. 10Gb/s Ethernet bandwidth), diskless node accessing remote storage does not
impacts the execution performance assuming that there is no competition for the
network resources. However, if PCRAM-DIMM is deployed as the fast checkpoint
storage device that can provide bandwidth of several tens of GB/s, the network
bandwidth becomes the primacy bottleneck and severely degrades the checkpoint
speed.
In summary, deploying PCRAM-DIMM into MPP nodes makes it valuable to

include local checkpoints. Together with global checkpoints that ensure the overall
system reliability, a local/global hybrid checkpoint scheme is promising for the
future exascale MPP systems.

4.2 Hybrid Checkpoint Scheme

We propose local checkpoints that periodically backup the state of each node in
their own private storage. Every node has a dedicated local storage for storing
its system state. Similar to its global counterpart, the checkpointing is done in a
coordinated fashion. We assume that a global checkpoint is made from an existing
local checkpoint. Fig. 9 shows the conceptual view of the hybrid checkpoint scheme,

— Step 1: Each node dumps the memory image to their own local checkpoints;

— Step 2: After several local checkpoint interval, a global checkpoint is initiated,
and the new global checkpoints are made from the latest local checkpoints;

— Step 3: When there is a failure but all the local checkpoints are accessible,
the local checkpoints are loaded to restore the computation;

— Step 4: When there is a failure and parts of the local checkpoints are lost (in
this case, Node 3 is lost), the global checkpoints (which might be obsolete compared
to the latest local checkpoints) are loaded, and the failure node is substituted by a
backup node.

This two-level hybrid checkpointing gives us an opportunity to tune the local
to global checkpoint ratio based on failure types. For example, a system with
high transient failures can be protected by frequent local checkpoints and a limited
number of expensive global checkpoints without losing performance. The proposed
local/global checkpointing is also effective in handling failures during the checkpoint
operation. Since the scheme does not allow concurrent local and global checkpoint-
ing, there will always be a stable state for the system to rollback even when a failure

ACM Journal Name, Vol. 2, No. 3, 10 2004.

10 · Xiangyu Dong et al.

Node 1

Ckpt 1

Node 2

Ckpt 2

Node 3

Ckpt 3

Node 4

Ckpt 4

Backup

Ckpt’ 1
Ckpt’ 2

Ckpt’ 3
Ckpt’ 4

Local Local Local Local Local

Global

1 1 1 1

2 2 2 2

3 3 3 3

4 4

4

4

Fig. 9. The local/global hybrid checkpoint model.

occurs during the checkpointing process. The only time the rollback operation is
not possible is when a node fails completely in the middle of making a global check-
point. While such failure events can be handled by maintaining multiple global
copies, the probability of a global failure in the middle of a global checkpoint is
less than 1%. Hence, we limit our proposal to a single copy of local and global
checkpoints. Whether the MPP system can be recovered using a local checkpoint
after a failure depends on the failure type. In this work, all the system failures are
divided into two categories:

—Failures that can be recovered by local checkpoints: In this case, the local check-
point in the failure node is still accessible. If the system error is a transient one,
(i.e., soft error, accidental human operation, or software bug), the MPP system
can be simply recovered by rebooting the failure node using its local checkpoint.
If the system error is due to a software bug or hot plug/unplug, the MPP system
can also be recovered by simply rebooting or migrating the computation task
from one node to another node using local checkpoints.

—Failures that have to be recovered by global checkpoints: In the event of some
permanent failures, the local checkpoint in the failed node is not accessible any
more. For example, if the CPU, the I/O controller, or the local storage itself fails
to work, the local checkpoint information will be lost. This sort of failure has to
be protected by a global checkpoint, which requires storing system state in either
neighboring nodes or a global storage medium.

As a hierarchical approach, whenever the system fails, the system will first try
to recover from local checkpoints. If one of the local checkpoints is not accessible,
the system recovery mechanism will restart from the global checkpoint.

4.3 System Failure Category Analysis

The effectiveness of the proposed local/global hybrid checkpointing depends on
how much failure can be recovered locally. A thorough analysis of failure rates of
MPP systems shows that a majority of failures are transient in nature [Michalak
et al. 2005] and can be recovered by a simple reboot operation. In order to quan-
titatively learn the failure distribution, we studied the failure events collected by
the Los Alamos National Laboratory (LANL) during 1996-2005 [Los Alamos Na-
tional Laboratory 2009]. The data covers 22 high-performance computing systems,
including a total of 4,750 machines and 24,101 processors. The statistics of the
failure root cause are shown in Table IV.

ACM Journal Name, Vol. 2, No. 3, 10 2004.

Hybrid Checkpointing using Emerging Non-Volatile Memories for Future Exascale Systems · 11

Table IV. The statistics of the failure root cause
collected by LANL during 1996-2005.

Cause Occurrence Percentage

Hardware 14341 60.4%

Software 5361 22.6%
Network 421 1.8%
Human 149 0.6%
Facilities 362 1.5%

Undetermined 3105 13.1%

Total 23739 100%

We conservatively assume that undetermined failures have to rely on global check-
points for recovery, and assume that the failures caused by software, network, hu-
man, and facilities can be protected by local checkpoints:

— If nodes halt due to software failures or human mal-manipulation, we assume
some mechanisms (i.e., timeout) can detect these failures and the failure node will
be rebooted automatically.

— If nodes halt due to network failures (i.e., widely-spread network congestion)
or facilities downtime (i.e. global power outrage), automatic recovery is impossi-
ble and manual diagnose/repair time is inevitable. However, after resolving the
problem, the system can simply restart using local checkpointing.

The remaining hardware failure accounts to more than 60% of total failures.
However, according to research on the fatal soft error rate of the “ASCI Q” system
at LANL in 2004 [Michalak et al. 2005], it is estimated that about 64% of the
hardware failures are attributed to soft errors. Hence, observing the failure trace,
we have the following statistics: 60.4%×64% = 38.7% soft errors, and 60.4%× (1−
64%) = 21.7% hard errors. As soft errors are transient and it is highly possible that
the same error would not happen again after the system is restored from the latest
checkpoint, local checkpoints are capable of covering all the soft errors. However,
hard errors usually mean there is permanent damage to the failure node and the
node should be replaced. In this case, the local checkpoint stored on the failure
node is lost as well, hence only global checkpoints can protect the system from hard
errors. As a result, in total, we estimate that 65.2% of failure can be corrected by
local checkpoints and only 34.8% of failure needs global checkpoints.
Further considering the soft error rate (SER) will greatly increase as the device

size shrinks, we project that SER increased 4 times from 2004 to 2008. Therefore, we
make a further estimation for the petaFLOPS system in 2008 that 83.9% of failures
need local checkpoints and only 16.1% failures need global ones. This failure distri-
bution biased to local errors provides a significant opportunity for the local/global
hybrid checkpointing scheme to reduce the overhead as we show in Section 6. Since
the soft error rate is critical to the effectiveness of the hybrid checkpointing, a
detailed sensitivity study on SER is also demonstrated in Section 6.6.

4.4 Theoretical Performance Model

In an MPP system with checkpointing, the optimal checkpoint frequency is a func-
tion of both failure rates and checkpoint overhead. A low checkpoint frequency
reduces the impact of checkpoint overhead on performance but loses more useful

ACM Journal Name, Vol. 2, No. 3, 10 2004.

12 · Xiangyu Dong et al.

 L L L G L……! G ……

() R i ith t f il

! ! ! ! !

il (a) Running without failure

 L

 L G L ……

! G

……

!

! !!RL

Failure

(b) Running with failure, recovered by local checkpointing

 L

 L G L ……

! G

……

!

! !!RG

Failure

(c) Running with failure, recovered by global checkpointing

Fig. 10. A conceptual view of execution time broken by the checkpoint interval: (a) an application
running without failure; (b) an application running with a failure, where the system rewinds back

to the most recent checkpoint, and it is recovered by the local checkpoint; (c) an application
running with a failure that cannot be protected by the local checkpoint. Hence, the system
rewinds back to the most recent global checkpoint. The red block shows the computation time
wasted during the system recovery.

Table V. Local/Global hybrid checkpointing parameters.

TS The original computation time of a workload
pL The percentage of local checkpoints
pG 1− pL, the percentage of global checkpoints
τ The local checkpoint interval

δL The local checkpoint overhead (dumping time)
δG The global checkpoint overhead (dumping time)
δeq the equivalent checkpoint overhead in general
RL The local checkpoint recovery time

RG The global checkpoint recovery time
Req The equivalent checkpoint time in general
qL The percentage of failure covered by local checkpoints
qG 1− qL, the percentage of failure that have to be covered by global checkpoints

MTTF The system mean time to failure, modeled as 5 year/number of nodes
Ttotal The total execution time including all the overhead

work when failures take place, and vice versa. Young [Young 1974] and Daly [Daly
2006] derived expressions to determine the optimal checkpoint frequency that strikes
the right balance between the checkpoint overhead and the amount of useful work
lost during failures. However, their models do not support local/global hybrid
checkpointing. In this work, we extend Daly’s work [Daly 2006] and derive a new
model to calculate the optimal checkpoint frequencies for both local and global
checkpoints.
Let us consider a scenario with the following parameters as listed in Table V and

divide the total execution time of a checkpointed workload, Ttotal, into four parts:

Ttotal = TS + Tdump + Trollback,recovery + Textra−rollback (1)

where TS is the original computation time of a workload, Tdump is the time spent
on checkpointing, Trollback,recovery is the recovery cost when a failure occurs (no
matter it is local or global), and Textra−rollback is the extra cost to discard more
useful work when a global failure occurs.
The checkpoint dumping time is simply the product of the number of checkpoints,

ACM Journal Name, Vol. 2, No. 3, 10 2004.

Hybrid Checkpointing using Emerging Non-Volatile Memories for Future Exascale Systems · 13

TS/τ , and the equivalent dumping time per checkpoint, δeq, thus

Tdump =
TS

τ
(δeq) (2)

where

δeq = δL · pL + δG · pG (3)

and the parameters δL and δG are determined by the checkpoint size, local check-
point bandwidth, and global checkpoint bandwidth.
When failure occurs, at least one useful work slot has to be discarded as the red

slot shown in Fig. 10(b) and the second red slot shown in Fig. 10(c). Together
with the recovery time, this part of overhead can be modeled as follows with the
approximation that the failure occurs half way through the compute interval on
average,

Trollback,recovery =

(
1

2
(τ + δeq) +Req

)
Ttotal

MTTF
(4)

where Ttotal/MTTF is the expected number of failure and the average recovery
time Req is expressed as

Req = RL · qL +RG · qG (5)

and the recovery time RL and RG are equal to the checkpoint dumping time (in a
reversed direction) δL and δG plus the system rebooting time. Here, qL and qG are
the percentage of the failure recovered by local and global checkpoints, respectively,
and their values are determined in the same way as described in Section 4.3 at
different system scales.
Additionally, if a failure has to rely on global checkpoints, more useful computa-

tion slots will be discarded as the first red slot shown in Fig. 10(c). In this case, as
the average number of local checkpoints between two global checkpoints is pL/pG,
the number of wasted computation slots, on average, is approximated to pL/2pG.
For example, if pL = 80% and pG = 20%, there are 80%/20% = 4 local checkpoints
between two global checkpoints, and the expected number of wasted computation
slots is pL/2pG = 2. Hence, this extra rollback cost can be modeled as follows,

Textra−rollback =
pLqG
2pG

(τ + δL)
Ttotal

MTTF
(6)

Eventually, after including all the overhead mentioned above, the total execution
time of a checkpointed workload is,

Ttotal = TS +
TS

τ
(δeq) +

(
1

2
(τ + δeq) +Req

)
Ttotal

MTTF

+
pLqG
2pG

(τ + δL)
Ttoal

MTTF
(7)

It can be observed from the equation that a trade-off exists between the check-
point frequency and the rollback time. Since many variables in the equation have
strict lower bounds and can take only discrete values, we use MATLAB to optimize
the two critical parameters, τ and pL, using a numerical method. It is also feasible
to derive closed-form expressions for τ and pL to enable run-time adjustment for

ACM Journal Name, Vol. 2, No. 3, 10 2004.

14 · Xiangyu Dong et al.

B2B1

B4B3

4-bank DRAM chip
64 TSVs/mat

PCRAM

mat

DRAM

mat

Fig. 11. A conceptual view of 3D-PCRAM: the DRAM module is stacked on top of the PCRAM
module.

any changes of workload size and failure distribution, but they are out of the scope
of this paper. A detailed analysis on checkpoint interval and local/global ratio
under different MPP system configurations is discussed in Section 6.

5. ORTHOGONAL TECHNIQUES

The PCRAM hybrid local/global checkpointing scheme is not only an approach to
solve the scalability issue of future exascale systems by itself, but also provides the
extendability to be combined with other techniques.

5.1 3D-PCRAM: Deploying PCRAM atop DRAM

The aforementioned PCRAM-DIMM scheme still has performance limitations: copy-
ing from DRAM to PCRAM has to go through the processor and the DDR bus; it
not only pollutes the on-chip cache but also has the DDR bandwidth constraint.
As the ultimate way to integrate PCRAM in a more scalable way, 3D-PCRAM

scheme is proposed to deploy PCRAM directly atop DRAM. By exploiting emerg-
ing 3D integration technology [Xie et al. 2006] to design the 3D PCRAM/DRAM
chip, it becomes possible to dramatically accelerate the checkpoint latency and
hence reduce the checkpoint overhead to the point where it is almost a negligible
percentage of program execution.
For backward-compatibility, the interface between DRAM chips and DIMMs is

preserved. The 3D-PCRAM design has four key requirements:

(1) The new model should incur minimum modifications to the DRAM die, while
exploiting 3D integration to provide maximum bandwidth between PCRAM and
DRAM;

(2) We need extra logic to trigger the data movement from DRAM to PCRAM
only when the checkpoint operation is needed and only where the DRAM bits are
dirty;

(3) We need a mechanism to provide the sharp rise in supply current during
PCRAM checkpointing; and

(4) There should be an effective way to transfer the contents of DRAM to
PCRAM without exceeding the thermal envelope of the chip.

ACM Journal Name, Vol. 2, No. 3, 10 2004.

Hybrid Checkpointing using Emerging Non-Volatile Memories for Future Exascale Systems · 15

Table VI. 3D stacked PCRAM/DRAMmemory statistics and

the comparison between 3D-PCRAM and PCRAM-DIMM.

Bank size 32MB

Mat count 16
Required TSV pitch < 74µm
ITRS TSV pitch projection for 2012 3.8µm

3D-PCRAM delay 0.8ms
(independent of memory size)
PCRAM-DIMM delay (2GB memory) 185ms
3D-PCRAM bandwidth (2GB DIMM) 2500GB/s

PCRAM-DIMM bandwidth 10.8GB/s

Table VII. Temperature estimations of 3D-PCRAM modules.

Scenario Local checkpoint interval Package temperature

DRAM Only - 319.17K
1-Layer PCRAM stacked 1.00s 319.57K
1-Layer PCRAM stacked 0.10s 320.54K

1-Layer PCRAM stacked 0.01s 330.96K

These four challenges are solved individually as follows:
(1) To reduce the complexity of the 3D stacked design, we use the same number

of banks in the PCRAM and DRAM dies. Since the diode-accessed PCRAM cell
size is similar to that of DRAM, we can model PCRAM banks of similar size to
its DRAM counterpart. When making connections between dies, for the ultimate
bandwidth, a cell-to-cell connection is desired. However, such a design needs very
high density Through-Silicon-Vias (TSVs) and hence has low area efficiency. Thus,
we opt for connections at the granularity of mats. A mat is a self-contained mod-
ule with a set of memory cells and logic capable of storing or retrieving data (in
PCRAMsim, a mat is composed of four sub-arrays). For the proposed 3D design,
we make connections between the input bus of a mat in the DRAM to the corre-
sponding mat in the PCRAM as shown in Fig. 11. Assuming a typical bank has
16 mats, we calculate that the required TSV pitch is less than 74µm. ITRS [In-
ternational Technology Roadmap for Semiconductors] shows the achievable TSV
density is about 3.8µm that far exceeds our requirements. Table VI shows the
detailed specifications.
(2) To control the data transfer from DRAM to PCRAM, we include an address

generator circuit and a multiplexer for each DRAM mat. An address generator
is essentially a counter which retrieves the contents of a DRAM mat and sends
it to its PCRAM counterpart when triggered. To hide the high write penalty of
PCRAM, we use the multiplexer to interleave the writes between four sub-arrays
in the PCRAM mat. To employ an incremental checkpointing technique, dirty
page management is required for every page in the DRAM. This only costs 1-bit of
overhead for each page, and avoids unnecessary transfers from DRAM to PCRAM.
(3) Although high-density TSVs can provide ultra-wide bandwidth as high as

2.5TB/s in our demonstration, an ultra-high peak current is also needed for parallel
PCRAM cell writes. In such a case, the transient power consumption can be as
high as 700W. However, this peak power is only required within an extremely short
interval of 0.8ms and the actual energy consumption is as low as 0.56J. To handle
this short period of power consumption, we include a super capacitor (about 0.6F)

ACM Journal Name, Vol. 2, No. 3, 10 2004.

16 · Xiangyu Dong et al.

on each 3D PCRAM/DRAM DIMM.
(4) To confirm that our 3D-PCRAM scheme will not cause thermal problems,

we evaluated the impact of heat from 3D stacked PCRAM memory on the DRAM
DIMMs. We obtain the estimated temperature listed in Table VII using HotSpot[Huang
et al. 2008]. Note that the increase in temperature is negligible as long as the check-
point interval is longer than 0.1s. Hence, for all our experiments (Section 6), we
set the lower bound of local checkpoint interval to be 0.1 seconds.

5.2 Redundant Bit Suppression

As PCRAM write operations are energy-expensive and cause cell to wear out, it
is better to write as few bits as possible. Fortunately, it is obvious that there is
lots of redundancy between two successive full checkpoints, and using conditional
write can eliminate the unnecessary bit flips. Removing the redundant bit-write
can be implemented by preceding a write with a read. In PCRAM operations, reads
are much faster than writes, so the delay increase here is trivial. The comparison
logic can be simply implemented by adding an XNOR gate on the write path of a
cell [Zhou et al. 2009].

5.3 Background Global Checkpointing

The existence of local checkpoints in the hybrid scheme makes it possible to overlap
global checkpointing with program execution. Later in Section 6, we see there
are multiple local checkpoint operations between two global checkpoints. Based
on this property, the source of global checkpoints can be no longer the actually
memory image of each node, but the latest local checkpoint. In this way, even
the global checkpointing is slower (as it needs global network communication), the
global checkpoint operation can be conducted in background and does not halt the
program execution any more.
In order to find whether background checkpointing can effectively hide latency,

we developed a prototype platform by modifying existing Berkeley Labs Check-
point/Restart (BLCR) [Duell et al. 2002] and OpenMPI solutions. As PCRAM
is not yet available to the commercial market, we use half of the DRAM main
memory space to be the local checkpoint storage. This device emulation is reason-
able since the future PCRAM can be also be mounted on a Dual-Inline Memory
Module (DIMM). As mentioned in Section 0??, data on PCRAM DIMM can be
interleaved across PCRAM chips so that write operations can be performed at the
same rate as DRAM without any stalls [Dong et al. 2009]. The BLCR kernel is
modified to add “dump to memory” feature. We modify uwrite kernel function
that is responsible for BLCR to enable memory-based checkpointing. As BLCR
library is an independent module which merely controls the program execution, it
can directly execute existing MPI application binaries without any changes to the
source code. We further extend the kernel function to track and log the overhead of
checkpointing overhead. The overhead of each checkpoint-to-memory operation is
measured by: 1. kmalloc that allocates memory; 2. memcpy that copies data to the
newly-allocated memory space; 3. free the allocated memory. However, in Linux
2.6 kernel, kmalloc has a size limit of 128K, thus each actual memory-based check-
point operation is divided into many small ones. This constraint slightly impacts
on the memory write efficiency.

ACM Journal Name, Vol. 2, No. 3, 10 2004.

Hybrid Checkpointing using Emerging Non-Volatile Memories for Future Exascale Systems · 17

Table VIII. Execution time of a 1-thread program without global checkpointing, with global
checkpointing, and with background global checkpointing. (unit: Second)

1 2 3 4 5 6 Average

w/o checkpointing 6.24 6.29 6.34 6.33 6.33 6.32 6.31±0.0014

w/ foreground checkpointing 9.18 9.69 7.03 7.03 6.99 7.03 7.83±1.58
w/ background checkpointing 6.36 6.35 6.36 6.37 6.22 6.39 6.34±0.0037

Table IX. Execution time of a 2-thread program without global checkpointing, with global check-
pointing, and with background global checkpointing. (unit: Second)

1 2 3 4 5 6 Average

w/o checkpointing 18.15 18.08 21.80 18.17 18.88 17.99 18.85±2.20
w/ foreground checkpointing 25.40 24.85 24.97 23.25 21.05 22.46 23.66±2.92
w/ background checkpointing 18.41 23.69 21.90 18.44 18.33 18.32 19.84±5.53

Table X. Execution time of a 4-thread program without global checkpointing, with global check-

pointing, and with background global checkpointing. (unit: Second)

1 2 3 4 5 6 Average

w/o checkpointing 14.15 14.11 14.31 14.10 14.15 13.34 14.03±0.12
w/ foreground checkpointing 20.03 16.78 17.02 17.56 19.65 18.67 18.29±1.89
w/ background checkpointing 19.10 22.46 20.47 19.87 18.82 19.58 20.05±1.73

By using this prototype platform, we studied the following three scenarios:

(1) Without checkpointing: The program is executed without triggering any
checkpointing activities. This is the actual execution time of the program.

(2) With foreground checkpointing: The program is executed with checkpoint
enabled. Every checkpointing operation stalls the program, and takes snapshots
into HDD directly.

(3) With background checkpointing: The program is executed with checkpoint
enabled. Every checkpointing operation stalls the program, takes snapshots into
memory, and then copies them to HDD in the background.

While background checkpointing stalls the program to make local checkpoints,
the overhead is significantly small due to the low DDR latency compared to HDD or
network latencies. The background checkpointing makes it feasible to overlap the
slow in-HDD global checkpoint process with program execution. In this experiment,
the in-memory local checkpoint is implemented by ramfs, which mounts a portion of
main memory as a file system. To study the impact of the number of involved cores
on background checkpointing, 1-thread, 2-thread, and 4-thread applications are
run in a quad-core processor, respectively2. The results are listed in Table VIII to
Table X, which show the total execution time with a single checkpointing operation
performed in the middle of the program. Each configuration is run multiple times
and the average value is considered for the evaluation.
We observe from the results that:

— The foreground checkpointing always takes about 25% performance loss due
to low HDD bandwidth and this value is consistent with previous analytical evalu-
ation [Oldfield et al. 2007].

23-thread application is not included in the experiment setting because some benchmark only
allow radix-2 task partitioning.

ACM Journal Name, Vol. 2, No. 3, 10 2004.

18 · Xiangyu Dong et al.

— When main memory is used for taking checkpoints, the checkpoint overhead
for a 1-thread application is around 0.5% (as listed in Table VIII. This overhead
is 50 times smaller than the foreground case, and it is consistent with our previous
finding that in-memory checkpointing is 50 times faster than in-HDD checkpoint-
ing.).

— The background checkpoint overhead increases from 0.5% to 5% when the
application to be checkpointed becomes multi-thread. This is because of conflicts in
row buffer due to interleaving of workload accesses with checkpointing. In addition,
the MPI synchronization overhead is another source of the extra latency, since our
checkpointing scheme is coordinated.

— The background checkpointing becomes ineffective when the number of threads
equals to the number of available processor cores. Its associated overhead is even
larger than the foreground case. It is because in that case there is no spare proces-
sor core to handle the I/O operation generated by the background checkpointing
activity.

Therefore, as along as designers ensure that spare processor units are available
on each node when partitioning computation tasks, the background checkpointing
technique is a strong tool to hide the global checkpoint latency.

5.4 Incremental Checkpointing

Since the in-memory checkpointing makes it possible to take checkpoints every few
seconds, it reduces the overhead of incremental checkpointing. As the checkpoint
interval decreases, the probability of polluting a clean page becomes smaller, hence,
the average size of an incremental checkpoint decreases.
To measure the size difference between full checkpoints and incremental check-

points, we developed another prototype platform since the BLCR+OpenMPI solu-
tion does not inherently support incremental checkpointing. The prototype consists
of two parts: a primary thread that launches the target application and manages
checkpoint intervals; a checkpoint library to be called by application. A running
shell spawns a new process to run the application that requires checkpointing. Af-
ter that the shell periodically sends SIGUSR1 signal to the application. The
SIGUSR1 signal handler is registered as a function to store checkpoints to hard
disk or main memory. This approach requires modification to the source code al-
though the changes are limited to a couple of lines to invoke the handler. The
incremental checkpoint feature is implemented using the bookkeeping technique.
After taking a checkpoint, all the writable pages are marked as read-only using
mprotect system call. When a page is overwritten, a page fault exception occurs,
sends the SIGSEGV signal, and the page fault exception handler saves the address
of the page in an external data structure. The page fault signal handler also marks
the accessed page as writable by using unprotect system call. At the end of the
checkpoint interval it is only necessary to scan the data structure that tracks the
dirty pages. In this prototype, register file and data in main memory are considered
as the major components of a whole checkpoint. Other components, such as pend-
ing signal and file descriptor, are not stored during the checkpointing operation
because their attendant overhead can be ignored.
By using this prototype platform, we trigger checkpoint operations with the inter-

ACM Journal Name, Vol. 2, No. 3, 10 2004.

Hybrid Checkpointing using Emerging Non-Volatile Memories for Future Exascale Systems · 19

20

25

30

M
B

/s
)

10

15

20

k
p

o
in

t
C

o
s

t
(M

0

5

0

C
h

e
c

k

0 5 10 15 20 25 30

Interval (seconds)

Fig. 12. Incremental checkpoint size
(dot) and full checkpoint size (line) of
CG.B

300

400

M
B

/s
)

200

k
p

o
in

t
C

o
s

t
(M

0

100

C
h

e
c

k

0 5 10 15 20 25 30

Interval (seconds)

Fig. 13. Incremental checkpoint size
(dot) and full checkpoint size (line) of
MG.C

400

500

600

M
B

/s
)

200

300

400

k
p

o
in

t
C

o
s

t
(M

0

100

00

C
h

e
c

k

0 5 10 15 20 25 30

Interval (seconds)

Fig. 14. Incremental checkpoint size
(dot) and full checkpoint size (line) of

BT.C

300

400

M
B

/s
)

200

k
p

o
in

t
C

o
s

t
(M

0

100

C
h

e
c

k

0 5 10 15 20 25 30

Interval (seconds)

Fig. 15. Incremental checkpoint size
(dot) and full checkpoint size (line) of

UA.C

val ranging from 1 second to 30 seconds. Five workloads from the NPB benchmark
with CLASS B and CLASS C configurations are tested. In order to have a fair com-
parison, a new metric, checkpoint size per second, is used to quantify the timing
cost of checkpointing by assuming the checkpointing bandwidth is stable during the
process. Fig. 12 to Fig. 15 show the checkpoint size of both schemes for different
intervals.

It can be observed that, in all the five workloads, incremental checkpoint size is
almost the same as the full checkpoint size when the checkpoint interval is greater
than 20 seconds. This shows that incremental checkpointing scheme is not ef-
fective when the interval is not sufficiently small. Hence, checkpointing process
that involves accessing HDD or network transfers cannot benefit from incremental
checkpointing. This could be the reason why the most popular checkpoint library,
BLCR [Duell et al. 2002], does not support incremental checkpointing. As interval
size goes down, all the workloads except MG.C show a large reduction in checkpoint
cost with incremental checkpointing. Based on this observation, it is clear that fre-
quent checkpointing, which is only possible by using PCRAM-based checkpointing,
is critical to benefit from incremental checkpointing schemes.

ACM Journal Name, Vol. 2, No. 3, 10 2004.

20 · Xiangyu Dong et al.

400

500

600

M
B

/s
)

200

300

400

k
p

o
in

t
C

o
s

t
(M

0

100

00

C
h

e
c

k

0 5 10 15 20 25 30

Interval (seconds)

Fig. 16. Incremental checkpoint size (dot) and full checkpoint size (line) of IS.C

6. EXPERIMENT METHODOLOGY

The primary goal of this work is to improve the checkpoint efficiency and prevent
checkpointing from becoming the bottleneck to MPP scalability. In this section,
the analytical equations derived in Section 4.4 is mainly used to estimate the check-
point overhead. In addition, simulations are also conducted to get the quantitative
parameters such as the checkpoint size.

6.1 Checkpointing Scenarios

In order to show how the proposed local/global hybrid checkpoint using PCRAM
can reduce the performance and power overhead of checkpoint operations, we study
the following 4 scenarios:

— Pure-HDD : The conventional checkpoint approach that only stores check-
points in HDD globally.

— DIMM+HDD : Store checkpoints in PCRAM DIMM locally and in HDD glob-
ally. In each node, the PCRAM DIMM capacity is equal to the DRAM DIMM
capacity.

— DIMM+DIMM : Store local checkpoints in PCRAM DIMM and store neigh-
bors’ checkpoints in another in-node PCRAM DIMM as the global checkpoints. In
each node, the PCRAM DIMM capacity is thrice as the DRAM DIMM capacity:
one copy for the latest local checkpoint, one copy for the global checkpoint that
stores the neighbor’s local checkpoint, and one copy for the global checkpoint that
stores own local checkpoint with the same time stamp as the global checkpoint.

— 3D+3D : Same as DIMM+DIMM, but deploy the PCRAM resource using
3D-PCRAM rather than PCRAM-DIMM.

The bottleneck of each scenario is listed in Table XI.

6.2 Scaling Methodology

We use the specification of the IBM Roadrunner Supercomputer [Grider et al. 2007],
achieving a sustained performance of 1.026 petaFLOPS on LINPACK, to model the
petaFLOPS baseline MPP system.
Socket Count: Roadrunner has a total of 19,872 processor sockets and achieves

an average of 52 gigaFLOPS per socket. We assume that the future processors can
scale their performance with future increases in transistor count to 10 teraFLOPS

ACM Journal Name, Vol. 2, No. 3, 10 2004.

Hybrid Checkpointing using Emerging Non-Volatile Memories for Future Exascale Systems · 21

Table XI. Bottleneck factor of different checkpoint schemes.

Local medium Local bottleneck

Pure-HDD - -
DIMM+HDD Self’s PCRAM DIMM Memory bandwidth

DIMM+DIMM Self’s PCRAM DIMM Memory bandwidth
3D+3D Self’s 3D DIMM 3D bandwidth

Global Medium Global Bottleneck

Pure-HDD HDD on I/O nodes HDD, Network bandwidth
DIMM+HDD HDD on I/O nodes HDD, Network bandwidth

DIMM+DIMM Neighbor’s PCRAM DIMM Network bandwidth
3D+3D Neighbor’s 3D DIMM Network bandwidth

Table XII. The specification of the baseline petascale system
and the projected exascale system.

1 petaFLOPS 1 exaFLOPS

FLOPS 1015 1018

Year 2008 2017
of sockets 20,000 100,000
Compute/IO node ratio 15:1 15:1
Memory per socket 4GB 210GB

Phase-change memory BW 10GB/s 32GB/s
Network BW 3.5GB/s 400GB/s
Aggregate file system BW 220GB/s 1600GB/s

Normalized SER 1 32
Transient error percentage 91.5% 99.7%

per socket by the year 2017 [Vantrease et al. 2008]. Hence, to cross the exaFLOPS
barrier, it is necessary to increase the socket count by 5X (from 20,000 to 100,000).
This implies that the number of failures in exascale MPP systems will increase by
at least 5X even under the assumption that the future 10-teraFLOPS socket retains
the same MTTF as today.
Memory per Socket: The memory requirement of future MPP systems is

proportional to the computational capabilities of the projected processor. Typical
MPP workloads that solve various non-linear equations can adjust the scheduling
granularity and thread size to suit the configuration of a processor. Therefore, as
the computing power of a processor scales from 52 gigaFLOPS to 10 teraFLOPS,
the application memory footprint in each processor will also increase. In general,
the memory capacity required per socketis proportional to (FLOPS)3/4 3. The
current generation Roadrunner employs 4GB per Cell processor. Based on the
above relation, a future socket with 10-teraFLOPS capability will require 210 GB
of memory.
Phase-Change Memory Bandwidth: Both DRAM main memory access time

and PCRAM DIMM checkpoint time are constrained by the memory bus band-
width. The last decade has seen roughly a 3X increase in memory bandwidth
because of the increased bus frequency and the prefetch depth. However, it is not
clear whether similar improvements are possible in the next ten years. Prelimi-
nary DDR4 projections for the year 2012 show a peak bandwidth of 16GB/s. For

3Consider most MPP systems are used to solve differential equations and other numerical method

problems, the required FLOPS scales up with 3 spacial dimensions and 1 temporal dimension,
but the required memory size only scales up with 3 spatial dimensions.

ACM Journal Name, Vol. 2, No. 3, 10 2004.

22 · Xiangyu Dong et al.

Table XIII. Memory usage of NPB suite.(Unit: Percentage of

the memory capacity)

Workload Memory Usage Workload Memory Usage

BT.C 16.8% CG.C 21.7%
DC.B 25.0% EP.C 0.1%
FT.B 100% IS.C 25.0%
LU.C 14.6% MG.C 82.4%

SP.C 17.7% UA.C 11.4%

our projected exaFLOPS system in 2017, we optimistically assume a memory bus
bandwidth of 32GB/s. Nevertheless, note that the 3D-PCRAM checkpointing is
not limited by memory bandwidth as mentioned in Section 5.1.
Network Bandwidth and : As electrical signals become increasingly difficult

at high data rates, optical data transmission is a necessary part of the exascale
system. We assume the network bandwidth is scaled from 12GB/s to 400PB/s by
using optical interconnects [Kash 2009].
Aggregate File System Bandwidth: The HDD-based file system bandwidth

is assumed to be scaled from 220GB/s (the specification of IBM Roadrunner) to
1.6TB/s (proposed in ClusterStor’s Colibri system).
Soft Error Rate (SER) and System MTTF: The failure statistics of Road-

runner are not available yet in the literature, and the accurate projection of over-
all MTTF for future processors is beyond the scope of this paper. In this work,
we simply assume the hard error rate (HER) and other error (i.e. software bug)
rate (OER) remain constant, and only consider the scaling of soft errors. A study
from Intel [Borkar 2005] shows that when moving from 90nm to 16nm technology
the soft error rate will increase by 32X. Therefore, the total error rate (TER) of
exaFLOPS system is modeled as,

TEREFLOPS = HEREFLOPS + SEREFLOPS +OEREFLOPS

= HERPFLOPS + 32× SERPFLOPS +OERPFLOPS (8)

Checkpoint Size: To evaluate the checkpoint overhead for various system con-
figurations, we need the average amount of data written by each node. Since it is
hard to mimic the memory trace of a real supercomputer, we execute the NAS Par-
allel Benchmark (NPB) [NASA 2009] on an actual system to determine the memory
footprint of different workloads. The workloads are chosen from NPB CLASS-C
working set size except for workloads DC and FT that employs CLASS-B working
set since they are the most complex level that our environment can handle. Ta-
ble XIII shows the memory usage of workloads that is projected for our baseline
petaFLOPS system. We employ the same scaling rule applied for memory size to
project the checkpoint size for future systems, thus the memory usage percentage
remains the same.
Table XII shows the MPP system configurations for a petaFLOPS and a pro-

jected exaFLOPS system. For the configurations between these two ends, we scale
the specification values according to the time frame. For all our evaluations we
assume the timing overhead of initiating a coordinated checkpoint is 1ms, which
is reported as the latency of data boardcasting for hardware broadcast trees in
BlueGene/L [Adiga et al. 2002].

ACM Journal Name, Vol. 2, No. 3, 10 2004.

Hybrid Checkpointing using Emerging Non-Volatile Memories for Future Exascale Systems · 23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

500

1000

1500

2000

2500

3000

3500

4000

Local Checkpoint Percentage (Local Checkpoint Freq / Total Checkpoint Freq)

O
ve

ra
ll

C
he

ck
po

in
t I

nt
er

va
l (

U
ni

t:
s)

1.
1

1.15

1.2

1.25

1.3

1.4

1.8

1.2

1.8
1.3

The optimal point of
HDD checkpoint

Fig. 17. Effect of checkpoint interval and ra-
tio on execution time of Pure-HDD (at the
points where X-axis is 0 so that all check-

points are global).

Fig. 18. Effect of checkpoint interval and
ratio on execution time of DIMM+HDD (a
zoom-in version of Fig. 17 on the bottom right
corner).

Fig. 19. Effect of checkpoint interval and ra-
tio on execution time of DIMM+DIMM.

Fig. 20. Effect of checkpoint interval and ra-
tio on execution time of 3D+3D.

6.3 Performance Analysis

For all our evaluations, we employ the equations derived in Section 4.4 to determine
the execution time of workloads in various systems and scenarios.
For a given system, based on the system scale and the checkpoint size, the optimal

checkpoint frequency can be decided. For this checkpoint frequency, an inherent
trade-off exists between the proportion of local and global checkpoints. For exam-
ple, as the fraction of local checkpoints increases, the overall checkpoint overhead
drops, but the recovery time from global checkpoints rises; on the other hand, as
the fraction of global checkpoints increases, the recovery time decreases, but the
total execution time can take a hit because of the high checkpoint overhead. This
trade-off is actually modeled by Equation. 7 in Section 4.4, and the optimal values
of the checkpoint interval (τ) and the percentage of local checkpointing (pL) can
be found.
This effect is illustrated in Figs. 17-20 for the different scenarios listed in Ta-

ble XI for a petaFLOPS system when the workload DC.B is simulated. The perfor-
mance value is normalized to the computation time. Not surprisingly the Pure-HDD

ACM Journal Name, Vol. 2, No. 3, 10 2004.

24 · Xiangyu Dong et al.

Table XIV. The checkpoint overhead and system availability estimations.

Pure-HDD DIMM+HDD DIMM+DIMM 3D+3D

Checkpoint overhead (1 PFLOPS) 17.9% 7.1% 0.9% 0.6%
System availability (1 PFLOPS) 84.8% 93.4% 99.1% 99.4%

Checkpoint overhead (10 PFLOPS) 97.3% 16.1% 0.8% 0.6%

System availability (10 PFLOPS) 50.7% 86.1% 99.2% 99.4%

Checkpoint overhead (100 PFLOPS) - 83.4% 2.9% 1.3%
System availability (100 PFLOPS) 0% 54.5% 97.2% 98.7%

Checkpoint overhead (1 EFLOPS) - - 9.4% 2.6%
System availability (1 EFLOPS) 0% 0% 91.4% 97.5%

0%

5%

10%

15%

20%

BT.C CG.C DC.B EP.C FT.B IS.C LC.U MG.C SP.C UA.C Average

C
h

e
c
k
p

o
in

t
o

v
e
rh

e
a
d

(n

o
rm

a
li

z
e

d
 t

o

c
o

m
p

u
ta

ti
o

n
 t

im
e
)

HDD

DIMM+HDD

DIMM+DIMM

3D+3D

Fig. 21. The checkpoint overhead comparison in a 1-petaFLOPS system (normalized to the
computation time).

0%

5%

10%

15%

20%

BT.C CG.C DC.B EP.C FT.B IS.C LC.U MG.C SP.C UA.C Average

C
h

e
c
k
p

o
in

t
o

v
e
rh

e
a
d

(n

o
rm

a
li

z
e

d
 t

o

c
o

m
p

u
ta

ti
o

n
 t

im
e

)

DIMM+DIMM

3D+3D

Fig. 22. The checkpoint overhead comparison in a 1exaFLOPS system (normalized to the com-
putation time).

scheme, where all the checkpoints are performed globally using HDD (local check-
point percentage is 0%), takes the maximum hit in performance. DIMM+HDD,
including in-node PCRAM as local checkpointing storage, reduces the normalized
checkpoint overhead from 17.9% to 7.1% with a local checkpointing percentage
above 98%. As we change the global checkpointing medium from HDD to PCRAM-
DIMM (DIMM+DIMM), the checkpoint overhead is dramatically reduced to 0.9%
because HDD, the slowest device in the checkpoint scheme, is removed. In addition,
since the overhead of global and local checkpoints are comparable inDIMM+DIMM,
the optimal frequency for local checkpointing reduces to 77.5%. The 3D+3D scheme
that employs 3D DRAM/PCRAM hybrid memory has the least checkpoint over-
head. We notice that the local checkpoint percentage in this case goes back to over
93% because the ultra-high 3D bandwidth enables a local checkpointing operation
to finish almost instantly. Although the checkpoint overhead reduction achieved
by 3D+3D is similar to that of DIMM+DIMM in this case, we will see later that
3D+3D does make a difference when future MPP systems reach the exascale.
Fig. 21 shows the checkpoint overhead in a petascale system by using pure-HDD,

DIMM+HDD, DIMM+DIMM, and 3D+3D, respectively. DIMM+HDD reduces
the checkpoint overhead by 60% compared to pure-HDD on average. Moreover,

ACM Journal Name, Vol. 2, No. 3, 10 2004.

Hybrid Checkpointing using Emerging Non-Volatile Memories for Future Exascale Systems · 25

the ideal “instant checkpoint” is almost achieved by implementing DIMM+DIMM
and 3D+3D. As listed in Table XIV, the greatly reduced checkpoint overhead di-
rectly translates to the growth of effective computation time, or equivalent system
availability.
The advantages of DIMM+DIMM and 3D+3D are clear as the MPP system

is scaled towards the exascale level where pure-HDD and DIMM+DIMM are not
feasible any more; Fig. 22 demonstrates the results. It can be found that both of
DIMM+DIMM and 3D+3D are still workable, and more importantly, the average
overhead of 3D+3D is still less than 5% even in the exascale system. The resulting
system availability estimations are listed in Table XIV. It shows that our intermedi-
ate PCRAM-DIMM and ultimate 3D-PCRAM checkpointing solutions can provide
the failure resiliency required by future exascale systems with affordable overhead.

6.4 Power Analysis

Although the proposed techniques are targeted primarily to reduce the checkpoint
overhead, they are useful for power reduction as well:

— Since PCRAM is a non-volatile memory technology, it does not consume
any power when the system is not taking checkpoints. For example as shown in
Table XIV, using 3D+3D PCRAM checkpoints, during more than 95% of sys-
tem running time the PCRAM modules can be turned off. Other approaches,
i.e. battery-backed DRAM checkpointing, will inevitably leak power even when no
checkpoints are being taken. Note that the nap power of a 2GB DRAM-DIMM is
about 200mW [Meisner et al. 2009], using battery-backed DRAM checkpointing in
1-petaFLOPS systems will inevitably waste about 20kW power. In contrast, our
PCRAM checkpointing module does not consume any power during the computa-
tion time.

— With future supercomputers dissipating many mega watts, it is important to
keep high system availability to ensure that the huge power budget is effectively
spent on useful computation tasks. As listed in Table XIV, DIMM+DIMM can
maintain the system availability above 91% and 3D+3D can achieve near 97%
system availability even on the exascale level.

6.5 Scalability

Recall the motivation of the 3D PCRAM checkpointing is to maintain the check-
point overhead under an acceptable level even when the MPP system reaches the
exascale and the entire MPP system is highly unreliable. Hence we evaluate how dif-
ferent checkpointing schemes (as listed in Table XI) scale when the system scale goes
up from today’s petascale systems to future’s exascale systems. In this analysis, we
also consider the benefit achieved from incremental and background checkpointing.
Fig. 23 shows the effect of introducing local checkpointing on the total number

of nodes in the system. It is clear that even with the incremental checkpointing op-
timization, the slow HDD checkpointing has trouble scaling beyond 1 petaFLOPS
without taking a heavy hit in performance. Although the introduction of local
PCRAM-DIMM checkpointing helps scale beyond 5 petaFLOPS, the poor scal-
ing of HDD bandwidth hampers the benefit beyond 20 petaFLOPS. The use of
PCRAM-DIMM for both local and global checkpoints further raises the bar to a

ACM Journal Name, Vol. 2, No. 3, 10 2004.

26 · Xiangyu Dong et al.

0.00%

5.00%

10.00%

15.00%

20.00%

1PFLOP 2PFLOP 4PFLOP 8PFLOP 16PFLOP 32PFLOP 64PFLOP 128PFLOP 256PFLOP 512PFLOP 1EFLOP

Pure-HDD DIMM+HDD

DIMM+DIMM 3D+3D

Pure-HDD (Incremental) DIMM+HDD (Incremental)

DIMM+DIMM (Incremental) 3D+3D (Incremental)

3D+3D (Incremental, Background)

Fig. 23. The average estimated checkpoint overhead from petascale systems to exascale systems
(normalized to computation time).

0.5 exaFLOPS system. Beyond that, due to the increase in transient errors and
poor scaling of memory buses, its overhead increases sharply. The proposed hybrid
checkpointing combined together with the 3D PCRAM/DRAM memory shows ex-
cellent scalability properties and incurs less than 3% overhead even beyond exascale
systems.
Moreover, observing the incremental checkpointing curves in Fig. 23, it can be

found that applying the incremental checkpoint in the conventional pure-HDD
checkpoint does not extend the pure-HDD curve too much. However, when it is
combined with PCRAM-based local/global hybrid checkpointing, this technique
shows its great enhancement to the baseline schemes. That is because in our
PCRAM hybrid checkpoint, the checkpoint interval can be set relatively low, and
thus the number of dirty pages created during this interval or the incremental
checkpoint size is dramatically reduced. This shows that when the 3D-PCRAM
checkpoint is used together with the incremental checkpoint technique, the over-
all checkpoint overhead is only 2.1%, which can be translated into a MPP system
availability of 97.9%. This negligible overhead makes the 3D-PCRAM checkpoint-
ing scheme an attractive method to provide reliability for future exascale systems.

6.6 SER Sensitivity Study

The effectiveness of the PCRAM-based local/global hybrid checkpointing depends
on how many system failures can be recovered by local checkpoints. In our ba-
sic assumption, the soft error rate will increase by 32X in the exascale system.
Combined with the 5X socket increase assumption, we find that the system MTTF
almost degrades 116X. While our proposed PCRAM-based checkpointing is insensi-
tive to this system MTTF degradation because over 99% of total failures are locally
recoverable based on this assumption, the conventional HDD-based checkpointing
is very sensitive to this change.
Although we believe aggressive soft error rate scaling is reasonable considering

future “deep-nano” semiconductor processes, we cannot eliminate the possibility
that the device unreliability can be hidden by some novel technologies in the future.
In addition, our baseline setting, “ASCI Q”, is widely considered as an unreliable
system due to its non-ECC caches. Therefore, in order to avoid any exaggeration of
the conventional checkpointing scalability issue, the scalability trend is re-evaluated
with a new assumption that the soft error rate will remain at the same level as
today’s technology. Fig. 24 shows another set of checkpoint overhead projection
curves based on this new assumption.

ACM Journal Name, Vol. 2, No. 3, 10 2004.

Hybrid Checkpointing using Emerging Non-Volatile Memories for Future Exascale Systems · 27

0.00%

5.00%

10.00%

15.00%

20.00%

1PFLOP 2PFLOP 4PFLOP 8PFLOP 16PFLOP 32PFLOP 64PFLOP 128PFLOP 256PFLOP 512PFLOP 1EFLOP

Pure-HDD DIMM+HDD

DIMM+DIMM 3D+3D

DIMM+HDD (Incremental) DIMM+DIMM (Incremental)

3D+3D (Incremental) 3D+3D (Incremental, Background)

Fig. 24. The new checkpoint overhead projection based on the assumption that SER remains
constant from petascale to exascale (normalized to computation time).

As expected, the checkpoint overhead decreases as the number of soft errors is
reduced. However, even with this new assumption, the conventional HDD-based
technique (pure-HDD) still has trouble scaling beyond the 8-petaFLOPS scale.
In contrast, the overhead of our PCRAM-based approach (DIMM+DIMM and
3D+3D) is further reduced to less than 3% by utilizing orthogonal techniques such
as incremental checkpointing and RDMA.

7. RELATED WORK

As checkpointing-recovery is the widely-used technique for fault-tolerance in MPP,
the related research is abundant [Elnozahy et al. 2002]. The coordinated proto-
col proposed by Chandy and Lamport [Chandy and Lamport 1985] is the most
commonly used scheme due to its simplicity of implementation. In this approach,
nodes are synchronized to ensure a consistent state before taking a checkpoint. Sev-
eral techniques are proposed to reduce the checkpoint overhead by either reducing
checkpoint size or using diskless checkpointing. Plank et al. [Plank et al. 1999]
proposed a manual approach that is known as “memory exclusion”. In “memory
exclusion”, the programmers are responsible for differentiating critical data from
more temporary data that could be removed from the checkpoint image. Although
compilers can manage the exclusion, this is not a general transparent method.
Other work of reducing the checkpoint size mostly relies on the incremental check-
pointing technique [Sancho et al. 2004; Naksinehaboon et al. 2008] that consists of
saving only the differences between two consecutive checkpoints. The OS memory
management subsystem is leveraged to decide the dirty data. Another way to re-
duce the time to checkpoint is to avoid checkpoint on the parallel file system and
instead to use in-memory checkpointing. In diskless checkpoint [Silva and Silva
1998; Plank et al. 1998], all computing nodes store their checkpoint image in their
memory. Additional nodes are necessary to store a checksum of the computing
node in-memory checkpoints. All these approaches are proven to be effective to
reduce the checkpoint overhead.
Oliner et al. [Oliner et al. 2006] introduced a theory of cooperative checkpointing

that uses global knowledge of the state and health of the machine to improve
performance and reliability by dynamically initiating checkpoints. However, in
order to reduce the checkpoint cost, the technique skips some scheduled checkpoints
according to the risk of system failure. This decision depends on the accuracy of
risk estimation. Unfortunately, an accurate failure prediction or risk estimation is
a challenging problem.

ACM Journal Name, Vol. 2, No. 3, 10 2004.

28 · Xiangyu Dong et al.

Bronevetsky et al.[Bronevetsky et al. 2008] presented a novel compiler analysis
for optimizing automated checkpointing. Their work is a hybrid compiler/runtime
approach, where the compiler optimizes certain portions of an otherwise runtime
checkpointing solution, and then reduces the checkpoint size.
This previous research on checkpoint optimization reduces the checkpoint size,

dynamically tunes the checkpoint interval, and sacrifices the system reliability by
only supporting limited numbers of node failures. In contrast, our study in this
paper shows how to take advantage of emerging PCRAM technology to dramatically
improve the checkpoint dumping rate, and is complementary to other advanced
checkpointing ideas.
Chiueh and Deng [Chiueh and Deng 1996] proposed a diskless checkpointing

mechanism that employs volatile DRAM for storing both local and global check-
points. Their idea is to split the DRAM memory in each node into four segments
and employ three-fourths of the memory to make checkpoints. Sobe [Sobe 2003]
also analyzed the overhead reduction by introducing the idea of local checkpoint
storage and augmentation with parity, stored on another host. However, his re-
search is still constrained in using HDD as the checkpoint storage. Bronevetsky
and Moody [Bronevetsky and Moody 2009] showed the necessity of using node-
local storage to build a scalable checkpoint/restart (SCR) library and used ramdisk
to demonstrate unprecedented checkpoint write speed approach 1TB/sec. While
these proposals are similar to this work, the introduction of the PCRAM modules
eliminate the drawbacks of using the volatile DRAM or the slow HDD and SSD as
the checkpoint targets.

8. CONCLUSION

Checkpointing has been an effective tool for providing reliable and available MPP
systems. However, our analysis showed that current checkpointing mechanisms
incur high performance penalties and are woefully inadequate in meeting future
system demands. To improve the scalability of checkpointing, we introduce the
emerging PCRAM technology into the supercomputer system as a fast checkpoint
device. More importantly, we propose a hybrid checkpointing technique that takes
checkpoints in both private and globally accessible memory, which not only im-
proves the checkpoint performance by itself but also brings extra benefits through
incremental and background checkpointing. We then develop a theoretical model
based on failure rates and system configuration to identify the optimal local/global
checkpoint interval that maximizes system performance. A thorough analysis of
failure rates shows that a majority of failures are recoverable using local check-
points, and local checkpoint overhead plays a critical role for MPP scalability. To
improve the efficiency of local checkpoints and maximize fault coverage we pro-
pose PCRAM-DIMM checkpointing. PCRAM-DIMM checkpointing enables MPP
systems to scale up to 500 petaFlops with tolerable checkpoint overhead. To pro-
vide reliable systems beyond this scale, we leverage emerging 3D die stacking and
propose 3D PCRAM/DRAM memory for checkpointing. After combining all the
effects, our proposed checkpointing scheme incurs less than 3% overhead in an
exascale system by making near instantaneous checkpoints.

ACM Journal Name, Vol. 2, No. 3, 10 2004.

Hybrid Checkpointing using Emerging Non-Volatile Memories for Future Exascale Systems · 29

ACKNOWLEDGMENTS

This project is supported in part by NSF grants 0702617, 0720659, 0903432 and
SRC grants. We also wish to thank Richard Kaufmann for sharing his original ideas
and providing helpful discussions.

REFERENCES

Adiga, N., Almasi, G., Almasi, G., Aridor, Y., Barik, R., et al. 2002. An Overview of the

BlueGene/L Supercomputer. In SC ’02: Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis. 60–71.

Bedeschi, F., Fackenthal, R., Resta, C., Donze, E. M., Jagasivamani, M., et al. 2009. A
Bipolar-Selected Phase Change Memory Featuring Multi-Level Cell Storage. IEEE Journal of
Solid-State Circuits 44, 1, 217–227.

Borkar, S. Y. 2005. Designing Reliable Systems from Unreliable Components: The Challenges

of Transistor Variability and Degradation. IEEE Micro 25, 6, 10–16.

Bronevetsky, G., Marques, D. J., Pingali, K. K., et al. 2008. Compiler-Enhanced Incre-
mental Checkpointing for OpenMP Applications. In PPoPP ’08. Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. 275–276.

Bronevetsky, G. and Moody, A. 2009. Scalable I/O Systems via Node-Local Storage: Ap-
proaching 1 TB/sec File I/O. Tech. Rep. LLNL-TR-415791, Lawrence Livermore National
Laboratory.

Cappello, F. 2009. Fault Tolerance in Petascale/ Exascale Systems: Current Knowledge, Chal-

lenges and Research Opportunities. International Journal of High Performance Computing
Applications 23, 3, 212–226.

Chandy, K. M. and Lamport, L. 1985. Distributed Snapshots: Determining Global States of
Distributed Systems. ACM Transactions on Computer Systems 3, 1, 63–75.

Chiueh, T.-C. and Deng, P. 1996. Evaluation of Checkpoint Mechanisms for Massively Par-
allel Machines. In FTCS ’96. Proceedings of the 26th Annual Symposium on Fault Tolerant

Computing. 370–379.

Daly, J. T. 2006. A Higher Order Estimate of the Optimum Checkpoint Interval for Restart

Dumps. Future Generation Computer Systems 22, 3, 303–312.

Dong, X., Jouppi, N., and Xie, Y. 2009. PCRAMsim: A System-Level Phase-Change RAM
Simulator. In ICCAD ’09. Proceedings of the International Conference on Computer-Aided
Design.

Dong, X., Muralimanohar, N., Jouppi, N., Kaufmann, R., and Xie, Y. 2009. Leveraging 3D
PCRAM Technologies to Reduce Checkpoint Overhead for Future Exascale Systems. In SC

’09: Proceedings of the Conference on High Performance Computing Networking, Storage and
Analysis.

Duell, J., Hargrove, P., and Roman, E. 2002. The Design and Implementation of Berke-
ley Lab’s Linux Checkpoint/Restart. Tech. Rep. LBNL-54941, Lawrence Berkeley National
Laboratory.

Elnozahy, E. N., Alvisi, L., Wang, Y.-M., and Johnson, D. B. 2002. A survey of rollback-

recovery protocols in message-passing systems. ACM Computing Surveys 34, 3, 375–408.

Grider, G., Loncaric, J., and Limpart, D. 2007. Roadrunner System Management Report.

Tech. Rep. LA-UR-07-7405, Los Alamos National Laboratory.

Hanzawa, S., Kitai, N., Osada, K., et al. 2007. A 512kB Embedded Phase Change Memory
with 416kB/s Write Throughput at 100µA Cell Write Current. In ISSCC ’07. Proceedings of
the 2007 IEEE International Solid-State Circuits Conference. 474–616.

Huang, W., Sankaranarayanan, K., Skadron, K., et al. 2008. Accurate, Pre-RTL
Temperature-Aware Design Using a Parameterized, Geometric Thermal Model. IEEE Trans-

actions on Computers 57, 9, 1277–1288.

International Technology Roadmap for Semiconductors. Process Integration, Devices,
and Structures 2007 Edition. http://www.itrs.net/.

ACM Journal Name, Vol. 2, No. 3, 10 2004.

30 · Xiangyu Dong et al.

Kash, J. 2009. Photonics in Supercomputing: The Road to Exascale. In Integrated Photonics
and Nanophotonics Research and Applications. Optical Society of America, IMA1.

Los Alamos National Laboratory. 2009. Reliability Data Sets, http://institutes.lanl.gov/
data/fdata/.

Meisner, D., Gold, B. T., and Wenisch, T. F. 2009. PowerNap: Eliminating Server Idle Power.
In ASPLOS ’09. Proceedings of the 14th International Conference on Architectural Support

for Programming Languages and Operating Systems. 205–216.

Michalak, S. E., Harris, K. W., Hengartner, N. W., et al. 2005. Predicting the Number
of Fatal Soft Errors in Los Alamos National Laboratory’s ASCI Q Supercomputer. IEEE
Transactions on Device and Materials Reliability 5, 3, 329–335.

Naksinehaboon, N., Liu, Y., Leangsuksun, C., Nassar, R., Paun, M., and Scott, S. L. 2008.
Reliability-aware approach: An incremental checkpoint/restart model in hpc environments. In
CCGRID ’08. Proceedings of the 8th IEEE International Symposium on Cluster Computing

and the Grid. 783–788.

NASA. 2009. NAS Parallel Benchmarks. http://www.nas.nasa.gov/Resources/Software/npb.

html.

Oldfield, R. A., Arunagiri, S., Teller, P. J., et al. 2007. Modeling the Impact of Checkpoints
on Next-Generation Systems. In MSST ’07. Proceedings of the 24th IEEE Conference on Mass
Storage Systems and Technologies. 30–46.

Oliner, A., Rudolph, L., and Sahoo, R. 2006. Cooperative Checkpointing Theory. In IPDPS
’06. Proceedings of the 20th International Parallel and Distributed Processing Symposium. 14–

23.

Pellizzer, F., Pirovano, A., Ottogalli, F., et al. 2004. Novel µTrench Phase-Change Memory
Cell for Embedded and Stand-Alone Non-Volatile Memory Applications. In Proceedings of the
2004 IEEE Symposium on VLSI Technology. 18–19.

Pirovano, A., Lacaita, A. L., Benvenuti, A., et al. 2003. Scaling Analysis of Phase-Change
Memory Technology. In IEDM ’03. Proceedings of the 2003 IEEE International Electron

Devices Meeting. 29.6.1–29.6.4.

Plank, J. S., Chen, Y., Li, K., Beck, M., and Kingsley, G. 1999. Memory Exclusion: Opti-

mizing the Performance of Checkpointing Systems. Software – Practice and Experience 29, 2.

Plank, J. S., Li, K., and Puening, M. A. 1998. Diskless Checkpointing. IEEE Transanctions
on Parallel Distributed Systems 9, 10, 972–986.

Reed, D. 2004. High-End Computing: The Challenge of Scale. Director’s Colloquium, May 2004.

Sancho, J. C., Petrini, F., Johnson, G., and Frachtenberg, E. 2004. On the Feasibility of
Incremental Checkpointing for Scientific Computing. In IPDPS ’04. Proceedings of the 18th
International Parallel and Distributed Processing Symposium. 58–67.

Silva, L. M. and Silva, J. G. 1998. An Experimental Study about Diskless Checkpointing. In
EUROMICRO ’98. Proceedings of the 24th Conference on EUROMICRO. Vol. 1. 395–402.

Sobe, P. 2003. Stable Checkpointing in Distributed Systems without Shared Disks. In IPDPS ’03.
Proceedings of the 17th International Parallel and Distributed Processing Symposium. 214–223.

Vantrease, D., Schreiber, R., Monchiero, M., et al. 2008. Corona: System Implications

of Emerging Nanophotonic Technology. In ISCA ’08: Proceedings of the 35th International
Symposium on Computer Architecture. 153–164.

Xie, Y., Loh, G. H., Black, B., and Bernstein, K. 2006. Design Space Exploration for 3D
Architectures. ACM Journal of Emerging Technologies in Computing Systems 2, 2, 65–103.

Young, J. W. 1974. A First Order Approximation to the Optimal Checkpoint Interval. Com-
munications of the ACM 17, 530–531.

Zhang, Y., Kim, S.-B., McVittie, J. P., et al. 2007. An Integrated Phase Change Memory
Cell With Ge Nanowire Diode For Cross-Point Memory. In Proceedings of the 2007 IEEE

Symposium on VLSI Technology. 98–99.

Zhou, P., Zhao, B., Yang, J., and Zhang, Y. 2009. A Durable and Energy Efficient Main Mem-
ory Using Phase Change Memory Technology. In ISCA ’09: Proceedings of the International
Symposium on Computer Architecture. 14–23.

ACM Journal Name, Vol. 2, No. 3, 10 2004.

