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Abstract—System-in-Package (SiP) and 3D integration are increase the bandwidth and I/O requirements of the CPU chip
promising technologies to bring more memory onto a micropre  py a factor of 16 and DRAM dynamic power by a factor of
cessor package to mitigate the “memory wall” problem. In this 16, or if the 1/O count and DRAM power were kept constant
paper, instead of using them to build caches, we study a hetege- ' .
nous main memory using both on- and off-package memories would reduce the qn-package memory bandW|dth_b)_/ a factor
providing both fast and high-bandwidth on-package accesse Of 16. Instead we implement a 15-way set associative cache
and expandable and low-cost commodity off-package memory in the space of a 16-way set-associative data array, packing
capacity. We introduce another layer of address translatia gl the tags for a set into the 16th cache line for each set.
coupled with an on-chip memory controller that can dynamicdly  \ye then access the tags first, and then access the data after

migrate data between off-package and off-package memorythier . . .
in hardware or with operating system assistance dependingro a tag hit when the data way location is known. This makes

the migration granularity. Our experimental results demonstrate ~ the cache miss/hit determination time roughly equal to the
that such design can achieve the average effectiveness o83 on-package DRAM access time, and makes returning the data

of the ideal case where all memory can be placed in high-speedon a cache hit take approximately 2X of the time to access the

on-package memory for our simulated benchmarks on-package DRAM. Note that even if custom cache DRAM
|. INTRODUCTION chips were developed, for similar reasons two sequential
.DRAM accesses would still be required for returning data on

Recent trends of multi/many core microprocessor de5|%n ;
o ; cache hit.
with increasing number of cores have accentuated the al-

ready daunting memory bandwidth problem. The traditional Consequently, in this paper, instead of ut|I_|Z|_ng these on-
" p . . ackage memory resources to augment existing caches or
approach to mitigate the “memory wall” problem is to ad

g‘eepen the cache hierarchy, we propose a heterogeneous main

more storage on-chip in the form of last-level cache (LLC), emory architecture that consists of both on-package memo-
For example, IBM POWER7 microprocessor has a 32MB L y P 9

cache built out of embedded-DRAM (eDRAM) technolo ries and off-package Dual Inline Memory Modules (DIMMS).
B manage such a space and move frequently accessed data

The decrease in miss-rate achieved by the extra cache gize . .
0 fast regions, we propose two integrated memory controlle

helps hide the latency gap between a processor and its MeMemes: a first technique handles everything in hardwate an

Emerging System-in-Package ~ (SiP)  and = threg o o0 < cheme takes assistance from the operatingisyste

dimensional (3D) integration technologies [1], [2] enablfi\‘he effectiveness of each scheme depends on the memory

deggners to integrate gigabytes of _memory Into thr%anagementgranularity.Throughourevaluation,weshemth
microprocessor package. However, using the on—packa(%ye

. r low-overhead solution can reduce off-package memory
memory resources as a last-level cache (LLC) might NOL s traffic by 83% on average
be the best solution. High-performance commodity DRAM y 0 ge.
dies such as GDDR are heavily optimized for cost and do Il. HETEROGENEOUSMAIN MEMORY SPACE
not include specialized high performance tag arrays that
can automatically determine a cache hit/miss gnd forwzxrngckages, DRAM dies are placed beside the microprocessor
the request to the corresponding data array. Since the IS

of a tag array can be a hundred megabytes or more for § using SiP as shown in Fig. 1. As the flip-chip SiP

multi-gigabyte cache, storing tags in the microprocesser > provide die-to-die bandwidth of at least 2Tbps [3], the
. g'9aby ’ g tag P on-package high-performance DRAM chip is modified from

gesxisting commodity products to increase the number of banks
and further increase the signal 1/0 speed to take advantage o

much power and waste too much bandwidth if all the wa . .
e high-speed on-package interconnects. However, we o no

are speculatively read from a highly asso_ciative on-paekagssume a custom tag part and use only a single on-package
cache (e.g., 16-way) at the same time. Doing so would emBhAM design in order to reduce design cost and maximize the

1X. Dong and Y. Xie were supported in part by NSF grants 070261¥0lume of the on-package DRAM parts. Although we leave the
0903432, 0905365, and SRC grants. room for the potential through-silicon-vias-based (TSAsé&d)

“If there are 32 DRAM dies stacked in the package, and cactedey 3D stacking in the future, in this work, we assume the on-
6.7% of the data size, this would still require the equivaleh2.1 DRAM .
chips of area. Furthermore, the multi-core CPU chip is @fiko support package memory size Is around hundreds of megabytes due to
DRAM as dense as the commodity DRAM chips. the consideration that the capabilities of delivering poiméo

In this work, we assume that for future microprocessor

in the on-package DRAM. Moreover, it will dissipate too
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Off-package region DIMMs <. JHITTITTIT indices in a DRAM memory system in terms of channel
Fig. 1. The conceptual view of the System-in-Package (SRitisn with 1 _ID’ rank ID, bank I_D’ row ID, and column ID. However,
microprocessor die and 9 DRAM dies connecting off-packadléiNds (one in our heterogeneity-aware memory controller, as shown
on-package DRAM die is for ECC). The on-package DRAM chiplighsly in Fig. 3, theAddress Translatiorstage is moved ahead
different from the commodity off-package DRAM as it has a maank h h is fi d ith h
structure to reduce the memory access queuing delay. Wigeantpackage so that eac m_emory access Is first route_ t(_) er e_r_t €
DRAM dies are configured to be LLC, they function as 15-wayoeigive on-package region or the off-package region in addition
cache since each DRAM row is partitioned into 1 tag and 15.data to the DRAM indices such as channel ID, rank I&¢

and dissipating heat out of the chip package are still lichite ~ Then, transaction scheduling is performed for on-package
However, the available on-package memory capacity is much and off-package regions separately, since the transaction
larger than the state-of-the-art LLC capacity. layer optimization for each region is independent of that
Because the on-package DRAM can have fast access speed, for the other region.

it is ideal we can use them as the unified system maine The removal of off-package electrical signaling for on-
memory [4]-[7]. While some application domains do not Package memory is another minor change (see Fig. 3).
require lots of main memory [4], generally the aggregate * The Migration Controller is another key component to
memory on-package, which is assumed to be a gigabyte in this make the memory controller “smart” in Fig. 3. It can
work, is still not sufficient to hold the entire main memory ~ be either pure hardware-based or OS-assisted depending
space, which can be several gigabytes. For our system, in ON the migration granularity. The detailed discussion of
addition to the on-package DRAM, we model four DDR3 its implementation and algorithm will be presented in
channels connected to traditional DRAM DIMMs. For the rest ~ Section lIl. In general, the migration controller mon-

of the paper, we refer to these DIMMs as off-package DRAM.  itors the recent memory access behavior, reconfigures
the physical address routing, and sends out additional

A. On-Chip Memory Controller memory operations to swap the data across the package
It is not practical to implement the heterogeneous main boundary.

memory space if the memory controller is off-chip and all the

memory accesses have to leave the microprocessor packdg®erformance Comparison to Larger LLCs

first. However, with the help of an on-chip memory contrqller her th ) K

it becomes simple to form a heterogeneous memory spac@at er t_ an using on-package memory resources as a part

with both on- and off-package memories. As shown in Fig. f the main memory space, an .alternatlve is to simply use

the memory controller on the microprocessor die is conuectt'®M (0 expand the LLC capacity or deepen the cache hi-

to off-package DIMMs with the conventional 64-bit DDRXerarchy. Looking into the well-known average access latenc

bus and on-package memory with a customized memory pggproximation as quoted below,
MSBs of physical memory addresses are used to decode € e access time Hit time + Miss ratex Miss penalty
target location. For example, if 1GB of 32-bit memory space
is on-packageAddr[31..30]=00 is mapped to on-packagethe conventional cache hierarchy design only works effelti
memory while Addr[31..30]={01,10,1%} is mapped to off- when the difference between thiit time and theMiss penalty
package DIMMs. It is necessary to make several minor mog-large. When the LLC latency is approaching the off-paekag
ifications so that the memory controller has the capability gnain memory latency (see Table Il), the relatively small
mapping physical memory addresses to either on-packagedfiference betweehlit time andMiss penaltydoes not justify
off-package regions. Fig. 2 and Fig. 3 show the differengge use of the on-package memory as a cache. Furthermore,
between a normal on-package DRAM memory controller amelg. 4 shows that there is almost no benefit to enlarge the
our proposed heterogeneity-aware one. The modificatians &LC capacity in terms of the cache miss rate. While accessing
listed as follows, the LLC and the main memory in parallel can help hide the
« As shown in Fig. 2, the conventional memory controllelong LLC access latency, there is not enough off-package
first schedules memory transactions by combining amndwidth to access the off-package memory speculatively
reordering to achieve performance optimization, and themd simultaneously with every reference to an on-package
the memory physical address is further resolved intache memory. Furthermore, off-package references casum
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Fig. 4. The cache miss rate of different LLC capacities. THE SIMULATION CONFIGURATION OF THE BASELINE PROCESSOR AND
THE OPTIONAL ENHANCEMENTS WITH ONPACKAGE DRAM MODULES
significantly more power and should generally be avoidegd Microprocessor
when possible. Number of cores 4
To validate the concept that it makes more sense to leveragbreauency CatheNEToy HierarihzyGHz
.the large on-package memory as a part of th? main MeMANHLT and ILT caches 32KB, 8-way, 2-cycle, private
instead of an LLC, we run simulations on Simics [8] and L2 cache 256KB, 8-way, 5-cycle, private
compare the performance of different options using the imetr| L3 cache Misc;:\gr'?é jfs'wayv 25-cycle, shared
Al
of total IPC. For our quad-core system, our performance evatemory controller S-cycle Tor processing
uation makes use of 4-thread OpenMP version of workloadsController-to-core delay 4-cycle each way
from NAS Parallel Benchmark (NPB) 3.3. We use CLASS iac‘g“\‘gifepéglgslay 151"23;‘2% fgﬁ:‘]dv"t%
C as the problem_ size so that the general memory footprinierposer pin delay 3-cycle each way
of the workload is sufficiently large for our purpose. The Inter-package delay 1-cycle round-trip
memory footprints of all the 10 workloads in NPB 3.3 suite gﬁ:u'\i"ngoéglgf'ay ffécg’;(':fe
are listed in Tabl_e I. Note that CLASS-C for the workload DC On-package LLC oF memory
is not available in the benchmark package and therefore waz cache 1GB, 15-way, hit 140-cycle, miss 70-cycle
use CLASS-B instead. On-package memory 1GB, 70-cycle
The simulation target is an Intel i7-like quad-core prooess |-2f-Rackage memory i tation CyCIeSZOO-CyCIe
with private L1/L2 caches and a shared inclusive 8MB, 16 Fastforward Pre-defined breakpoint
way L3 cache. The latencies of L1, L2, and L3 caches afeWarm-up 1 billion instructions
computed by using CACTI [9] with 45nm technology. Thel Full simulation 10 biliion cycles

main memory latency is modeled according to Micron DDR3; jatailed DRAM timing model with FR-FCFS scheduling
1866 datasheet [10]. The average random access _me”196}fcy [11] will be used to obtain more accurate results.
latency depends on tlhe actua! memory rgference timing an_dl'he on-package memory is either employed as an L4 shared
sequence. By assuming the SiP solution is _used as shownuilhe or the on-package memory region of a heterogenous
Fig. 1, we set the on-package memory capacity to be 1GB. The 1,y space. The detailed architecture configuratiostisdi
on-package and off-package memory latencies are modeleda$apie |1, Note that when using on-package DRAM as LLC,
follows, the cache hit time is 2X the DRAM access latency as the tag
. Of‘f-package |atency is the summation of the DRA'\/hnd the data are accessed Sequentia”y_
core access latency, the memory reference queuing delayas illustrated in Fig.5, the simulation result shows thahgs
the memory controller traversal delay (including memornhe extra 1GB on-package DRAM resources to add a new L4
controller processing delay and the propagation del@¥che can improve the IPC, but in some cases (e.g. CG.C) the
between the CPU core and the memory controller), thgrformance improvement is limited to 0.1%. This is because
package pin delay, and the PCB wiring delay; cache capacity misses are not the performance bottleneck
« On-package latency is the summation of the DRAM coligeyond a certain capacity threshold, while the increasebleca
access latency, the memory controller traversal delay, thgency starts to offset the benefit and degrade the perfurena
silicon interposer pin delay, and the intra-package wirings illustrated in Fig. 4.
delay. Note that the memory reference queuing delay ison the other hand, directly mapping on-package DRAM
not included in the on-package latency model since it {gsources into the main memory space can often achieve
almost eliminated by the the increase in the number of 0Better performance. As shown in Fig. 5, for 7 out of the
package DRAM chip banks and their higher I/O speedgtal 10 workloads that have memory footprint of less than
(our later trace-based simulation shows that accessing thgB, this strategy is equivalent to having all the memory on-
off-package 8-bank DRAM causes 107 cycles of queuinghckage. For the other 3 workloads, MG.C has slightly better
delay while accessing the on-package 128-bank DRANErformance using the on-package memory as a heterogenous
only causes less than 3 cycles on average). memory instead of an L4 cache, and DC.B and FT.C cannot
In this Simics simulation, we simply model the DRAM corecompete against the L4 cache. However, note the simulation
access latency as fixed numbers and set them to be 60-cyelult shown in Fig. 5 is only the case of a static mapping.
and the queuing delay to be 120-cycle, respectively. In tihes we will show in the next section, a heterogeneous main
trace-based simulation we later demonstrate in Section IMemory with dynamic mapping that intelligently migrates
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. 48-bit M Add
data between on-package and off-package regions can furthc D ey Aderess

N
improve the performance and approach the ideal performanc [ Macro Page Index‘l 22bits_|

as described in Section Ill. ; lA «
i| 0x0000000 Macro Page 0
[1l. DATA MIGRATION USING ON-CHIP MEMORY [ ‘00000001 Macro Page 1 (LRU) [ MRU Macro Page |
CONTROLLER £ 0x0000002 Macro Page 2
As discussed in the previous section, the means of static : N=256

memory mapping that always keeps the lowest memory ad; L®X0000FF | [MacroPage -1 |

dress space on-chip only works effectively for the casesavhe Translation Table

the application memory footprints fit into the on-chip mem- Fig. 6. The basic migration management design (N Mode).

ory. For workloads that need much more memory resourCﬁ
the performance improvement achieved by static mapping, |
trivial. For example, the performance improvement of DC.%ﬁ
is only 16% and that of FT.C is only 20.7%. Both of the 8
are less than the ones achieved by using on-package DR
as LLC. The major reason is the lack of the dynamic da
mapping capability.

To solve this issue, we propose to add the data migrati

U off-package macro page, and maintains a translation
le. As shown in Fig. 6, assuming the memory space has
address bits and the macro page size is 4MB, the lowest
ﬁl bits are the offset address of each macro page, and the
ghest 26 bits are the macro page IDs. The macro page

is re-mapped to a new ID through a translation table.
gﬁnsidering the case that on-package memory has the capacit
functionality into the memory controller so that frequegntl of 1GB, therg are N=256 ?“t”es in the translatu_)n ta.\ble. T_he

Agp column in the translation table, as shown in Fig. 6, is

used portions of memory can reside on-package with hig wally th dqd Each ; K
probability. Compared to other work on data migration [12]9IC ually the row address. =ach row represents one on-packag
emory slot, while the right column represents which macro

[16]: (1) our data migration is implemented by introducin age is currently located in the on-package memory region.

another layer of address translation; (2) depending on &l d ) ) D
granularity, we propose either a pure-hardware implentienta Note that the right column of the translation table is iritied
chcontam the same value as its left column counterpartao th

or an OS-assisted implementation; and (3) a novel migrati{)h | t 1GB mai is initially located K
algorithm is used to hide the data migration overhead. € lowes > main memory IS initially located on-package.
In addition, this translation table is bi-directional. FHoput

In this paper, we use the ternmacro pageas the data .
migration granularity, and thenacro page sizean be much macro page IDs s_maller than N,_ the translation table works as
larger than thepage sizeof 4KB which is used in most a _RAM,_for“IDs blg%er than N, it works as a CAM. We call
operating systems this design “N Mode” because all the N slots in the on-package
' memory region are utilized.
A. Data Migration Algorithm The memory controller always monitors the LRU on-

In this work, our data migration algorithm is based ofackage macro page (for example, the 2nd row in Fig. 6) and
Hottest-coldest swappingechanism, which first monitors thethe MRU off-package macro page. During the data migration
LRU (least recently used) on-package macro page ¢oldest Procedure, the translation table is updated and the rightoo
and the MRU (most recently used) off-package macro pagéthe 2nd row in Fig. 6 will store the MRU macro page ID.
(the hottest during the last period of execution and thediowever, the problem of this basic implementation is thaada
triggers the memory migration if the off-package MRU pagetored in LRU and MRU pages have to be swapped before
is accessed more frequently than the on-package LRU pdhe translation table is updated. Since the macro page size i
after each monitoring epoch. usually large and the off-package DDRx bandwidth is limited

As demonstrated later in the simulation results, it is a gmpt Wil halt the execution and incur unacceptable perforoean
but effective method to implement the data migration. Irs thPverhead. Therefore, techniques to hide data movementiate
section, we focus on describing the migration algorithm ii$ necessary.
an incremental way starting from a relatively straightfardr N-1 Mode

design. As an improved design, the “N-1 Mode”, in which one on-

Basic Design — N Mode package memory slot is sacrificed, is proposed. As shown in
This is the basic design, in which the on-chip memorkig. 7, although there are still N slots, one of them (inigial
controller monitors the LRU on-package macro page and thee last slot) does not map to any memory address and it is



,Pending Bit
1

slot C. After this step finishes, the P bit is reset. Finally,
0 | 0x0000000 Macro Page 0 after copying the LRU data, Afrom slot A to slot,
0 | 0x0000001 MasioFage IRt slot A becomes the new empty slot
0 | 0x0000002 Macro Page 2 py ’
: 5 N-1=255 « If the macro page ID of MRU is greater than N and the
[ Tox00000FF | [Empty [WRU Macro Pags | LRU is greater than N it means that MRU is @6
Transiation Table macro page and LRU is adF one. Fig. 8(b) shows the
Fi . S . o data movement in this case. The first two steps are the
ig. 7. The improved migration management design sacmfi@ne on- . . .
package memory slot for pending memory transactions (N-Hé)lo same as the ones in Fig. 8(a). In the third step, data A

marked as “empty”. In practice, “empty” can be represented b
a reserved macro pade (e.g., the highest 4MB macro page

with

the number of the effective on-package memory slots is N-1.
Furthermore, each row in the translation table has an adaiti

P bit, called “pending bit”, which is initialized to be ‘0’. Wén

P bit is set, the RAM function of the empty slot is bypassed
and the left column is always translated?anstead, while the
CAM function still works. The characteristics of the treatsbn
table are:If macro pagen(n < N) is located in the on-
package region, it can only be in the position of the n-th row.
Before we explain the swapping algorithm, we define all the
macro pages into 5 categories:

1)

2)

3)

4)

5)

which is currently stored in slot C, is copied to skt

and after that row A in the translation table is remarked
as “pending”. Finally, data @& moved back to its original
place, and after that the P bit is reset. During the last step,
all the memory accesses to dataafe no longer routed

to slot C, but accesses to dataate still routed to slot

A, because the P bit only prevents the address translation
from A to C.

« If the macro page ID of MRU is less than N and the
LRU is less than N, it means that MRU is &S macro
page and LRU is ai©F one. In this case, as illustrated
in Fig. 8(c), the first step is to copy data iDto the
empty slot C and update the translation table by adding a

o8 ] new link C-to-D but with the “pending” bit marked. The

Original Fast (OF) Macro page whose ID is less than  gecond step is to copy datatck to its original slot and

N, and its data is located in the on-package memory et the entry in the translation table to Beto-B. The

region without any address translation. Its address is in  third step is the same as the second step in Fig. 8(a) and

the left column of the address table but pointing to itself. Fig. 8(b). After that, the P bit is cleared. The fourth step
Original Slow (OS) Macro page whose ID is greater is the same as the third step in Fig. 8(a).

than N, and its data is located in the off-package memory, |t the macro page ID of MRU is less than N and the
region without any address translation. Its address is not | ry is greater than N, it means that MRU is MS

in the translation table. _ macro page and LRU is aNF one. This is the most
Migrated Fast (MF) Macro page whose ID is greater  compjicated case because both the MRU and the LRU
than N, but its data is migrated into the on-packageé pages are migrated ones. Fig. 8(d) demonstrates the data
memory region. Its address is in the right column of  moyement in this case. Actually, the first 3 steps are the

the translation table. _ same as the ones in Fig. 8(c) and the last 2 steps are the
Migrated Slow (MS)Macro page whose ID is less than same as the ones in Fig. 8(b).

N, but its data is migrated out of the on-package memory
region. Its address is in the left column of the translatiohxample

table and pointing to a new address. . We use the case illustrated in Fig. 8(d) to describe how
Ghost Macro page whose ID is less than N, but its datgye coldest on-package data are swapped with thettest
is migrated to a reserved macro page in the off-packagg.package data. As shown in Fig. 8(d), before the swap is
memory region. Its address is in the left column of thgiggered, data Aand B are already swapped with Bnd E

translation table and pointing to the reserved macro pagg&pectively. Consequently, And B are MS pages, while D
(i.e. 0x800). and Eare MF pages. In addition, macro pagei€the Ghost

ID of 0x800 in the 8GB memory spate Therefore,

The following algorithm describes how to performance page since its data is actually stored in an off-package slot
hottest-coldest swap called Q. The MSR off-package page is, Bnd it should be

If the macro page ID of MRU is great than N and thenoved back to its original location (slot B) in the on-packag
LRU is less than N, it means that MRU is &5 macro memory region. On the contrary, the LSR on-package page is
page and LRU is a©F one. This is the simplest caseD, and it should be moved back to its original location (slot D)
As shown in Fig. 8(a), the first step is to copy data @ the off-package memory region. The entire swap procedure
into the empty slot B. Since the MRU slot C is now ins performed in the following order:

the on-package region, a new ling;to-C, is upglated in 1) Data_Estored in slot B is moved to slot C, which is
the translation table. However, because the licko-B, empty now.

is not ready yet, the P bit of this row is set to be ‘1’. The 2) Update the translation table. Change Row C fiGrto-
second step is to copy datafBbm the Ghostslot, 2, to emptyto C-to-E, and set the P bit of Row C.

3This piece of macro page can be reserved by the hardwarer drfiter 3) Copy data_Bback to slot B. After this step, accesses
booting the OS. to the MRU macro page, ,Bare already routed to on-
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Fig. 8. Migration algorithm: (a) Data migration in the cabattMRU> N and LRU< N; (b) Data migration in the case that MBUN and LRU> N; (c)
Data migration in the case that MRUN and LRU< N; (d) Data migration in the case that MRUN and LRU> N.

. ,Pending Bit
1<

package regions.
4) Update the translation table. Change Row B fiBto-E g 8 gxgggggg? macm gage?(LRU)
X acro Fage
to B-to-B 0] o 0x0000002 Macro Page 2
5) Copy data C(from slot () to slot E. ; : N-1=255
6) Update the translation table. Clear the P bit of Row C [o]7] X00000FF | [Ermpty . |~ [MRU Macro Page |
7) Copy data Afrom slot D to slotf2. N Filling Bit Translation Table
8) Update the translation table. Set the P bit of Row A. [0]oJo[o0]...[o[*[1]1[[0]o]0]...[0]
9) Copy data Dfrom slot A to its original place — slot D. y,
10) Update the translation table. Change Row A frAfto- M ='1024

D to A-to-emptyand clear the P bit. Before this step idig. 9. The improved version of N-1 Mode with live migrationpgort:

s : _ The additional F bit indicates that the corresponding otkpge slot is under
finished, accesses to dateale still routed to on paCI(agedata movement; the associated bit map indicates which kua-Is ready for

regions. accessing.

In general, this algorithm makes sure that during the data mi o implement this conceot in hardware. we add another bit
gration procedure, the data under movement has two physiﬁ)a-!;a(':h Eow in the tlranslatiorr)1 tlable ar:,gi a s:evp\;arated bit map ,L\
locations: one is in the on-package memory region and t ﬁown in Fig. 9, the newly-added bit is called “F bit" (Fikjn

other is in the off-package memory region. Thanks to the d X . . .
duplication and the introduced P bit that blocks uncomplst)e'éb' When the F bit is set, it means the corresponding on-

T : . : ackage slot is loading data from off-package memory and
bi-directional mapping, the program execution will not bé& : . : L

. . This on-package slot is partially available. The additionia
halted since all the memory accesses are routed to an deaila

: : . . . ap indicates which sub-block has already been moved to the
physical location. By using this data movement algorlthrTE)T’]n-package slot. When the F bit is set to ‘1’, all the bits in

;f;el;i:zte ht:/rjts?;ez Iirr]1 I|::|Ig %((ac)) Zr:](:j FFI? 8é?(j))lzr(éo?opr:1et?e(:e e bit map are reset to ‘0’. However, when all the bits in the
P g g P oIt map become ‘1, the F bit is reset to ‘0’ representing the

the MRU macro page, which is previously stored in the o S .
] . data loading is completed.For example, if we use the macro
package memory region, can start to experience fast access

. ) o ge size of 4MB and sub-block size of 4KB, then there are
speed provided by the on-package memory. In addition, u I(?1024 bits in the bit map. To suppoctitical-data-first the

the last step (in all four cases) is completed, the LRU macro
page can still be fast accessed since it still has a copy in {hemory controller starts to copy the macro page from the
position of the MRU sub-block and then wraps the address to
on-package memory. L
S o the beginning.

N-1 Mode with Live Migration By using this method, the migration overhead is further

Although theN-1 Modehides the migration latency by con-reduced. In Section IV, we compare the performance im-
servatively accessing the MRU macro page with off-packageovement achieved by the badit Mode design, theN-1
memory speed during the migration, we can further improwdode design, and this improved design, which we dalle
the algorithm by introducing the concept aitical-data-first  Migration.
In the pureN-1 Mode it takes time to bring the MRU page
on chip. For example, when the macro page size is 4MB akd
the off-package interface is DDR3-1333, it tak&Blus to The migration algorithm can be implemented in either pure-
finish the first step as described in the algorithnNet Mode hardware way or OS-assisted way depending on the migration
During this374 s, all the following accesses to the MRU pageyranularity. Basically, the functionality of the data magon is
are still routed to off-package memory and slow. To addreashieved by keeping an extra layer of address translatan th
this issue, we divide the large data transaction into smallmaps the physical address to the actual machine address. The
chunks, such as 4KB. By doing so, the on-package memagmyre-hardware scheme keeps the translation table in heedwa
can supply data to any request to the 4KB sub-blocks thahile the OS-assisted scheme keeps it in software.
have been already transferred while the rest of the swap isThe pure-hardware solution is preferred when the macro
still ongoing in background. page size is relatively large so that the scale of macro page

Data Migration Implementation



TABLE Il
SIMULATION PARAMETERS AND WORKLOAD/TRACE DESCRIPTIONS

Memory system parameters
Total memory capacity 4GB Macro page size| from 4KB to 4MB
On-package memory capacity 512MB | Sub-block size | 4KB

Workloads

FT.C FT contains the computational kernel of a 3D FFT-based sgettethod.
MG.C MG uses a V-cycle MultiGrid method to compute the solutiorad3D scalar Poisson equation.
SPEC2006 Mixture The combination of four SPEC2006 workloads: gcc, mcf, penl] zeusmp.
pgbench TPC-B like benchmark running PostgreSQL 8.3 with pgbendh ascaling factor of 100.
Indexer Nutch 0.9.1 indexer, Sun JDK 1.6.0 and HDFS hosted on one drarel.
SPECjbb 4 copies of SPECjbb 2005, each with 16 warehouses, using BKnl.5.0.

1.E+07

OS-Assisted Implementation

1.E+06 | When the fined-granularity data migration is used, the
physical-to-machine address translation has to be managed
by software since the pure-hardware scheme has too much

1.E+05 -

Hardware overhead (Bits)

1E+04 overhead as shown in Fig. 10. In the OS-assisted scheme,
the data structure involved in the aforementioned algorith
1.E+03 - is kept by the operating system, while the counters (i.e. the

4 16 32 64 128 256 512 1024 2048 4096

Macro page size (KB)
Fig. 10. The hardware overhead to manage 1GB on-package meho
different data migration granularity.

pseudo-LRU counter to determine the on-package LRU macro
page and the multi-queue counter to determine the off-pgecka
MRU macro page) are still implemented in hardware. The
translation table is updated by an OS periodical routine and
count is controllable within certain hardware resourcesti@ the OS sends out data swapping instruction after each update
other hand, if finer granularity of data migration is reqdire Besides the data movement latency, the extra overheaddtause
the number of macro pages becomes too |arge for hardwakos involvement is on the same level of conventional TLB

to handle and OS-assisted scheme is used to track the act@site overhead, which is mainly consumed by user-kernel
information Of each macro page_ mOde SWitChing and iS about 127 CyCIeS [19]

Pure-Hardware Solution IV. TRACE-BASED ANALYSIS ON DYNAMIC MIGRATION

If the data migration is implemented by pure hardware, To evaluate the effectiveness of our propokettest-coldest
the major overhead comes from the translation table. In tb&ap we compare the performancedfMode N-1 Mode and
case that the on-package memory size is 1GB and the maird Mode with Live Migratiordesigns. We evaluate different
page size is 4MB, the right column takes 26 bits per entmnethods in a conventional system primarily using tracesblas
Therefore, the total number of bits per entry is 28, inclgdinsimulation. In this section, we use traces rather than dlddta
the P bit and the F bit. The cost of the entire translaticinll-system simulator as we used in Section Il because trace
table with 256 entries is 7,168 bits, and it is comparable ttased simulation makes it practical to process trillionmafn
a TLB design in the conventional microprocessors. Since omemory accesses.
proposed translation table has both RAM and CAM functions, We collected the memory trace from a detailed full-system
we conservatively assume that it takes 2 additional clockesy simulator [20] and the trace file records the physical addres
to complete one address translation. CPU ID, time stamp, and read/write status of all main memory

Besides the translation table, there are two bit maps alaocesses. The workloads used to evaluate our designsésclud
incur the hardware overhead. The first bit map is used to st&f€.C and MG.C, which have large memory footprint as we
the filling status of each sub-block. In the 4MB macro padeave shown. Additionally, we developed a multi-programmed
case, its size is 1,024 bits. The second bit map is used todecaorkload, SPEC2006 Mixtureby combining the traces from
the LRU macro page with clock-based pseudo-LRU algorithrgec, mcf perl, andzeusmpFurthermore, besides computation-
which is used in real microprocessor implementation [17htensive workloads, we also consider transaction-inens
and its size is 256 bits. The MRU policy is approximatelyorkloads as well. Therefore, we add traditional serverchen
implemented by multi-queue algorithm [18], by which we usmarks pgbenchand SPECjbb200b and a mixture of Web
three-level of queue with ten entries per level. Thus, tke si2.0-based benchmarkmdexe). All of these workloads have
of multi-queue is 780 bits. Hence, in total, the proposedpurmemory footprints larger than 2GB.
hardware scheme needs 9,228 bits to manage 1GB on-packade order to demonstrate how our proposed memory con-
memory at the 4MB granularity level, which is just a smaliroller effectively leverage the on-package memory regioa
overhead in today's microprocessor designs. Fig. 10 sholisit the capacity of on-package memory space to be 512MB.
the number of bits required by the pure-hardware solutidks for the other parameters, we keep most of the assumptions
increases rapidly when reducing the macro page size. In ttist we have used in the previous sections. However, in this
paper, we consider the pure-hardware solution is only kéasitrace-based simulation, we model the detailed DRAM access
for the granularity larger than 1MB. latency by assuming FR-FCFS [11] scheduling policy and



TABLE IV
THE EFFECTIVENESS OF THE PROPOSED MEMORY CONTROLLEBRASED DATA MIGRATION IN REDUCING THE AVERAGE MEMORY ACCESS IATENCY.

Workload FT.C | MG.C | pgbench| indexer | SPECjbb| SPEC2006 Mixture

DRAM core latency (cycles) 85.18 | 42.29 | 121.85 | 103.45 | 126.45 80.67

Latency w/o migration (cycles) 86.02 | 49.16 | 152.83 | 118.52 | 159.40 288.10

Best latency w/ migration (cycles) 83.20 | 42.23 | 124.27 | 105.55| 135.60 82.45

Effectiveness 69.1% | 84.3% 92.2% 86.1% 72.2% 99.1%
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Fig. 11. The average memory access latency of various wadkldy using different methods of data swapping: (a) swappiterval = 100K memory
accesses; (b) swapping interval = 10K memory accessesh€cdwapping interval = 1K memory accesses.

open page access. We use 8-bank structure for the off-packayg varying the swapping interval number. We compare the

DRAM and 128-bank structure for the on-package DRAMandom memory access latency on average by triggering the

Therefore, the simulated DRAM access latency depends on sveap operation after each 100,000, 10,000, and 1,000 memory

memory reference sequence, read/write distribution,lvank accesses, respectively. When the data swap activity become

locality, and whether the access is routed to the on-packdge frequent, the existence of P bit and F bit prevents trigge

or off-package region. In addition, the macro page graitylaranother swap if the previous swap is not complete yet.

under the memory controller management ranges from 4KB to ) o

4MB, and the sub-block size for live migration is 4KB. Dué® N Mode, N-1 Mode, and Live Migration

to the hardware overhead concern, OS-assisted schemalis us€ig. 11 shows the effective memory access latencies of

for macro pages smaller than 1MB and pure-hardware scheasing different swapping intervals and the comparison amon

is used for macro pages larger than 1MB (including 1MB). different migration algorithms. Observing the simulatiesult
Swap interval is another parameter that has a large impadten the data granularity is large (i.e. 4MB), it is obvioas t

on the effectiveness of our proposed hardware-based data seie that the straightforward methdd,Mode is not practical

gration scheme. Therefore, we run the trace-based simnlatbecause it needs to move a large chunk of data without hiding
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Fig. 12. The average memory latency (swapping interval = 1&maory Fig. 13. The average memory latency (swapping interval = ho&mory
accesses). accesses).

m4KB B16Kb m64KB m256KB ®m1MB DO4MB

any latency. Hence, in this design, when the swap frequency g
is high (i.e. once per 1K or 10K memory accesses), the 160
migration overhead offsets the benefit. Therefore, in order & 730
to hide the migration overheati-1 Mode which sacrifices 100 -
one slot in the translation table, should be used to overlap

data migration with computation. In additiolive migration
which cuts the macro page into smaller pieces, can further
hide the migration overhead by finer-granularity overlagpi T MG

Memory latency (cycles)
o]
o

pgbench indexer SPECjbb SPEC2006

and reduce the average memory access |ater_1cy. by 5-2%_- Fig. 14. The average memory latency (swapping interval =K16@mory
However, when the data migration granularity is small (i.@ccesses).

4KB), the difference amondgN Mode N-1 Mode and live
migration becomes negligible. This is because the overheld

of swapping two small macro pages is trivial and N Mode has Sensitivity Analysis on On-Package Memory Capacity

only 12.5% of the 4GB memory space in this case.

one more slots in the translation table as its name implies.
In order to further demonstrate how our proposed hetero-

B. Migration Granularity and Frequency geneous main memory with migration feature enabled can

The migration granularity and the migration frequency a@fficiently leverage the on-package memory resources, we
the two key factors affecting the effectiveness of the psegb conduct a sensitivity analysis by reducing the on-package
heterogenous main memory space. To study the impactB¢MOry capacity from 512MB to 128MB. As expected, the
these two factors, we udive migration algorithm with dif- average memory access latency is increased because it be-
ferent macro page sizes and swapping intervals, and Fig. §@Mes harder to keep as many as data on package when the
to Fig. 14 illustrate the result. The comparison shows th@p-Package memory size is reduced. However, as illustrated
the migration frequency is more important since the minimufl Fig- 15, the average latency is still much shorter than the
memory latencies in Fig. 12 are smaller than those in Fig. 1&€ncy without dynamic data migration, while the on-pagka
and Fig. 14. Another observation is that different types @Rémory capacity is reduced from 512MB to 128MB.

workloads have different favorites on the migration gramity D. Power Evaluation

and the optimal migration granularity also depends on the .
migration frequency. While thdive migration can make it  Fig- 16 shows the total memory power comparison between

feasible to migrate data across the package boundary withg&ing hybrid on- and off-package DRAM with dynamic migra-
incurring too much overhead, it is necessary for the memoi§n and only using off-package DRAM. We assume SpJ/bit
controller to adaptively change the migration granulagty fOr both on- and off-package DRAM core access, 1.66pJ/bit
cording to different types of workloads. In this work, we prof0f ©n-package interconnect, and 13pJibit for off-package
pose to use an OS-assisted approach for fine-granularity dpgrconnect [21]. The memory power overhead caused by
a pure-hardware approach for coarse-granularity as dhestri Cr0SSing-package migration depends on the migrationvater
in the previous sections. The minimum power ov_erhe_ad we o_bserve is about 2X, which
In order to demonstrate the effectiveness of the propos@gfurs when the migration interval is once per 100K memory
heterogenous memory space and its management algoritf#figesses and the migration granularity is 4KB.

in a more generalized way, we define the effectivengsas V. RELATED WORK

follows,
S L A large body of prior work has examined how to use on-chip
Latency w/o migration- Latency w/ migration S .
= S x 100% memory controllers and data migration schemes to imprave th
Latency w/o migration- DRAM core latency system performance.

And, this metric approximately reflects how many memorx ]
accesses are routed to the on-package memory region. - On-Chip Memory Controller

Note that the average effectiveness is 83% as listed inThe recent trends with the inclusion of on-chip memory
Table IV, while the on-package memory size is 512MB, whicbontrollers in modern microprocessor designs help eliteina
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BFT BMG M®pgbench Hind BSPECjbb D SPEC2006 . .
pveneh Einderet : For large caches where interconnect latency dominates the

N
=}

§’? - total access latency, a partitioned Non-Uniform Cache 8sce
%E% 10 (NUCA) architecture is adopted [31]. To improve the prox-
t5310 imity of data and computation, dynamic-NUCA policies have
%g? 5 1 been actively studied in recent years [12]-[14], [32]. Altigh
EEE 0 dynamic-NUCA method helps performance, the complexity
3° K] 10K ] 100K | K| 10K ] 100K | 1K 10K ] 100K of the search mechanism together with the high cost of
- Size = 4KB Size = 16KB see-sss | communication makes it not scalable.
Fig. 16. The relative memory power when using heterogenousand off- Our proposed heterogeneous main memory can also be

ackage DRAM with dynamic migration and only using off-pagk DRAM. . .
packag Y 9 y Hsing o-bag treated as a NUMA system. Although on-chip and off-chip

memory regions have different access speeds, both of them
e local to the accessing processor, hence cache coherence
o . . is not an issue in this scenario. The previous researchstlose
addition, integrating the memaory controller on chip alskesa to our work is from Ekman and Stenstrom [33], in which

it possible to add an extra level of address indirection to 'S multi-level exclusive main memory subsystem i,s proposed
map thg da}ta structure in memory and to improve cache al"r\dtheir work, pages can be gradually paged out to disk.
bus _ut|l|zat|on [23]. However, our work proposes a SySte%rough multiple levels of memory regions, but proactivéada
architecture where the memory controller is tightly intetgd migration from lower-tier to higher-tier memory regions is
with TLBs, which is seldom available in the contemporarxot allowed. Different from most of the previous work, our

computer ma.lrket. ) - approach introduces a new layer of address translatiorighat
Many previous DRAM scheduling policies were proposed Pandled by the on-chip memory controller
improve the memory controller throughput [24], [25]. Strea '

pre-fetchers are also commonly used in many processors [26] VI. CONCLUSION

[27] since they do not require significant hardware cost and ... . . - .
o " SiP and 3D integration are promising to bring more memory
work well for a larger number of applications. In addition . . "
tells onto microprocessor package to mitigate the “memory

prefetch-aware DRAM controller was proposed [28] to Maxyalr problem. In this paper, instead of using them as caches

imize the benefit and minimize the harm of prefetching. Our . : .
. : . . Wwe studied the architecture of using the on-package memory
work is orthogonal to these mechanisms: while aggressive

U L : cells as a portion of the main memory working in partnership
prefetching is effective in tolerating memory latency byvno ) ; : .
; with a conventional main memory implemented with DIMMSs.
ing more useful data to caches, our work focuses on levegag

. : ; 0 manage this heterogeneous main memory containing data
fast regions in the heterogeneous memory space to hide the . i
. . on both on-package and off-package regions, we introduced
impact of low performance regions.

another layer of address translation. While the conveation
physical address makes the OS paging system keep intact,
the newly-added machine address represents the actual data
NUMA (non-uniform memory access) architecture is useldcation on the DRAM chips. By manipulating the physical-
in many commercial settings of SMP (symmetric multito-machine translation, our proposed on-package memary co
processing) clusters, such as those based on AMD Opteron &motler design can dynamically migrate data across the chip
Alpha EV7 processors. In the ccNUMA architecture [29], eadmoundary. Compared to using on-package memory as caches,
processor or processor cluster maintains a cache systenthieoheterogenous main memory approach does not pay an extra
reduce internode traffic and average latency to non-lodal. dgpenalty for tag access before data access and for cachesmisse
The Fully-Buffered DIMM [30] is another example of NUMA The evaluation results demonstrate how the heterogeneous
which can be configured to behave as a uniform architectur&in memory can use the on-package memory efficiently and
by forcing all DIMMs to stall and emulate the slowest one. achieve the effectiveness of 83% on average.

the system-bus bottleneck and enable high-performance
terface between a CPU and its DRAM DIMMs [22]. In

B. Non-Uniform Access
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