
The Effect of Interconnect Design on the Performance of Large L2 Caches

Naveen Muralimanohar, Rajeev Balasubramonian
School of Computing, University of Utah
{naveen, rajeev}@cs.utah.edu ∗

Abstract
The ever increasing sizes of on-chip caches and the

growing domination of wire delay have changed the tra-
ditional design approach of the memory hierarchy. Many
recent proposals advocate splitting the cache into a large
number of banks and employ an on-chip network to allow
fast access to nearby banks (referred to as Non-Uniform
Cache Architectures (NUCA)). While these proposals fo-
cus on optimizing logical policies (placement, searching,
and movement) associated with a cache design, initial de-
sign choices do not include the complexity of the network.
With wire delay being the major performance limiting fac-
tor in modern processors, components designed without
including wire parameters and network overhead will be
sub-optimal with respect to both delay and power. The pri-
mary contributions of this work are: 1. An extension of the
current version of CACTI to include network overhead and
find the optimal design point for large on-chip caches. 2.
An evaluation of novel techniques at the microarchitecture
level that exploit special wires in the L2 cache network to
improve performance.

Keywords: cache models, non-uniform cache architec-
tures (NUCA), memory hierarchies, on-chip interconnects,
data prefetch.

1. Introduction

The abundant transistor budget provided by Moore’s law
enables us to increase the size of on-chip caches to multi-
ple mega bytes. The recently released Intel Itanium pro-
cessor employs 32MB of on-chip L4 cache and these ca-
pacities will continue to increase at future process tech-
nologies. While large on-chip caches are effective in re-
ducing the cache miss rate, careful choice of design pa-
rameters is critical to translate this reduction in miss-rate
to performance improvement.

For the past several years, academic researchers have
relied on CACTI [15] to find the optimal design point of
on-chip caches. CACTI is an analytical tool that takes a set

∗This work was supported in part by NSF grant CCF-0430063 and by
an NSF CAREER award.

of cache parameters as input and estimates the access time,
layout, and power consumption of on-chip caches. While
CACTI is still powerful enough to model small uniform-
cache-access (UCA) designs, it does not have the capabil-
ity to model large caches efficiently. The traditional UCA
model has a major scalability problem since it limits the
access time of a cache to the access time of its slowest
sub-bank. For future large L2 or L3 caches, the disparity
in access delay between the fastest and slowest sub-banks
can be as high as 47 cycles [14]. Hence, having a single
uniform access latency to the entire cache will result in a
significant slowdown in performance.

Kim et al [14] addressed this problem by proposing a
Non-Uniform Cache Architecture (NUCA). The idea is to
split the cache into a large number of banks and employ an
on-chip network for communication. Now the access time
of the cache is a function of distance between the bank and
cache controller rather than the latency of the slowest sub-
bank. For evaluating their proposals, they assumed a grid
network and set up the bank count so that each hop has a
latency of one cycle. An ad hoc design such as this may be
sub-optimal both in terms of delay and power.

The access latency of a cache depends on delays in the
decoders, word-lines, bit-lines, and drivers. Decoder and
driver delay components of a cache go up with increase in
the number of sub-banks. On the other hand, word line
or bit line delay components reduce with decrease in sub-
bank size in the vertical and horizontal directions, respec-
tively. The current version of CACTI does an exhaustive
search across different sub-bank parameters to calculate
the optimal design point so that the net access latency of
the cache is minimal. In addition to the above four com-
ponents, large caches in future processors will have an ad-
ditional overhead of network delay. Due to the growing
disparity between wire and transistor delay, this factor will
continue to dominate with technology improvements. The
choice of wires in the network link, and the flow control
mechanism employed in the network, will have a signifi-
cant impact on cache access time.

The memory wall problem is well known. Though hier-
archical memory and out of order execution help alleviate
this problem, L2 access time continues to have a signifi-
cant impact on processor performance. Figure 1 shows the

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

am
m

p

ap
pl

u

ap
si ar
t

bz
ip

2

cr
af

ty

eo
n

eq
ua

ke

fm
a3

d

ga
lg

el

ga
p

gc
c

gz
ip

lu
ca

s

m
cf

m
es

a

m
gr

id

pa
rs

er

sw
im

tw
ol

f

vo
rt

ex vp
r

w
up

w
is

e

IP
C

 im
p

ro
ve

m
en

t

Increase in IPC due to reduction in L2 access time

Figure 1. Improvement in IPC due to reduction in L2

access time from 30 cycles to 15 cycles on an aggres-

sive out-of-order processor model.

effect of L2 access time on the SPEC2k benchmark suite.
The bar shows the improvement in IPC when L2 access
time is reduced from 30 cycles to 15 cycles. The exper-
iment is conducted on an aggressive 8-issue out of order
processor model. The details of other processor parame-
ters are discussed in the methodology section. As shown
in the figure, even an aggressive eight issue processor suf-
fers significant performance loss with increase in L2 ac-
cess time. Thus, optimizations targeting a reduction in
L2 access time have the potential to improve performance,
and hence energy.

In this work, we extend the current version of CACTI
to include network parameters and find the optimal de-
sign point for large caches. We also show that the choice
of wires in a network link has a huge impact on optimal
cache parameters and performance. Based on this obser-
vation, we propose a heterogeneous network for the L2
cache – a network consisting of special wires with vary-
ing latency, power, and bandwidth characteristics. We then
present and evaluate novel techniques at the microarchitec-
ture level that exploit these special wires.

The rest of the paper is organized as follows. Section 2
describes the cache area, delay, and power model. Sec-
tion 3 discusses proposed innovations to exploit wire prop-
erties at the microarchitecture level to improve cache ac-
cess time. These ideas are evaluated in Section 4 and com-
pared against previous work in Section 5. In Section 6, we
draw conclusions and discuss other promising avenues for
future work.

2. Cache Delay/Power/Area Models

2.1. Wire Model

This sub-section describes the wire model employed for
the on-chip network. We begin with a quick review of fac-

tors that influence wire properties. It is well-known that the
delay of a wire is a function of its RC time constant (R is
resistance and C is capacitance). Resistance per unit length
is (approximately) inversely proportional to the width of
the wire [12]. Likewise, a fraction of the capacitance per
unit length is inversely proportional to the spacing between
wires, and a fraction is directly proportional to wire width.
These wire properties provide an opportunity to design
wires that trade off bandwidth and latency. By allocating
more metal area per wire and increasing wire width and
spacing, the net effect is a reduction in the RC time con-
stant. This leads to a wire design that has favorable latency
properties, but poor bandwidth properties (as fewer wires
can be accommodated in a fixed metal area). Our analysis
[8] shows that in certain cases, nearly a two-fold reduction
in wire latency can be achieved, at the expense of a four-
fold reduction in bandwidth. Further, researchers are ac-
tively pursuing transmission line implementations that en-
able extremely low communication latencies [7, 11]. How-
ever, transmission lines also entail significant metal area
overheads in addition to logic overheads for sending and
receiving [4, 7]. If transmission line implementations be-
come cost-effective at future technologies, they represent
another attractive wire design point that can trade off band-
width for low latency.

Similar trade-offs can be made between latency and
power consumed by wires. Global wires are usually com-
posed of multiple smaller segments that are connected with
repeaters [1]. The size and spacing of repeaters influ-
ences wire delay and power consumed by the wire. When
smaller and fewer repeaters are employed, wire delay in-
creases, but power consumption is reduced. The repeater
configuration that minimizes delay is typically very differ-
ent from the repeater configuration that minimizes power
consumption. Banerjee et al. [3] show that at 50nm tech-
nology, a five-fold reduction in power can be achieved at
the expense of a two-fold increase in latency.

Thus, by varying properties such as wire width/spacing
and repeater size/spacing, we can implement wires with
different latency, bandwidth, and power properties. Thus,
in addition to minimum-width wires (referred to as the
baseline B-Wires), there are at least three other wire imple-
mentations that are potentially beneficial (shown graphi-
cally in Figure 2):

• L-Wires: Wires that are latency-optimal. These wires
employ very wide width and spacing and have low
bandwidth.

• P-Wires: Wires that are power-optimal. The wires
have longer delays as they employ small repeater size
and wide repeater spacing.

• W-Wires: Wires that are bandwidth-optimal. The
wires have minimum width and spacing on lower
metal layers and have longer delays.

Delay Optimized Bandwidth Optimized Power Optimized Power and Bandwidth Optimized

Figure 2. Examples of different wire implementations. Power optimized wires have fewer and smaller re-
peaters, while bandwidth optimized wires have narrow widths and spacing.

Wire Type Relative Latency Relative Area Wiring Pitch (nm) Latency (ns/mm)
B-Wire (8X plane) 1x 1x 210 0.122

B-Wire (4X plane) 2.0x 0.5x 105 0.244

L-Wire (8X plane) 0.5x 5x 1050 0.055

Table 1. Area and delay characteristics of different wire implementations.

Figure 3. Structure of a cache (from [15]).

For this work we will focus on minimum-width wires in
the 4X and the 8X metal planes and the low latency L-
wires that have four times the area of an 8X minimum-
width wire. Table 1 summarizes the latency, bandwidth
and area characteristics of these wires. All the calculations
are based on ITRS 2005 roadmap parameters.

2.2. The CACTI-L2 Extension

Figure 3 shows the basic structure of a cache. CACTI
divides the total access time of the cache into seven main
components (decoder, wordline, bitline, senseamp, com-
parator, multiplexer-driver, and output driver). Of these,
senseamp and comparator delay is almost constant across
different cache sizes and its contribution to the total access
time reduces with increase in cache size. The mux-driver
delay component consists of delay due to multiplexer logic
(to select the appropriate line) and driver delay to route the
control signal to the output driver. The latter part is pro-

portional to the size of the cache. The decoder part of the
cache consists of a single centralized pre-decoder and a
separate decoder for each subarray. The output from the
pre-decoder is fed to the final decoder stage to drive the
appropriate wordline. Thus, the decoder delay component
is the sum of time to route address bits to the central pre-
decoder, time to route the output of the pre-decoder to the
final stage decoder, and the logic delay associated with pre-
decoder, decoder, and driver circuits. Thus, decoder delay
depends on both cache size and subarray count. The word-
line delay of data/tag array is proportional to the length of
the array and the bit line delay is proportional to the height
of the array. These two delay values can be tweaked by
adjusting the aspect ratio of the sub-array. To bring down
the delay values of both these components the cache is
split into a number of sub-arrays. But, with an increased
number of sub-arrays, the latency to send signals to and
from the central pre-decoder increases. Thus, there ex-
ists a trade-off between the sub-array size and the wire
length. CACTI does an exhaustive search across different
sub-array counts and aspect ratio values to find the optimal
design point.

A similar trade-off exists in large caches between net-
work delay and bank access delay. Figure 4 shows the
various delay components of a 32MB cache for different
bank count values. We assume a grid network for inter-
bank communication and all transfers happen on global 8X
wires. Figure 5 shows the L2 organization. The banks are
organized such that the number of rows is either equal to
number of columns or half the number of columns. The
vertical and horizontal hop latencies are calculated using
the wire model discussed in the previous sub-section. The
bank access value shown in the graph is obtained by feed-
ing the bank size to the unmodified version of CACTI
along with other cache parameters. It can be observed that

0

20

40

60

80

100

120

140

2 4 8 16 32 64 128 256 512 1024 2048 4096
Bank Count

C
yc

le
s

(F
re

q
 5

G
H

z)
Average Total Cache Access Latency (Global wires)

Average Network Delay

Bank Access Time

Figure 4. Access latency for a 32MB cache as a func-

tion of the number of banks. The cache access latency

is the sum of bank access time and network delay.

the bank access latency increases exponentially with a de-
crease in bank count value. This is because as the size
of the cache increases, the decoder delay component (that
includes wiring delay) increases significantly. Also, the
bank access time saturates beyond a bank count value of
512 (bank size of 64KB). Beyond this point, the latency
is primarily due to logic delay associated with each stage,
which is constant across different cache sizes.

The average (uncontended) network latency plotted in
the graph is obtained by calculating the access time to each
indvidual bank and averaging them against the total bank
count value. This value depends on both the bank size and
total number of banks. It can be observed that the aver-
age latency first goes down with an increase in bank count
and then starts increasing for large bank count values. If
the bank size is extremely large, the hop latency dominates
the total access time and hence the network latency is very
high. Ideally, the network latency should go down with
an increase in bank count. But, dividing the bank into
half only reduces the area of data and tag arrays. Other
constant area overheads associated with each bank will re-
main the same and hence the reduction in hop latency is
less than half its original value. For very large bank count
values, the reduction in hop latency is usually less than
the increase in hop count to reach a destination, leading to
high average network latencies. The only exception is a
change in bank count value from 1024 to 2048 – because
hop latencies are rounded up to the next integer value, a
doubling in bank count results in halving the vertical hop
latency. Thus, finding the optimal bank count value is crit-
ical to achieving the least possible access latency.

We extend the current version of CACTI’s exhaustive
search to include the network delay component for calcu-
lating the optimal cache configuration. The third line in

Out−of−order
Core and L1

L2 Cache banks

Figure 5. Bank organization.

the graph shows the total average access time including
both bank access latency and network latency. From the
graph, it can be inferred that for a 32MB cache, the opti-
mum value of bank count is 32 or 64.

3. Proposed Mechanisms

The previous section details modifications to CACTI
and outlines different wire implementations possible in a
network. In this section, we discuss microarchitectural
techniques that exploit the different wire types introduced
in Section 2.

3.1. Early Look-Up

We first discuss techniques to exploit L-wires in the net-
work to improve performance of the cache. The existing
baseline network (composed of minimum-width 8X wires)
is augmented with a network composed of low-latency L-
wires. Due to the high area overhead associated with an L-
wire, we assume that each L-network link has a bandwidth
of only 24 bits. Consistent with most modern implemen-
tations, it is assumed that each cache bank stores the tag
and data arrays and that all the ways of a set are stored in
a single cache bank.

In a typical cache implementation, the cache controller
sends the complete address as a single message to the
cache bank. After the message reaches the cache bank, it
starts the look-up and selects the appropriate set. The tags
of each block in the set are compared against the requested
address to identify the single block that is returned to the
cache controller. Thus, all the operations happen in a se-
quential manner resulting in a large total access time. To
break this sequential access, we can send a partial address
on the low bandwidth L-network and initiate the cache ac-
cess. Due to the low latency characteristics of L-wires,

the early look-up starts well before the remaining address
reaches the bank. When the remaining address bits reach
the bank, they are used for tag comparison before selecting
a single cache line and returning it to the cache controller.
The transfer of remaining address bits and initial look-up
of the cache bank now happen in parallel, resulting in a net
reduction in access latency.

Apart from the network delay component, the major
contributors to the access latency of a cache are delay due
to decoders, wordlines, bitlines, comparators, and drivers.
Of the total access time of the cache, around 60-70% of
the time has elapsed by the time the candidate sets are read
out of the appropriate cache bank. By overlapping the two
messages as described above, much of the latency for de-
coders, bitlines, wordlines, etc., is hidden behind network
latency. In fact, with this optimization, it may even be
possible to increase the size of a cache bank without im-
pacting overall access time. Such an approach will help re-
duce the number of network routers and their correspond-
ing power/area overheads. In an alternative approach, cir-
cuit/VLSI techniques can be used to design banks that are
slower and consume less power (for example, the use of
body-biasing and high-threshold transistors).

The number of address bits required to index into the ap-
propriate cache set of a cache bank is typically very small.
For the example in Figure 4, for an 8-way set-associative,
512KB cache bank with a block size of 64B, 10 bits are
required to select the appropriate set from the bank. An-
other 6 bits may be part of the message packet to identify
the bank. The MSHR id1 takes up 3 bits and the remaining
bits of the 24-bit L-network are used for ECC and control
signals.

3.2. Aggressive Look-Up

While the previous proposal is effective in hiding a ma-
jor part of the cache access time, it still has the draw-
back of having a huge network delay component associ-
ated with each L2 access. We can further improve perfor-
mance by doing an aggressive look-up instead of just an
early look-up. In the above proposal, the L-network car-
ries just enough partial address bits to the destination cache
bank to conduct an early look-up. This requires 10 bits of
address. In the aggressive look-up technique, we send an
additional 8 bits of address on the L-network. Now, after
the look-up, instead of waiting for the remaining address
to arrive on a slower network, we can carry out a partial tag
match on the additional address bits sent on the L-network
and aggressively send all matched blocks (along with their
tags) to the cache controller. The controller then does the
complete tag match to find the appropriate block. This ap-
proach reduces the network delay component significantly

1The Miss Status Holding Register (MSHR) keeps track of outstand-
ing L1 misses.

Fetch queue size 64
Branch predictor comb. of bimodal and 2-level

Bimodal predictor size 16K
Level 1 predictor 16K entries, history 12
Level 2 predictor 16K entries

BTB size 16K sets, 2-way
Branch mispredict penalty at least 12 cycles

Fetch width 8 (across up to 2 basic blocks)
Dispatch and commit width 8

Issue queue size 60 (int and fp, each)
Register file size 100 (int and fp, each)

Re-order Buffer size 80
L1 I-cache 32KB 2-way
L1 D-cache 32KB 2-way set-associative,

6 cycles, 4-way word-interleaved
L2 cache 32MB 8-way SNUCA

I and D TLB 128 entries, 8KB page size
Memory latency 300 cycles for the first chunk

Table 2. Simplescalar simulator parameters.

and hence the net access time at the cost of a slight in-
crease in network traffic and increased complexity at the
cache controller. In order to accommodate the 8 additional
bits of address for partial tag comparison, the L-network
may have to be widened, or the width/spacing of wires
may have to be slightly reduced, or ECC signals may have
to be omitted. For the evaluation in this paper, we incur an
additional metal area cost to send the 8 additional bits.

4. Results

4.1. Methodology

Our simulator is based on Simplescalar-3.0 [6] for the
Alpha AXP ISA. Table 2 summarizes the configuration of
the simulated system. All our delay and power calcula-
tions are for a 65nm process technology and a clock fre-
quency of 5 GHz. Contention for memory hierarchy re-
sources (ports and buffers) is modeled in detail. We as-
sume a 32MB on-chip level-2 cache and employ a grid
network for communication between different L2 banks.
For this preliminary analysis, we evaluate all our propos-
als on a uniprocessor system.

We simulate six different processor models with dif-
ferent cache configurations. The first model is based on
methodologies in prior work [14], where the bank size
is calculated such that the routing delay across a bank is
less than one cycle. All other models employ the pro-
posed CACTI-L2 to calculate the optimum bank count,
bank access latency, and hop latencies (vertical and hor-
izontal) for the grid network. Model two is the baseline
cache organization obtained with CACTI-L2 that only em-
ploys minimum-width wires on the 8X metal plane for the
interconnect (for both, address and data). Model three
and four augment the baseline interconnect with a 24-bit
wide L-network to accelerate cache access. Model three

Model Hop latency (v,h) Bank access time Bank count Network link contents Description
Model 1 1,1 3 512 B-wires Based on prior work
Model 2 2,2 6 64 B-wires Derived from CACTIL2
Model 3 2,2 6 64 B-wires & L-wires Implements early lookup
Model 4 2,2 6 64 B-wires & L-wires Implements aggressive lookup
Model 5 2,2 6 64 B-wires & L-wires Implements optimistic case
Model 6 1,1 6 64 L-wires Latency-bandwidth tradeoff

Table 3. Summary of different models simulated. The bank count and hop latencies are for global 8X wires.

implements the early look-up proposal (Section 3.1) and
model four implements the aggressive look-up proposal
(Section 3.2). Model five simulates an optimistic case in
which the request carrying the address magically reaches
the appropriate bank in one cycle. Thus, the L2 access la-
tency of this model primarily depends on the network de-
lay of the return message. This acts as an upper bound for
the performance of all other models. Model six employs a
network made of only L-wires and both address and data
transfers happen on the L-network. The bandwidth of each
link in the network is modeled such that the total metal
area of the link is the same for both model six and model
three (that implements early lookup). Due to this restric-
tion, model six offers lower total bandwidth than the other
models and each message is correspondingly broken into
more flits. Table 3 summarizes all the simulated models
and their cache configurations.

4.2. IPC Analysis

Figure 6 shows the IPCs of different processor mod-
els for the SPEC2000 benchmark suite. Workloads that
are senstive to cache access latencies are highlighted. In
spite of having the least possible bank access latency (3
cycles as against 6 cycles for other models), Model 1 has
the poorest performance due to high network overheads
associated with each L2 access. Model 2, whose cache
parameters are derived from CACTIL2, performs signifi-
cantly better, compared to Model 1. On an average, Model
2’s performance is 10.9% better across all the benchmarks
and 16.3% better for benchmarks that are sensitive to L2
latency. This performance improvement also comes with
reduced power and area complexity due to fewer routers.

The early-look-up optimization discussed in Section 3.1
improves upon the performance of Model 2. On an aver-
age, Model 3’s performance is 14.4% better, compared to
Model 1 across all the benchmarks and 21.6% better for L2
access time sensitive benchmarks. Model 3’s performance
improvement comes at the cost of additional metal area
overhead due to the L-network. The comparison of mod-
els that consume equal metal area is left for future work.

Model 4 further improves the access time of the cache
by doing the early look-up and aggressively sending all
the blocks selected by the partial address sent on the
L-network. This mechanism has 17.6% higher perfor-

mance, compared to Model 1 across all the benchmarks,
and 26.6% for the L2 senstive benchmarks. In addition to
Model 3’s complexity, this scheme incurs additional traffic
in the network because of extra blocks sent due to partial
tag matches. The increase in network traffic for all the
benchmarks due to false positive matches is less than 1%.

Model 6 employs the L-network for transferring both
address and data messages. The performance of this model
can be better than the optimistic model (model 5) that uses
only B-wires for data transfers. But the limited bandwidth
of the links in model six increases contention in the net-
work and limits the performance improvement to only a
few programs that have very low network traffic. The per-
formance improvement in model 6 compared to model 1 is
16.2%.

To show the effect of wire parameters on cache design,
we simulated all the above models, with a network con-
sisting of global minimum-width wires on the 4X metal
plane (instead of the 8X metal plane). The L-networks in
models 3 and 4 remain the same as before. Figure 7 shows
the average IPC values for different models, normalized
against Model 1. Since 4X wires are slower, the effect of
optimizations to the L2 are more pronounced. This can be
the expected trend in future technologies where wires are
slower, relative to logic delays. With the aggressive look-
up policy, the average IPC improvement across the bench-
mark set is about 40% and very close to the upper bound
represented by Model 5. Tables 4 and 5 summarize the av-
erage cache access latencies (in cycles) for all models as
well as the bank latency for wires in the 8X and 4X metal
planes, respectively. These values are shown as a function
of the number of banks.

5. Related Work

A number of recent proposals have dealt with the imple-
mentation of large caches [5, 9, 10, 13, 14]. Most of these
papers focus on optimizing logical policies associated with
a cache design. To the best of our knowledge, only three
other bodies of work have attempted to exploit novel inter-
connects at the microarchitecture level to accelerate cache
access. Beckmann et al. [4] employed transmission lines
to speed up access to large caches. Unlike regular wires,
transmission lines do not need repeaters and hence can be
directly routed on top of other structures. Beckmann et

0.00

0.50

1.00

1.50

2.00

2.50

3.00

am
m

p

ap
pl

u

ap
si ar
t

bz
ip

2

cr
af

ty

eo
n

eq
ua

ke

fm
a3

d

ga
lg

el

ga
p

gc
c

gz
ip

lu
ca

s

m
cf

m
es

a

m
gr

id

pa
rs

er

sw
im

tw
ol

f

vo
rte

x

vp
r

wu
pw

ise

av
er

ag
e

IP
C

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Figure 6. IPCs of SPEC2000 benchmarks for different L2 cache configurations (B-wires implemented on the
8X metal plane).

Bank Count Bank Access Time Average Cache Access Time Early Lookup Aggressive Fetch Optimistic Model
2 77 113 96.5 96.5 96
4 62 111 88.5 88.5 87.5
8 26 62 47.6 47.0 45.0
16 17 46 36.5 35.5 32.5
32 9 40 34.0 30.5 25.5
64 6 38 33.3 30.0 23.0

128 5 44 40.6 36.5 25.5
256 4 51 48.4 43.5 28.5
512 3 82 79.2 66.5 43.5

1024 3 100 97.1 83.5 52.5
2048 3 99 99.0 99.0 52.0
4096 3 131 131.0 131.0 68.0

Table 4. Access latencies for different cache configurations. The message transfers are assumed to happen in 8x wires.

Bank Count Bank Access Time Average Cache Access Time Early Lookup Aggressive Fetch Optimistic Model
2 77 147 113.5 113.5 113
4 62 156 118.5 111 110
8 26 92 73.6 62 60
16 17 75 63.3 50 47
32 9 71 64.2 46 41
64 6 63 58.0 42.5 35.5

128 5 68 64.1 48.5 37.5
256 4 83 80.0 59.5 44.5
512 3 113 110.1 82 59

1024 3 133 130.0 100 69
2048 3 162 159.1 130.5 83.5
4096 3 196 193.0 163.5 100.5

Table 5. Access latencies for different cache configurations. The message transfers are assumed to happen in 4x wires.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Model 1 Model 2 Model 3 Model 4 Model 5

Different Cache Configurations

IP
C

 (
N

o
rm

al
iz

ed
 t

o
 M

o
d

el
 1

)

All Benchmarks Latency Sensitive Benchmarks

Figure 7. IPCs of SPEC2000 benchmarks for dif-
ferent L2 cache configurations (B-wires imple-
mented on the 4X metal plane).

al. exploited this property and employed transmission line
links for connecting each cache bank to the central cache
controller. Their choice for number of banks is limited
to the number of links that can be directly connected to
the controller. In our prior work, heterogeneous wires are
employed to speed up L1 cache access in a clustered ar-
chitecture [2] and to speed up coherence signals in a CMP
environment [8].

The recent version of CACTI [15] has support for mod-
eling simple multi-banked caches. But their model is
still bus based and assumes a separate bus for each bank.
This basic model might be useful for modeling moderately
sized caches but their approach is not scalable for future
large sized caches.

Kim et al. [14] proposed Dynamic-NUCA to reduce the
average access time. In static NUCA, least significant bits
of the block address are used to map a cache block to a
fixed cache bank. While this approach has the least pos-
sible overhead, some of the frequently used blocks might
end up getting mapped to banks that are far away from the
cache controller and hence could suffer from long hit laten-
cies. DNUCA alleviates this problem by moving the cache
block closer to the controller on every hit. This optimiza-
tion is orthogonal to our proposals and can supplement our
proposals by reducing the access time.

Chishti et al. [9] proposed NuRAPID for large on-chip
caches. Their multi-banked model is similar to the above
mentioned CACTI 3.0 with each bank having dedicated
buses for transfering address and data signlas. In Nu-
RAPID, tag arrays carry additional information about the
position of the block. Tag and data arrays are accessed
sequentially to enable flexible placement of blocks. Their
choice of having a separate bus for each bank is not scal-
able for future large caches.

6. Conclusions and Future Work

The performance of future large L2/L3 caches will be
severely constrained by the interconnect. In this paper,
we take a first step in extending the popular CACTI tool
to model network properties. We show that such a de-
tailed model yields an organization significantly different
from that assumed in prior work. We also show that the
choice of wire parameters can impact the optimal organi-
zation. We propose and evaluate two techniques to acceler-
ate cache access that take advantage of a lower-bandwidth
lower-latency network. The first technique initiates early
indexing into the cache bank, while the second technique
uses partial tag comparison to aggressively forward cache
blocks back to the controller. These techniques can im-
prove performance by up to 20%, but incur a cost in terms
of metal area.

This paper has only focused on techniques to improve
performance. As discussed in Section 2, wires can also be
designed to provide low power and high bandwidth (while
incurring a performance penalty). As future work, we will
also explore optimizations to reduce power consumption.
For example, data prefetches and writebacks can happen
on power-efficient wires. In a dynamic-NUCA organiza-
tion [14], block swapping can happen on power-efficient
wires, while block search can happen with partial bits on
low-latency L-wires. We also observe that the latency ben-
efit of an L-wire is not completely exploited due to the
switching circuits in the L-network. An L-wire is capable
of transferring signals up to 8mm in a cycle, but each hop
on the network is much shorter. We plan to investigate the
use of a hybrid L-network that incorporates a bus in the
point-to-point interconnect.

References

[1] H. Bakoglu. Circuits, Interconnections, and Packaging for
VLSI. Addison-Wesley, 1990.

[2] R. Balasubramonian, N. Muralimanohar, K. Ramani, and
V. Venkatachalapathy. Microarchitectural Wire Manage-
ment for Performance and Power in Partitioned Architec-
tures. In Proceedings of HPCA-11, February 2005.

[3] K. Banerjee and A. Mehrotra. A Power-optimal Re-
peater Insertion Methodology for Global Interconnects in
Nanometer Designs. IEEE Transactions on Electron De-
vices, 49(11):2001–2007, November 2002.

[4] B. Beckmann and D. Wood. TLC: Transmission Line
Caches. In Proceedings of MICRO-36, December 2003.

[5] B. Beckmann and D. Wood. Managing Wire Delay in
Large Chip-Multiprocessor Caches. In Proceedings of
MICRO-37, December 2004.

[6] D. Burger and T. Austin. The Simplescalar Toolset, Ver-
sion 2.0. Technical Report TR-97-1342, University of
Wisconsin-Madison, June 1997.

[7] R. Chang, N. Talwalkar, C. Yue, and S. Wong. Near Speed-
of-Light Signaling Over On-Chip Electrical Interconnects.

IEEE Journal of Solid-State Circuits, 38(5):834–838, May
2003.

[8] L. Cheng, N. Muralimanohar, K. Ramani, R. Balasubramo-
nian, and J. Carter. Interconnect-Aware Coherence Proto-
cols for Chip Multiprocessors. In Proceedings of ISCA-33,
June 2006.

[9] Z. Chishti, M. Powell, and T. Vijaykumar. Distance As-
sociativity for High-Performance Energy-Efficient Non-
Uniform Cache Architectures. In Proceedings of MICRO-
36, December 2003.

[10] Z. Chishti, M. Powell, and T. Vijaykumar. Optimizing
Replication, Communication, and Capacity Allocation in
CMPs. In Proceedings of ISCA-32, June 2005.

[11] W. Dally and J. Poulton. Digital System Engineering. Cam-
bridge University Press, Cambridge, UK, 1998.

[12] R. Ho, K. Mai, and M. Horowitz. The Future of Wires.
Proceedings of the IEEE, Vol.89, No.4, April 2001.

[13] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and
S. Keckler. A NUCA Substrate for Flexible CMP Cache
Sharing. In Proceedings of ICS-19, June 2005.

[14] C. Kim, D. Burger, and S. Keckler. An Adaptive, Non-
Uniform Cache Structure for Wire-Dominated On-Chip
Caches. In Proceedings of ASPLOS-X, October 2002.

[15] P. Shivakumar and N. P. Jouppi. CACTI 3.0: An Inte-
grated Cache Timing, Power, and Area Model. Technical
Report TN-2001/2, Compaq Western Research Laboratory,
August 2001.

