
Simple but Effective Heterogeneous Main Memory
with On-Chip Memory Controller Support

Xiangyu Dong†‡, Yuan Xie†, Naveen Muralimanohar‡, Norman P. Jouppi‡

Computer Science and Engineering, Pennsylvania State University†, Exascale Computing Lab, Hewlett-Packard Labs‡
{xydong,yuanxie}@cse.psu.edu†,{xiangyu.dong,naveen.muralimanohar,norm.jouppi}@hp.com‡

Abstract—System-in-Package (SiP) and 3D integration are
promising technologies to bring more memory onto a micropro-
cessor package to mitigate the “memory wall” problem. In this
paper, instead of using them to build caches, we study a heteroge-
nous main memory using both on- and off-package memories
providing both fast and high-bandwidth on-package accesses
and expandable and low-cost commodity off-package memory
capacity. We introduce another layer of address translation
coupled with an on-chip memory controller that can dynamically
migrate data between off-package and off-package memory either
in hardware or with operating system assistance depending on
the migration granularity. Our experimental results demonstrate
that such design can achieve the average effectiveness of 83%
of the ideal case where all memory can be placed in high-speed
on-package memory for our simulated benchmarks1.

I. I NTRODUCTION

Recent trends of multi/many core microprocessor design
with increasing number of cores have accentuated the al-
ready daunting memory bandwidth problem. The traditional
approach to mitigate the “memory wall” problem is to add
more storage on-chip in the form of last-level cache (LLC).
For example, IBM POWER7 microprocessor has a 32MB L3
cache built out of embedded-DRAM (eDRAM) technology.
The decrease in miss-rate achieved by the extra cache size
helps hide the latency gap between a processor and its memory.

Emerging System-in-Package (SiP) and three-
dimensional (3D) integration technologies [1], [2] enable
designers to integrate gigabytes of memory into the
microprocessor package. However, using the on-package
memory resources as a last-level cache (LLC) might not
be the best solution. High-performance commodity DRAM
dies such as GDDR are heavily optimized for cost and do
not include specialized high performance tag arrays that
can automatically determine a cache hit/miss and forward
the request to the corresponding data array. Since the size
of a tag array can be a hundred megabytes or more for a
multi-gigabyte cache, storing tags in the microprocessor die
is not feasible and the only alternative is to put the LLC tags
in the on-package DRAM.2 Moreover, it will dissipate too
much power and waste too much bandwidth if all the ways
are speculatively read from a highly associative on-package
cache (e.g., 16-way) at the same time. Doing so would either

1X. Dong and Y. Xie were supported in part by NSF grants 0702617,
0903432, 0905365, and SRC grants.

2If there are 32 DRAM dies stacked in the package, and cache tags are
6.7% of the data size, this would still require the equivalent of 2.1 DRAM
chips of area. Furthermore, the multi-core CPU chip is unlikely to support
DRAM as dense as the commodity DRAM chips.

increase the bandwidth and I/O requirements of the CPU chip
by a factor of 16 and DRAM dynamic power by a factor of
16, or if the I/O count and DRAM power were kept constant
would reduce the on-package memory bandwidth by a factor
of 16. Instead we implement a 15-way set associative cache
in the space of a 16-way set-associative data array, packing
all the tags for a set into the 16th cache line for each set.
We then access the tags first, and then access the data after
a tag hit when the data way location is known. This makes
the cache miss/hit determination time roughly equal to the
on-package DRAM access time, and makes returning the data
on a cache hit take approximately 2X of the time to access the
on-package DRAM. Note that even if custom cache DRAM
chips were developed, for similar reasons two sequential
DRAM accesses would still be required for returning data on
a cache hit.

Consequently, in this paper, instead of utilizing these on-
package memory resources to augment existing caches or
deepen the cache hierarchy, we propose a heterogeneous main
memory architecture that consists of both on-package memo-
ries and off-package Dual Inline Memory Modules (DIMMs).
To manage such a space and move frequently accessed data
to fast regions, we propose two integrated memory controller
schemes: a first technique handles everything in hardware and
our second scheme takes assistance from the operating system.
The effectiveness of each scheme depends on the memory
management granularity. Through our evaluation, we show that
our low-overhead solution can reduce off-package memory
access traffic by 83% on average.

II. H ETEROGENEOUSMAIN MEMORY SPACE

In this work, we assume that for future microprocessor
packages, DRAM dies are placed beside the microprocessor
die using SiP as shown in Fig. 1. As the flip-chip SiP
can provide die-to-die bandwidth of at least 2Tbps [3], the
on-package high-performance DRAM chip is modified from
existing commodity products to increase the number of banks
and further increase the signal I/O speed to take advantage of
the high-speed on-package interconnects. However, we do not
assume a custom tag part and use only a single on-package
DRAM design in order to reduce design cost and maximize the
volume of the on-package DRAM parts. Although we leave the
room for the potential through-silicon-vias-based (TSV-based)
3D stacking in the future, in this work, we assume the on-
package memory size is around hundreds of megabytes due to
the consideration that the capabilities of delivering power into

©2010 IEEE Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistributionto servers or lists, or to reuse any copyrighted component ofthis work in other works must be
obtained from the IEEE.
SC10 November 2010, New Orleans, Louisiana, USA 978-1-4244-7558-2/10/$26.00

MicroprocessorDRAM

On-package region

Off-package region DIMMs

DRAM

Potential 3D stacking

Bank 0
Bank N-2

Bank 0
Bank 0

Bank 0
Bank 0

Bank 0

Microprocessor
DRAM

(ECC)

CPU package

Memory

controller

DRAM DRAM DRAM DRAM

DRAM DRAM DRAM DRAM

Routing

interconnect

on silicon

interposer

Bank 0

.. ..
Each DRAM chip has

N banks (N >> 8)

When using as cache, each

DRAM row is partitioned

into 1 tag and 15 data

(Side view)

(Top view)

Fig. 1. The conceptual view of the System-in-Package (SiP) solution with 1
microprocessor die and 9 DRAM dies connecting off-package DIMMs (one
on-package DRAM die is for ECC). The on-package DRAM chip is slightly
different from the commodity off-package DRAM as it has a many-bank
structure to reduce the memory access queuing delay. When the on-package
DRAM dies are configured to be LLC, they function as 15-way associative
cache since each DRAM row is partitioned into 1 tag and 15 data.

and dissipating heat out of the chip package are still limited.
However, the available on-package memory capacity is much
larger than the state-of-the-art LLC capacity.

Because the on-package DRAM can have fast access speed,
it is ideal we can use them as the unified system main
memory [4]–[7]. While some application domains do not
require lots of main memory [4], generally the aggregate
memory on-package, which is assumed to be a gigabyte in this
work, is still not sufficient to hold the entire main memory
space, which can be several gigabytes. For our system, in
addition to the on-package DRAM, we model four DDR3
channels connected to traditional DRAM DIMMs. For the rest
of the paper, we refer to these DIMMs as off-package DRAM.

A. On-Chip Memory Controller

It is not practical to implement the heterogeneous main
memory space if the memory controller is off-chip and all the
memory accesses have to leave the microprocessor package
first. However, with the help of an on-chip memory controller,
it becomes simple to form a heterogeneous memory space
with both on- and off-package memories. As shown in Fig. 1,
the memory controller on the microprocessor die is connected
to off-package DIMMs with the conventional 64-bit DDRx
bus and on-package memory with a customized memory bus.
MSBs of physical memory addresses are used to decode the
target location. For example, if 1GB of 32-bit memory space
is on-package,Addr[31..30]=00 is mapped to on-package
memory while Addr[31..30]={01,10,11} is mapped to off-
package DIMMs. It is necessary to make several minor mod-
ifications so that the memory controller has the capability of
mapping physical memory addresses to either on-package or
off-package regions. Fig. 2 and Fig. 3 show the difference
between a normal on-package DRAM memory controller and
our proposed heterogeneity-aware one. The modifications are
listed as follows,

• As shown in Fig. 2, the conventional memory controller
first schedules memory transactions by combining and
reordering to achieve performance optimization, and then
the memory physical address is further resolved into

Transaction

Scheduling

Address

Translation

Bank 0

Bank 1

Bank n

…

Command

Encoding

Electrical

Signaling

to DIMMs

Fig. 2. Illustration of a conventional on-chip DRAM memory controller.

Off-package

scheduling

Address

translation

Bank 0

Bank m

Bank n

…

On-package

command

encoding

Electrical

signaling

On-package

scheduling

…

Bank m+1 Off-package

command

encoding

On-

package

memory

Migration

controller

remap

to DIMMs

migration cmd

Fig. 3. Illustration of the proposed heterogeneity-aware on-chip DRAM
memory controller with optional migration controller.

indices in a DRAM memory system in terms of channel
ID, rank ID, bank ID, row ID, and column ID. However,
in our heterogeneity-aware memory controller, as shown
in Fig. 3, theAddress Translationstage is moved ahead
so that each memory access is first routed to either the
on-package region or the off-package region in addition
to the DRAM indices such as channel ID, rank ID,etc.
Then, transaction scheduling is performed for on-package
and off-package regions separately, since the transaction-
layer optimization for each region is independent of that
for the other region.

• The removal of off-package electrical signaling for on-
package memory is another minor change (see Fig. 3).

• The Migration Controller is another key component to
make the memory controller “smart” in Fig. 3. It can
be either pure hardware-based or OS-assisted depending
on the migration granularity. The detailed discussion of
its implementation and algorithm will be presented in
Section III. In general, the migration controller mon-
itors the recent memory access behavior, reconfigures
the physical address routing, and sends out additional
memory operations to swap the data across the package
boundary.

B. Performance Comparison to Larger LLCs

Rather than using on-package memory resources as a part
of the main memory space, an alternative is to simply use
them to expand the LLC capacity or deepen the cache hi-
erarchy. Looking into the well-known average access latency
approximation as quoted below,

Average access time= Hit time + Miss rate× Miss penalty

the conventional cache hierarchy design only works effectively
when the difference between theHit time and theMiss penalty
is large. When the LLC latency is approaching the off-package
main memory latency (see Table II), the relatively small
difference betweenHit time andMiss penaltydoes not justify
the use of the on-package memory as a cache. Furthermore,
Fig. 4 shows that there is almost no benefit to enlarge the
LLC capacity in terms of the cache miss rate. While accessing
the LLC and the main memory in parallel can help hide the
long LLC access latency, there is not enough off-package
bandwidth to access the off-package memory speculatively
and simultaneously with every reference to an on-package
cache memory. Furthermore, off-package references consume

0%

5%

10%

15%

20%

25%

1 4 16 64 256 1024

C
a
c
h

e
 m

is
s
 r

a
te

Last-level cache capacity (MB)

BT.C

CG.C

DC.B

EP.C

FT.C

IS.C

LU.C

MG.C

SP.C

UA.C

Fig. 4. The cache miss rate of different LLC capacities.

significantly more power and should generally be avoided
when possible.

To validate the concept that it makes more sense to leverage
the large on-package memory as a part of the main memory
instead of an LLC, we run simulations on Simics [8] and
compare the performance of different options using the metric
of total IPC. For our quad-core system, our performance eval-
uation makes use of 4-thread OpenMP version of workloads
from NAS Parallel Benchmark (NPB) 3.3. We use CLASS-
C as the problem size so that the general memory footprint
of the workload is sufficiently large for our purpose. The
memory footprints of all the 10 workloads in NPB 3.3 suite
are listed in Table I. Note that CLASS-C for the workload DC
is not available in the benchmark package and therefore we
use CLASS-B instead.

The simulation target is an Intel i7-like quad-core processor
with private L1/L2 caches and a shared inclusive 8MB, 16-
way L3 cache. The latencies of L1, L2, and L3 caches are
computed by using CACTI [9] with 45nm technology. The
main memory latency is modeled according to Micron DDR3-
1866 datasheet [10]. The average random access memory
latency depends on the actual memory reference timing and
sequence. By assuming the SiP solution is used as shown in
Fig. 1, we set the on-package memory capacity to be 1GB. The
on-package and off-package memory latencies are modeled as
follows,

• Off-package latency is the summation of the DRAM
core access latency, the memory reference queuing delay,
the memory controller traversal delay (including memory
controller processing delay and the propagation delay
between the CPU core and the memory controller), the
package pin delay, and the PCB wiring delay;

• On-package latency is the summation of the DRAM core
access latency, the memory controller traversal delay, the
silicon interposer pin delay, and the intra-package wiring
delay. Note that the memory reference queuing delay is
not included in the on-package latency model since it is
almost eliminated by the the increase in the number of on-
package DRAM chip banks and their higher I/O speeds
(our later trace-based simulation shows that accessing the
off-package 8-bank DRAM causes 107 cycles of queuing
delay while accessing the on-package 128-bank DRAM
only causes less than 3 cycles on average).

In this Simics simulation, we simply model the DRAM core
access latency as fixed numbers and set them to be 60-cycle
and the queuing delay to be 120-cycle, respectively. In the
trace-based simulation we later demonstrate in Section IV,

TABLE I
THE MEMORY FOOTPRINTS OFNPB 3.3BENCHMARK SUITE

Workload Memory Workload Memory
BT.C 706MB CG.C 920MB
DC.B 5876MB EP.C 16MB
FT.C 5147MB IS.C 1064MB
LU.C 615MB MG.C 3426MB
SP.C 758MB UA.C 510MB

TABLE II
THE SIMULATION CONFIGURATION OF THE BASELINE PROCESSOR AND

THE OPTIONAL ENHANCEMENTS WITH ON-PACKAGE DRAM MODULES

Microprocessor
Number of cores 4
Frequency 3.2GHz

Cache/Memory Hierarchy
DL1 and IL1 caches 32KB, 8-way, 2-cycle, private
L2 cache 256KB, 8-way, 5-cycle, private
L3 cache 8MB, 16-way, 25-cycle, shared

Miscellaneous
Memory controller 5-cycle for processing
Controller-to-core delay 4-cycle each way
Package pin delay 5-cycle each way
PCB wire delay 11-cycle round-trip
Interposer pin delay 3-cycle each way
Inter-package delay 1-cycle round-trip
DRAM core delay 50-cycle
Queuing delay 116-cycle

On-package LLC or memory
L4 cache 1GB, 15-way, hit 140-cycle, miss 70-cycle
On-package memory 1GB, 70-cycle
Off-package memory 200-cycle

Simulation Cycles
Fast-forward Pre-defined breakpoint
Warm-up 1 billion instructions
Full simulation 10 billion cycles

a detailed DRAM timing model with FR-FCFS scheduling
policy [11] will be used to obtain more accurate results.

The on-package memory is either employed as an L4 shared
cache or the on-package memory region of a heterogenous
memory space. The detailed architecture configuration is listed
in Table II. Note that when using on-package DRAM as LLC,
the cache hit time is 2X the DRAM access latency as the tag
and the data are accessed sequentially.

As illustrated in Fig.5, the simulation result shows that using
the extra 1GB on-package DRAM resources to add a new L4
cache can improve the IPC, but in some cases (e.g. CG.C) the
performance improvement is limited to 0.1%. This is because
cache capacity misses are not the performance bottleneck
beyond a certain capacity threshold, while the increased cache
latency starts to offset the benefit and degrade the performance
as illustrated in Fig. 4.

On the other hand, directly mapping on-package DRAM
resources into the main memory space can often achieve
better performance. As shown in Fig. 5, for 7 out of the
total 10 workloads that have memory footprint of less than
1GB, this strategy is equivalent to having all the memory on-
package. For the other 3 workloads, MG.C has slightly better
performance using the on-package memory as a heterogenous
memory instead of an L4 cache, and DC.B and FT.C cannot
compete against the L4 cache. However, note the simulation
result shown in Fig. 5 is only the case of a static mapping.
As we will show in the next section, a heterogeneous main
memory with dynamic mapping that intelligently migrates

-20.0%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

BT.C CG.C DC.B EP.C FT.C IS.C LU.C MG.C SP.C UA.C

Baseline

L4 Cache 1GB

On-Chip Memory 1GB

All Memory On-Chip

Fig. 5. The IPC comparison among different options of using on-package memory: (a) baseline; (b) Deepen the cache hierarchy with a 1GB DRAM L4
cache; (c) Statically map the first 1GB memory to the on-package DRAM; (d) The ideal case (all the DRAM resources are on-package).

data between on-package and off-package regions can further
improve the performance and approach the ideal performance
as described in Section III.

III. D ATA M IGRATION USING ON-CHIP MEMORY

CONTROLLER

As discussed in the previous section, the means of static
memory mapping that always keeps the lowest memory ad-
dress space on-chip only works effectively for the cases where
the application memory footprints fit into the on-chip mem-
ory. For workloads that need much more memory resources,
the performance improvement achieved by static mapping is
trivial. For example, the performance improvement of DC.B
is only 16% and that of FT.C is only 20.7%. Both of them
are less than the ones achieved by using on-package DRAM
as LLC. The major reason is the lack of the dynamic data
mapping capability.

To solve this issue, we propose to add the data migration
functionality into the memory controller so that frequently-
used portions of memory can reside on-package with higher
probability. Compared to other work on data migration [12]–
[16]: (1) our data migration is implemented by introducing
another layer of address translation; (2) depending on the data
granularity, we propose either a pure-hardware implementation
or an OS-assisted implementation; and (3) a novel migration
algorithm is used to hide the data migration overhead.

In this paper, we use the termmacro pageas the data
migration granularity, and themacro page sizecan be much
larger than thepage sizeof 4KB which is used in most
operating systems.

A. Data Migration Algorithm

In this work, our data migration algorithm is based on
Hottest-coldest swappingmechanism, which first monitors the
LRU (least recently used) on-package macro page (the coldest)
and the MRU (most recently used) off-package macro page
(the hottest) during the last period of execution and then
triggers the memory migration if the off-package MRU page
is accessed more frequently than the on-package LRU page
after each monitoring epoch.

As demonstrated later in the simulation results, it is a simple
but effective method to implement the data migration. In this
section, we focus on describing the migration algorithm in
an incremental way starting from a relatively straightforward
design.

Basic Design – N Mode

This is the basic design, in which the on-chip memory
controller monitors the LRU on-package macro page and the

Macro Page Index 22 bits

0x0000000

48-bit Memory Address

0x0000001

0x0000002

Macro Page 0

Macro Page 1 (LRU)

Macro Page 2

0x00000FF Macro Page N-1

… …

Translation Table

MRU Macro Page

N=256

Fig. 6. The basic migration management design (N Mode).

MRU off-package macro page, and maintains a translation
table. As shown in Fig. 6, assuming the memory space has
48 address bits and the macro page size is 4MB, the lowest
22 bits are the offset address of each macro page, and the
highest 26 bits are the macro page IDs. The macro page
ID is re-mapped to a new ID through a translation table.
Considering the case that on-package memory has the capacity
of 1GB, there are N=256 entries in the translation table. The
left column in the translation table, as shown in Fig. 6, is
actually the row address. Each row represents one on-package
memory slot, while the right column represents which macro
page is currently located in the on-package memory region.
Note that the right column of the translation table is initialized
to contain the same value as its left column counterpart so that
the lowest 1GB main memory is initially located on-package.
In addition, this translation table is bi-directional. Forinput
macro page IDs smaller than N, the translation table works as
a RAM; for IDs bigger than N, it works as a CAM. We call
this design “N Mode” because all the N slots in the on-package
memory region are utilized.

The memory controller always monitors the LRU on-
package macro page (for example, the 2nd row in Fig. 6) and
the MRU off-package macro page. During the data migration
procedure, the translation table is updated and the right column
of the 2nd row in Fig. 6 will store the MRU macro page ID.
However, the problem of this basic implementation is that data
stored in LRU and MRU pages have to be swapped before
the translation table is updated. Since the macro page size is
usually large and the off-package DDRx bandwidth is limited,
it will halt the execution and incur unacceptable performance
overhead. Therefore, techniques to hide data movement latency
is necessary.

N-1 Mode

As an improved design, the “N-1 Mode”, in which one on-
package memory slot is sacrificed, is proposed. As shown in
Fig. 7, although there are still N slots, one of them (initially
the last slot) does not map to any memory address and it is

0x0000000

0x0000001

0x0000002

Macro Page 0

Macro Page 1 (LRU)

Macro Page 2

0x00000FF Empty

… …

Translation Table

MRU Macro Page

N-1=255

0

0

0

1

Pending Bit

Fig. 7. The improved migration management design sacrificing one on-
package memory slot for pending memory transactions (N-1 Mode).

marked as “empty”. In practice, “empty” can be represented by
a reserved macro pageΩ (e.g., the highest 4MB macro page
with ID of 0x800 in the 8GB memory space3). Therefore,
the number of the effective on-package memory slots is N-1.
Furthermore, each row in the translation table has an additional
P bit, called “pending bit”, which is initialized to be ‘0’. When
P bit is set, the RAM function of the empty slot is bypassed
and the left column is always translated toΩ instead, while the
CAM function still works. The characteristics of the translation
table are:If macro pagen(n < N) is located in the on-
package region, it can only be in the position of the n-th row.
Before we explain the swapping algorithm, we define all the
macro pages into 5 categories:

1) Original Fast (OF): Macro page whose ID is less than
N, and its data is located in the on-package memory
region without any address translation. Its address is in
the left column of the address table but pointing to itself.

2) Original Slow (OS): Macro page whose ID is greater
than N, and its data is located in the off-package memory
region without any address translation. Its address is not
in the translation table.

3) Migrated Fast (MF): Macro page whose ID is greater
than N, but its data is migrated into the on-package
memory region. Its address is in the right column of
the translation table.

4) Migrated Slow (MS): Macro page whose ID is less than
N, but its data is migrated out of the on-package memory
region. Its address is in the left column of the translation
table and pointing to a new address.

5) Ghost: Macro page whose ID is less than N, but its data
is migrated to a reserved macro page in the off-package
memory region. Its address is in the left column of the
translation table and pointing to the reserved macro page
(i.e. 0x800).

The following algorithm describes how to performance a
hottest-coldest swap.

• If the macro page ID of MRU is great than N and the
LRU is less than N, it means that MRU is anOSmacro
page and LRU is anOF one. This is the simplest case.
As shown in Fig. 8(a), the first step is to copy data C
into the empty slot B. Since the MRU slot C is now in
the on-package region, a new link,B-to-C, is updated in
the translation table. However, because the link,C-to-B,
is not ready yet, the P bit of this row is set to be ‘1’. The
second step is to copy data Bfrom theGhostslot, Ω, to

3This piece of macro page can be reserved by the hardware driver after
booting the OS.

slot C. After this step finishes, the P bit is reset. Finally,
after copying the LRU data, A, from slot A to slotΩ,
slot A becomes the new empty slot.

• If the macro page ID of MRU is greater than N and the
LRU is greater than N, it means that MRU is anOS
macro page and LRU is anMF one. Fig. 8(b) shows the
data movement in this case. The first two steps are the
same as the ones in Fig. 8(a). In the third step, data A,
which is currently stored in slot C, is copied to slotΩ,
and after that row A in the translation table is remarked
as “pending”. Finally, data Cis moved back to its original
place, and after that the P bit is reset. During the last step,
all the memory accesses to data Aare no longer routed
to slot C, but accesses to data Care still routed to slot
A, because the P bit only prevents the address translation
from A to C.

• If the macro page ID of MRU is less than N and the
LRU is less than N, it means that MRU is anMS macro
page and LRU is anOF one. In this case, as illustrated
in Fig. 8(c), the first step is to copy data Dinto the
empty slot C and update the translation table by adding a
new link C-to-D but with the “pending” bit marked. The
second step is to copy data Bback to its original slot and
set the entry in the translation table to beB-to-B. The
third step is the same as the second step in Fig. 8(a) and
Fig. 8(b). After that, the P bit is cleared. The fourth step
is the same as the third step in Fig. 8(a).

• If the macro page ID of MRU is less than N and the
LRU is greater than N, it means that MRU is anMS
macro page and LRU is anMF one. This is the most
complicated case because both the MRU and the LRU
pages are migrated ones. Fig. 8(d) demonstrates the data
movement in this case. Actually, the first 3 steps are the
same as the ones in Fig. 8(c) and the last 2 steps are the
same as the ones in Fig. 8(b).

Example

We use the case illustrated in Fig. 8(d) to describe how
the coldest on-package data are swapped with thehottest
off-package data. As shown in Fig. 8(d), before the swap is
triggered, data Aand B are already swapped with Dand E,
respectively. Consequently, Aand B are MS pages, while D
and EareMF pages. In addition, macro page Cis theGhost
page since its data is actually stored in an off-package slot,
called Ω. The MSR off-package page is B, and it should be
moved back to its original location (slot B) in the on-package
memory region. On the contrary, the LSR on-package page is
D, and it should be moved back to its original location (slot D)
in the off-package memory region. The entire swap procedure
is performed in the following order:

1) Data Estored in slot B is moved to slot C, which is
empty now.

2) Update the translation table. Change Row C fromC-to-
emptyto C-to-E, and set the P bit of Row C.

3) Copy data Bback to slot B. After this step, accesses
to the MRU macro page, B, are already routed to on-

A C

B D

C A C

 B A

1

2

On-chip Region Off-chip Region

LRU

MRU

A C

B Empty

Old Table

A Empty

B D

New Table

D D B
3

4

empty

A A

B C

C C B

 B A

1

23

On-chip Region Off-chip Region

LRU

MRU

A A

B Empty

Old Table

A Empty

B C

New Table

empty

A A

B D B

 C A

1

2

On-chip Region

Off-package Region
LRU

MRU

A A

B D

C Empty

Old Table

A Empty

B B

C D

New Table

D B C

3
4

C Dempty

A D

B E B

 C A

1

2

On-chip Region Off-package Region

LRU

MRU

A D

B E

C Empty

Old Table

A Empty

B B

C E

New Table

E B C

3

4

C E

D A D
5

empty

(a) (b) (c) (d)

Fig. 8. Migration algorithm: (a) Data migration in the case that MRU> N and LRU< N ; (b) Data migration in the case that MRU> N and LRU> N ; (c)
Data migration in the case that MRU< N and LRU< N ; (d) Data migration in the case that MRU< N and LRU> N .

package regions.
4) Update the translation table. Change Row B fromB-to-E

to B-to-B.
5) Copy data Cfrom slot Ω to slot E.
6) Update the translation table. Clear the P bit of Row C.
7) Copy data Afrom slot D to slotΩ.
8) Update the translation table. Set the P bit of Row A.
9) Copy data Dfrom slot A to its original place – slot D.

10) Update the translation table. Change Row A fromA-to-
D to A-to-empty, and clear the P bit. Before this step is
finished, accesses to data Dare still routed to on-package
regions.

In general, this algorithm makes sure that during the data mi-
gration procedure, the data under movement has two physical
locations: one is in the on-package memory region and the
other is in the off-package memory region. Thanks to the data
duplication and the introduced P bit that blocks uncomplete
bi-directional mapping, the program execution will not be
halted since all the memory accesses are routed to an available
physical location. By using this data movement algorithm,
after the first step in Fig. 8(a) and Fig. 8(b) is completed or
the first two steps in Fig. 8(c) and Fig. 8(d) are completed,
the MRU macro page, which is previously stored in the off-
package memory region, can start to experience fast access
speed provided by the on-package memory. In addition, until
the last step (in all four cases) is completed, the LRU macro
page can still be fast accessed since it still has a copy in the
on-package memory.

N-1 Mode with Live Migration

Although theN-1 Modehides the migration latency by con-
servatively accessing the MRU macro page with off-package
memory speed during the migration, we can further improve
the algorithm by introducing the concept ofcritical-data-first.
In the pureN-1 Mode, it takes time to bring the MRU page
on chip. For example, when the macro page size is 4MB and
the off-package interface is DDR3-1333, it takes374µs to
finish the first step as described in the algorithm ofN-1 Mode.
During this374µs, all the following accesses to the MRU page
are still routed to off-package memory and slow. To address
this issue, we divide the large data transaction into smaller
chunks, such as 4KB. By doing so, the on-package memory
can supply data to any request to the 4KB sub-blocks that
have been already transferred while the rest of the swap is
still ongoing in background.

0x0000000

0x0000001

0x0000002

Macro Page 0

Macro Page 1 (LRU)

Macro Page 2

0x00000FF Empty
… …

Translation Table

MRU Macro Page

N-1=255

0

0

0

1

Pending Bit

0

0

0

0

Filling Bit

0 0 0 0 … 0 1 1 1 1 0 0 0 … 0

M = 1024

Fig. 9. The improved version of N-1 Mode with live migration support:
The additional F bit indicates that the corresponding on-package slot is under
data movement; the associated bit map indicates which sub-block is ready for
accessing.

To implement this concept in hardware, we add another bit
to each row in the translation table and a separated bit map. As
shown in Fig. 9, the newly-added bit is called “F bit” (Filling
bit). When the F bit is set, it means the corresponding on-
package slot is loading data from off-package memory and
this on-package slot is partially available. The additional bit
map indicates which sub-block has already been moved to the
on-package slot. When the F bit is set to ‘1’, all the bits in
the bit map are reset to ‘0’. However, when all the bits in the
bit map become ‘1’, the F bit is reset to ‘0’ representing the
data loading is completed.For example, if we use the macro
page size of 4MB and sub-block size of 4KB, then there are
1,024 bits in the bit map. To supportcritical-data-first, the
memory controller starts to copy the macro page from the
position of the MRU sub-block and then wraps the address to
the beginning.

By using this method, the migration overhead is further
reduced. In Section IV, we compare the performance im-
provement achieved by the basicN Mode design, theN-1
Mode design, and this improved design, which we callLive
Migration.

B. Data Migration Implementation

The migration algorithm can be implemented in either pure-
hardware way or OS-assisted way depending on the migration
granularity. Basically, the functionality of the data migration is
achieved by keeping an extra layer of address translation that
maps the physical address to the actual machine address. The
pure-hardware scheme keeps the translation table in hardware
while the OS-assisted scheme keeps it in software.

The pure-hardware solution is preferred when the macro
page size is relatively large so that the scale of macro page

TABLE III
SIMULATION PARAMETERS AND WORKLOAD/TRACE DESCRIPTIONS

Memory system parameters
Total memory capacity 4GB Macro page size from 4KB to 4MB
On-package memory capacity 512MB Sub-block size 4KB

Workloads
FT.C FT contains the computational kernel of a 3D FFT-based spectral method.
MG.C MG uses a V-cycle MultiGrid method to compute the solution ofa 3D scalar Poisson equation.
SPEC2006 Mixture The combination of four SPEC2006 workloads: gcc, mcf, perl,and zeusmp.
pgbench TPC-B like benchmark running PostgreSQL 8.3 with pgbench and a scaling factor of 100.
Indexer Nutch 0.9.1 indexer, Sun JDK 1.6.0 and HDFS hosted on one harddrive.
SPECjbb 4 copies of SPECjbb 2005, each with 16 warehouses, using Sun JDK 1.6.0.

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

4 16 32 64 128 256 512 1024 2048 4096

H
a
rd

w
a
re

 o
v
e
rh

e
a
d

 (
B

it
s
)

Macro page size (KB)

Fig. 10. The hardware overhead to manage 1GB on-package memory at
different data migration granularity.

count is controllable within certain hardware resources. On the
other hand, if finer granularity of data migration is required,
the number of macro pages becomes too large for hardware
to handle and OS-assisted scheme is used to track the access
information of each macro page.

Pure-Hardware Solution

If the data migration is implemented by pure hardware,
the major overhead comes from the translation table. In the
case that the on-package memory size is 1GB and the macro
page size is 4MB, the right column takes 26 bits per entry.
Therefore, the total number of bits per entry is 28, including
the P bit and the F bit. The cost of the entire translation
table with 256 entries is 7,168 bits, and it is comparable to
a TLB design in the conventional microprocessors. Since our
proposed translation table has both RAM and CAM functions,
we conservatively assume that it takes 2 additional clock cycles
to complete one address translation.

Besides the translation table, there are two bit maps also
incur the hardware overhead. The first bit map is used to store
the filling status of each sub-block. In the 4MB macro page
case, its size is 1,024 bits. The second bit map is used to record
the LRU macro page with clock-based pseudo-LRU algorithm,
which is used in real microprocessor implementation [17],
and its size is 256 bits. The MRU policy is approximately
implemented by multi-queue algorithm [18], by which we use
three-level of queue with ten entries per level. Thus, the size
of multi-queue is 780 bits. Hence, in total, the proposed pure-
hardware scheme needs 9,228 bits to manage 1GB on-package
memory at the 4MB granularity level, which is just a small
overhead in today’s microprocessor designs. Fig. 10 shows
the number of bits required by the pure-hardware solution
increases rapidly when reducing the macro page size. In this
paper, we consider the pure-hardware solution is only feasible
for the granularity larger than 1MB.

OS-Assisted Implementation

When the fined-granularity data migration is used, the
physical-to-machine address translation has to be managed
by software since the pure-hardware scheme has too much
overhead as shown in Fig. 10. In the OS-assisted scheme,
the data structure involved in the aforementioned algorithm
is kept by the operating system, while the counters (i.e. the
pseudo-LRU counter to determine the on-package LRU macro
page and the multi-queue counter to determine the off-package
MRU macro page) are still implemented in hardware. The
translation table is updated by an OS periodical routine and
the OS sends out data swapping instruction after each update.
Besides the data movement latency, the extra overhead caused
by OS involvement is on the same level of conventional TLB
update overhead, which is mainly consumed by user-kernel
mode switching and is about 127 cycles [19].

IV. T RACE-BASED ANALYSIS ON DYNAMIC M IGRATION

To evaluate the effectiveness of our proposedhottest-coldest
swap, we compare the performance ofN Mode, N-1 Mode, and
N-1 Mode with Live Migrationdesigns. We evaluate different
methods in a conventional system primarily using trace-based
simulation. In this section, we use traces rather than a detailed
full-system simulator as we used in Section II because trace-
based simulation makes it practical to process trillions ofmain
memory accesses.

We collected the memory trace from a detailed full-system
simulator [20] and the trace file records the physical address,
CPU ID, time stamp, and read/write status of all main memory
accesses. The workloads used to evaluate our designs includes
FT.C and MG.C, which have large memory footprint as we
have shown. Additionally, we developed a multi-programmed
workload,SPEC2006 Mixture, by combining the traces from
gcc, mcf, perl, andzeusmp. Furthermore, besides computation-
intensive workloads, we also consider transaction-intensive
workloads as well. Therefore, we add traditional server bench-
marks (pgbenchand SPECjbb2005) and a mixture of Web
2.0-based benchmarks (indexer). All of these workloads have
memory footprints larger than 2GB.

In order to demonstrate how our proposed memory con-
troller effectively leverage the on-package memory region, we
limit the capacity of on-package memory space to be 512MB.
As for the other parameters, we keep most of the assumptions
that we have used in the previous sections. However, in this
trace-based simulation, we model the detailed DRAM access
latency by assuming FR-FCFS [11] scheduling policy and

TABLE IV
THE EFFECTIVENESS OF THE PROPOSED MEMORY CONTROLLER-BASED DATA MIGRATION IN REDUCING THE AVERAGE MEMORY ACCESS LATENCY.

Workload FT.C MG.C pgbench indexer SPECjbb SPEC2006 Mixture
DRAM core latency (cycles) 85.18 42.29 121.85 103.45 126.45 80.67
Latency w/o migration (cycles) 86.02 49.16 152.83 118.52 159.40 288.10
Best latency w/ migration (cycles) 83.20 42.23 124.27 105.55 135.60 82.45
Effectiveness 69.1% 84.3% 92.2% 86.1% 72.2% 99.1%

0
20
40
60
80

100
120
140
160
180
200
220
240

N Mode N-1
Mode

Live N Mode N-1
Mode

Live N Mode N-1
Mode

Live N Mode N-1
Mode

Live N Mode N-1
Mode

Live N Mode N-1
Mode

Live

FT MG pgbench indexer SPECjbb SPEC2006 Mixture

A
v
e

ra
g

e
 m

e
m

o
ry

 l
a

te
n

c
y
 (

c
y
c

le
s

)

4K

16K

64K

256K

1M

4M

0

20

40

60

80

100

120

140

160

180

200

N Mode N-1
Mode

Live N Mode N-1
Mode

Live N Mode N-1
Mode

Live N Mode N-1
Mode

Live N Mode N-1
Mode

Live N Mode N-1
Mode

Live

FT MG pgbench indexer SPECjbb SPEC2006 Mixture

A
v
e
ra

g
e
 m

e
m

o
ry

 l
a
te

n
c

y
 (

c
y
c

le
s
)

4K

16K

64K

256K

1M

4M

0

20

40

60

80

100

120

140

160

180

200

N Mode N-1
Mode

Live N Mode N-1
Mode

Live N Mode N-1
Mode

Live N Mode N-1
Mode

Live N Mode N-1
Mode

Live N Mode N-1
Mode

Live

FT MG pgbench indexer SPECjbb SPEC2006 Mixture

A
v
e
ra

g
e
 m

e
m

o
ry

 l
a

te
n

c
y
 (

c
y
c

le
s
)

4K

16K

64K

256K

1M

4M

(a)

(b)

(c)

OS-

assisted

Pure-

hardware

OS-

assisted

Pure-

hardware

OS-

assisted

Pure-

hardware

303 278 297

254

581 1924 477 1586 509 1329528 1092389308

234 331

234 331

331

Average latency

(all off-package memory)

Average latency

(all on-package memory)

Average latency

(w/o migration)

288~ ~

~ ~

288~ ~

288 ~

Fig. 11. The average memory access latency of various workloads by using different methods of data swapping: (a) swapping interval = 100K memory
accesses; (b) swapping interval = 10K memory accesses; (c) the swapping interval = 1K memory accesses.

open page access. We use 8-bank structure for the off-package
DRAM and 128-bank structure for the on-package DRAM.
Therefore, the simulated DRAM access latency depends on the
memory reference sequence, read/write distribution, row/bank
locality, and whether the access is routed to the on-package
or off-package region. In addition, the macro page granularity
under the memory controller management ranges from 4KB to
4MB, and the sub-block size for live migration is 4KB. Due
to the hardware overhead concern, OS-assisted scheme is used
for macro pages smaller than 1MB and pure-hardware scheme
is used for macro pages larger than 1MB (including 1MB).

Swap interval is another parameter that has a large impact
on the effectiveness of our proposed hardware-based data mi-
gration scheme. Therefore, we run the trace-based simulation

by varying the swapping interval number. We compare the
random memory access latency on average by triggering the
swap operation after each 100,000, 10,000, and 1,000 memory
accesses, respectively. When the data swap activity becomes
too frequent, the existence of P bit and F bit prevents triggering
another swap if the previous swap is not complete yet.

A. N Mode, N-1 Mode, and Live Migration

Fig. 11 shows the effective memory access latencies of
using different swapping intervals and the comparison among
different migration algorithms. Observing the simulationresult
when the data granularity is large (i.e. 4MB), it is obvious to
see that the straightforward method,N Mode, is not practical
because it needs to move a large chunk of data without hiding

0

20

40

60

80

100

120

140

160

FT MG pgbench indexer SPECjbb SPEC2006

M
e
m

o
ry

 l
a
te

n
c
y
 (

c
y
c
le

s
)

4KB 16Kb 64KB 256KB 1MB 4MB

Fig. 12. The average memory latency (swapping interval = 1K memory
accesses).

any latency. Hence, in this design, when the swap frequency
is high (i.e. once per 1K or 10K memory accesses), the
migration overhead offsets the benefit. Therefore, in order
to hide the migration overhead,N-1 Mode, which sacrifices
one slot in the translation table, should be used to overlap
data migration with computation. In addition,live migration,
which cuts the macro page into smaller pieces, can further
hide the migration overhead by finer-granularity overlapping
and reduce the average memory access latency by 5.2%.

However, when the data migration granularity is small (i.e.
4KB), the difference amongN Mode, N-1 Mode, and live
migration becomes negligible. This is because the overhead
of swapping two small macro pages is trivial and N Mode has
one more slots in the translation table as its name implies.

B. Migration Granularity and Frequency

The migration granularity and the migration frequency are
the two key factors affecting the effectiveness of the proposed
heterogenous main memory space. To study the impact of
these two factors, we uselive migration algorithm with dif-
ferent macro page sizes and swapping intervals, and Fig. 12
to Fig. 14 illustrate the result. The comparison shows that
the migration frequency is more important since the minimum
memory latencies in Fig. 12 are smaller than those in Fig. 13
and Fig. 14. Another observation is that different types of
workloads have different favorites on the migration granularity
and the optimal migration granularity also depends on the
migration frequency. While thelive migration can make it
feasible to migrate data across the package boundary without
incurring too much overhead, it is necessary for the memory
controller to adaptively change the migration granularityac-
cording to different types of workloads. In this work, we pro-
pose to use an OS-assisted approach for fine-granularity and
a pure-hardware approach for coarse-granularity as described
in the previous sections.

In order to demonstrate the effectiveness of the proposed
heterogenous memory space and its management algorithms
in a more generalized way, we define the effectiveness,η, as
follows,

η =
Latency w/o migration− Latency w/ migration
Latency w/o migration− DRAM core latency

× 100%

And, this metric approximately reflects how many memory
accesses are routed to the on-package memory region.

Note that the average effectiveness is 83% as listed in
Table IV, while the on-package memory size is 512MB, which

0

20

40

60

80

100

120

140

160

180

FT MG pgbench indexer SPECjbb SPEC2006

M
e
m

o
ry

 l
a
te

n
c
y
 (

c
y
c
le

s
)

4KB 16Kb 64KB 256KB 1MB 4MB

Fig. 13. The average memory latency (swapping interval = 10Kmemory
accesses).

0

20

40

60

80

100

120

140

160

180

FT MG pgbench indexer SPECjbb SPEC2006

M
e
m

o
ry

 l
a
te

n
c
y
 (

c
y
c
le

s
)

4KB 16Kb 64KB 256KB 1MB 4MB

Fig. 14. The average memory latency (swapping interval = 100K memory
accesses).

is only 12.5% of the 4GB memory space in this case.

C. Sensitivity Analysis on On-Package Memory Capacity

In order to further demonstrate how our proposed hetero-
geneous main memory with migration feature enabled can
efficiently leverage the on-package memory resources, we
conduct a sensitivity analysis by reducing the on-package
memory capacity from 512MB to 128MB. As expected, the
average memory access latency is increased because it be-
comes harder to keep as many as data on package when the
on-package memory size is reduced. However, as illustrated
in Fig. 15, the average latency is still much shorter than the
latency without dynamic data migration, while the on-package
memory capacity is reduced from 512MB to 128MB.

D. Power Evaluation

Fig. 16 shows the total memory power comparison between
using hybrid on- and off-package DRAM with dynamic migra-
tion and only using off-package DRAM. We assume 5pJ/bit
for both on- and off-package DRAM core access, 1.66pJ/bit
for on-package interconnect, and 13pJ/bit for off-package
interconnect [21]. The memory power overhead caused by
crossing-package migration depends on the migration interval.
The minimum power overhead we observe is about 2X, which
occurs when the migration interval is once per 100K memory
accesses and the migration granularity is 4KB.

V. RELATED WORK

A large body of prior work has examined how to use on-chip
memory controllers and data migration schemes to improve the
system performance.

A. On-Chip Memory Controller

The recent trends with the inclusion of on-chip memory
controllers in modern microprocessor designs help eliminate

0

50

100

150

200

250

128M 256M 512M 128M 256M 512M 128M 256M 512M 128M 256M 512M 128M 256M 512M 128M 256M 512M

FT MG pgbench indexer SPECjbb SPEC2006 Mixture

A
v

e
ra

g
e
 m

e
m

o
ry

 l
a
te

n
c
y
 (

c
y
c
le

s
)

DRAM core
latency

Average latency
w/ migration

Average latency
w/o migration

Fig. 15. The average memory access latency of the heterogeneous main memory under different sizes of on-package memory.

0

5

10

15

20

1K 10K 100K 1K 10K 100K 1K 10K 100K

Size = 4KB Size = 16KB Size = 64KB

N
o

rm
a
li
z
e
d

 P
o

w
e
r

(C
o

m
p

a
re

d
 t

o
 o

ff
-p

a
c
k
a
g

e

D
R

A
M

-o
n

ly
 s

o
lu

ti
o

n
)

FT MG pgbench indexer SPECjbb SPEC2006

~62

Fig. 16. The relative memory power when using heterogenous on- and off-
package DRAM with dynamic migration and only using off-package DRAM.

the system-bus bottleneck and enable high-performance in-
terface between a CPU and its DRAM DIMMs [22]. In
addition, integrating the memory controller on chip also makes
it possible to add an extra level of address indirection to re-
map the data structure in memory and to improve cache and
bus utilization [23]. However, our work proposes a system
architecture where the memory controller is tightly integrated
with TLBs, which is seldom available in the contemporary
computer market.

Many previous DRAM scheduling policies were proposed to
improve the memory controller throughput [24], [25]. Stream
pre-fetchers are also commonly used in many processors [26],
[27] since they do not require significant hardware cost and
work well for a larger number of applications. In addition,
prefetch-aware DRAM controller was proposed [28] to max-
imize the benefit and minimize the harm of prefetching. Our
work is orthogonal to these mechanisms: while aggressive
prefetching is effective in tolerating memory latency by mov-
ing more useful data to caches, our work focuses on leveraging
fast regions in the heterogeneous memory space to hide the
impact of low performance regions.

B. Non-Uniform Access

NUMA (non-uniform memory access) architecture is used
in many commercial settings of SMP (symmetric multi-
processing) clusters, such as those based on AMD Opteron and
Alpha EV7 processors. In the ccNUMA architecture [29], each
processor or processor cluster maintains a cache system to
reduce internode traffic and average latency to non-local data.
The Fully-Buffered DIMM [30] is another example of NUMA
which can be configured to behave as a uniform architecture
by forcing all DIMMs to stall and emulate the slowest one.

For large caches where interconnect latency dominates the
total access latency, a partitioned Non-Uniform Cache Access
(NUCA) architecture is adopted [31]. To improve the prox-
imity of data and computation, dynamic-NUCA policies have
been actively studied in recent years [12]–[14], [32]. Although
dynamic-NUCA method helps performance, the complexity
of the search mechanism together with the high cost of
communication makes it not scalable.

Our proposed heterogeneous main memory can also be
treated as a NUMA system. Although on-chip and off-chip
memory regions have different access speeds, both of them
are local to the accessing processor, hence cache coherence
is not an issue in this scenario. The previous research closest
to our work is from Ekman and Stenstrom [33], in which
a multi-level exclusive main memory subsystem is proposed.
In their work, pages can be gradually paged out to disk
through multiple levels of memory regions, but proactive data
migration from lower-tier to higher-tier memory regions is
not allowed. Different from most of the previous work, our
approach introduces a new layer of address translation thatis
handled by the on-chip memory controller.

VI. CONCLUSION

SiP and 3D integration are promising to bring more memory
cells onto microprocessor package to mitigate the “memory
wall” problem. In this paper, instead of using them as caches,
we studied the architecture of using the on-package memory
cells as a portion of the main memory working in partnership
with a conventional main memory implemented with DIMMs.
To manage this heterogeneous main memory containing data
on both on-package and off-package regions, we introduced
another layer of address translation. While the conventional
physical address makes the OS paging system keep intact,
the newly-added machine address represents the actual data
location on the DRAM chips. By manipulating the physical-
to-machine translation, our proposed on-package memory con-
troller design can dynamically migrate data across the chip
boundary. Compared to using on-package memory as caches,
the heterogenous main memory approach does not pay an extra
penalty for tag access before data access and for cache misses.
The evaluation results demonstrate how the heterogeneous
main memory can use the on-package memory efficiently and
achieve the effectiveness of 83% on average.

REFERENCES

[1] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang et al., “Die
Stacking (3D) Microarchitecture,” inMICRO ’06, 2006, pp. 469–479.

[2] G. H. Loh, Y. Xie, and B. Black, “Processor Design in 3D Die-Stacking
Technologies,”IEEE Micro, vol. 27, no. 3, pp. 31–48, 2007.

[3] International Technology Roadmap for Semiconductors,“ITRS 2009
Edition,” http://www.itrs.net/.

[4] T. Kgil, A. Saidi, N. Binkert, S. Reinhardt, K. Flautneret al., “Pi-
coServer: Using 3D stacking technology to build energy efficient
servers,”ACM Journal on Emerging Technologies in Computing Sys-
tems, vol. 4, no. 4, pp. 1–34, 2008.

[5] G. H. Loh, “3D-Stacked Memory Architectures for Multi-core Proces-
sors,” in ISCA ’08, 2008, pp. 453–464.

[6] G. L. Loi, B. Agrawal, N. Srivastava, S.-C. Lin, T. Sherwood et al., “A
Thermally-Aware Performance Analysis of Vertically Integrated (3-D)
Processor-Memory Hierarchy,” inDAC ’06, 2006, pp. 991–996.

[7] M. Ghosh and H.-H. S. Lee, “Smart Refresh: An Enhanced Memory
Controller Design for Reducing Energy in Conventional and 3D Die-
Stacked DRAMs,” inMICRO ’07, 2007, pp. 134–145.

[8] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg
et al., “Simics: A Full System Simulation Platform,”Computer, vol. 35,
no. 2, pp. 50–58, 2002.

[9] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, andN. P.
Jouppi, “A Comprehensive Memory Modeling Tool and Its Application
to the Design and Analysis of Future Memory Hierarchies,” inISCA
’08. IEEE Computer Society, 2008, pp. 51–62.

[10] Micron, “2Gb: x4, x8, x16 DDR3 SDRAM,” http://www.micron.net/.
[11] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.Owens,

“Memory Access Scheduling,” inISCA ’00, 2000, pp. 128–138.
[12] B. M. Beckmann, M. R. Marty, and D. A. Wood, “ASR: Adaptive

Selective Replication for CMP Caches,” inMICRO ’06, 2006, pp. 443–
454.

[13] Z. Chishti, M. D. Powell, and T. N. Vijaykumar, “Optimizing Replica-
tion, Communication, and Capacity Allocation in CMPs,” inISCA ’05,
2005, pp. 357–368.

[14] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burgeret al., “A NUCA Substrate
for Flexible CMP Cache Sharing,” inICS ’05, 2005, pp. 31–40.

[15] N. Rafique, W.-T. Lim, and M. Thottethodi, “Architectural Support
for Operating System-Driven CMP Cache Management,” inPACT ’06,
2006, pp. 2–12.

[16] S. Cho and L. Jin, “Managing Distributed, Shared L2 Caches through
OS-Level Page Allocation,” inMICRO ’06, 2006, pp. 455–468.

[17] “UltraSPARC T2. Supplement to the UltraSPARC Architecture 2007,”
Sun Microsystems, Inc., Tech. Rep. 950-5556-01, 2007.

[18] G. Loh, “Extending the Effectiveness of 3D-Stacked DRAM Caches
with an Adaptive Multi-Queue Policy,” inMICRO ’09, 2009, pp. 201–
212.

[19] J. Liedtke, “Improving IPC by kernel design,” inSOSP ’93, 1993, pp.
175–188.

[20] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, and D. Ortega,
“COTSon: Infrastructure for Full System Simulation,”ACM SIGOPS
Operating Systems Review, vol. 43, no. 1, pp. 52–61, 2009.

[21] K. Fukuda, H. Yamashita, G. Ono, R. Nemoto, E. Suzuki, T.Takemoto,
F. Yuki, and T. Saito, “A 12.3mW 12.5Gb/s Complete Transceiver in
65nm CMOS,” inISSCC ’10, 2010, pp. 368–369.

[22] W.-F. Lin, S. K. Reinhardt, and D. Burger, “Reducing DRAM Latencies
with an Integrated Memory Hierarchy Design,” inHPCA ’01, 2001, pp.
301–312.

[23] L. Zhang, Z. Fang, M. Parker, B. K. Mathew, L. Schaelickeet al., “The
Impulse Memory Controller,”IEEE Transactions on Computers, vol. 50,
no. 11, pp. 1117–1132, 2001.

[24] Z. Zhu and Z. Zhang, “A Performance Comparison of DRAM Memory
System Optimizations for SMT Processors,” inHPCA ’05, 2005, pp.
213–224.

[25] E. Ipek, O. Mutlu, J. F. Martı́nez, and R. Caruana, “Self-Optimizing
Memory Controllers: A Reinforcement Learning Approach,” in ISCA
’08, 2008, pp. 39–50.

[26] H. Q. Le, W. J. Starke, J. S. Fields, F. O’Connellet al., “IBM POWER6
Microarchitecture,”IBM Journal of Research and Developement, vol. 51,
no. 6, pp. 639–662, 2007.

[27] S. Sharma, J. G. Beu, and T. M. Conte, “Spectral Prefetcher: An
Effective Mechanism for L2 Cache Prefetching,”ACM Transactions on
Architecture and Code Optimization, vol. 2, no. 4, pp. 423–450, 2005.

[28] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt, “Prefetch-Aware
DRAM Controllers,” in MICRO ’08, 2008, pp. 200–209.

[29] J. Laudon and D. Lenoski, “The SGI Origin: A ccNUMA Highly
Scalable Server,” inISCA ’97, 1997, pp. 241–251.

[30] B. Ganesh, A. Jaleel, D. Wang, and B. Jacob, “Fully-Buffered DIMM
Memory Architectures: Understanding Mechanisms, Overheads and
Scaling,” in HPCA’ 07, 2007, pp. 109–120.

[31] C. Kim, D. Burger, and S. W. Keckler, “An Adaptive, Non-Uniform
Cache Structure for Wire-Delay Dominated On-Chip Caches,”in ASP-
LOS ’02, 2002, pp. 211–222.

[32] J. Chang and G. S. Sohi, “Cooperative Caching for Chip Multiproces-
sors,” in ISCA ’06, 2006, pp. 264–276.

[33] M. Ekman and P. Stenstrom, “A Cost-Effective Main Memory Organi-
zation for Future Servers,” inIPDPS ’05, 2005, pp. 45–54.

