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Abstract—Future exascale computing systems will have high
failure rates due to the sheer number of components present in
the system. A classic fault-tolerance technique used in today’s
supercomputers is a checkpoint-restart mechanism. However,
traditional hard disk-based checkpointing techniques will soon
hit the scalability wall.

Recently, many emerging non-volatile memory technologies,
such as Phase-Change RAM (PCRAM), are becoming available
and can replace disks with the superior latency and power
characteristics. Previous research has demonstrated thattaking
checkpoints at multiple levels referred to ashybrid checkpointing
and employing PCRAM for taking local checkpoints can dramat-
ically reduce checkpoint overhead and has the potential to scale
beyond the exascale. In this work, we develop two prototypes
to evaluate hybrid checkpointing. We find that, although global
checkpointing is slow, by carefully scheduling checkpointopera-
tions, we can hide its overhead using an extra checkpoint copy
maintained in the local PCRAM of each node. In addition, as
local checkpointing gets faster, taking more frequent checkpoints
can help reduce the size of incremental checkpoints. However, in
order to benefit from incremental checkpointing, the checkpoint
interval has to be less than 10 seconds.

I. I NTRODUCTION

Checkpoint-restart is a classic fault-tolerance technique that
helps large-scale computing systems recover from unexpected
failures or scheduled maintenance. However, the current state-
of-the-art approach, which takes a snapshot of the entire
memory image and stores it into a globally accessible storage
disk at regular intervals, is no longer feasible.

There are two major roadblocks that severely limit check-
point scalability. Firstly, future exascale systems will poten-
tially have more than 100,000 processing units and their
mean time to failure (a.k.a. MTTF) will be much shorter
than existing petascale systems. One extreme example is the
“ASCI Q” supercomputer, which has an MTTF of less than
6.5 hours [1]. Even with an optimistic socket MTTF of
more than 5 years, we will soon arrive at a situation where
MTTF of an exascale system with thousands of nodes will
be as low as half an hour. This trend implies that more
frequent checkpoint activities are required with an interval
as low as a few minutes. Secondly, with hard disk drive
being a mechanical device, it is extremely difficult to scale
its bandwidth as the rotation speed and the seek latency are
limited by physical constraints. Therefore, it is not feasible to
use HDD and meet the checkpoint interval requirement that

TABLE I
T IME TO TAKE A CHECKPOINT ON SOME MACHINES OF THETOP500.

(SOURCE: LLNL)

Systems Max performance Checkpoint time (minutes)
LANL RoadRunner 1 petaFLOPS ∼ 20

LLNL BlueGene/L 500 teraFLOPS 20

Argonne BlueGene/P 500 teraFLOPS 30

LLNL Zeus 11 teraFLOPS 26

might be as low as several seconds. Table I lists the reported
checkpoint time of a few modern supercomputers. It is clear
that a checkpoint overhead of 20 to 30 minutes is typical in
most systems. However, as the application size grows along
with the system scale, the poor scaling of existing techniques
can increase the overhead to several hours. Oldfieldet al. [2]
showed that a 1-petaFLOPS system can potentially take more
than a 50% performance hit unless we significantly increase
the I/O bandwidth of storage nodes. As this trend continues,
very soon the failure period will be as small as the checkpoint
overhead. In such a situation, a system either has to limit the
number of nodes allocated to an application or risk ending up
with an indefinite execution time.

Although the industry is actively looking at ways to reduce
failure rates of computing systems, it is impractical to man-
ufacture fail-safe computing components such as processor
cores, memories, etc. A feasible solution is to make check-
pointing techniques more efficient. As shown in Fig. 1, a major
obstacle to the scalability of checkpointing is the limitedI/O
bandwidth of the centralized storage device. All checkpoint
data have to go through these I/O nodes to get stored. Typically
during a checkpoint process, all the process nodes (whose
scale is much larger than the scale of I/O nodes) must take
checkpoints at the same time and this causes high bandwidth
stress on the I/O nodes and the centralized storage devices.
To maintain the consistency of the system and maximize I/O
bandwidth available for checkpointing, the workload is stalled
until the checkpoint operation completes and this leads to a
significant increase in workload execution time.

A scalable solution to this problem is to take checkpoints
in a local storage medium. Fig. 2 shows a new organization
in which the global checkpoints are still stored in the globally
accessible storage devices through I/O nodes but each process
node can take its own private local checkpoint as well. Since
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Fig. 1. The typical organization of the contemporary supercomputer. All the
permanent storage devices are taken control by I/O nodes.
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Fig. 2. The proposed new organization that supports local/global hybrid
checkpoint. The primary permanent storage devices are still connected through
I/O nodes, but each process node also has a permanent storage.

local checkpointing does not involve network transfers, itcan
be relatively fast. However, unlike global checkpoints that
are accessible by any node in a system, local checkpoints
are private to each node. Therefore, it cannot be reached
in the event of a node loss or other permanent hardware
failures. To provide complete protection, it is necessary to
take both global and local checkpoints referred to ashybrid
checkpointing. While this approach looks expensive, Donget
al. [3] showed that a significant checkpoint overhead reduction
can be achieved by maintaining multiple checkpoints.

In an hybrid scheme, depending upon the percentage of the
failures that can be solely recovered by local checkpoints,
the local and global checkpoint ratio can be appropriately
tuned. Hence, a system that is mostly plagued with soft
errors (similar to “ASCI Q”) need not have to take frequent
global checkpoints. In addition, since a consistent state of the
machine is already captured in the local checkpoint, global
checkpointing can be done in parallel with program execution
and this can dramatically reduce the execution time. Since the
traditional HDD device is not fast enough to take frequent local
checkpoints as required by the hybrid checkpointing scheme,
emerging non-volatile technologies such as PCRAM [4] are
ideally suited to hold local checkpoints.

Dong et al. [3] quantified the benefits of hybrid scheme
through analytical modeling and simulations. However, the
hidden overhead ofbackground checkpointingand its inter-
play with other orthogonal optimizations such asincremental
checkpointing[5]–[7] cannot be captured through simula-
tions. For example, the I/O bandwidth in parallel systems

are designed to either handle workload traffic or checkpoint
data. While overlapping global checkpointing with execution
is beneficial, it is not possible to capture its deleterious
effects in the small simulation window. Similarly, incremental
checkpointing is a promising technique to reduce checkpoint
overhead. However, its effectiveness can vary depending upon
the checkpoint interval and the characteristics of the workload.
A thorough analysis of incremental checkpointing will require
many days worth of simulations.

In this work, we build prototype platforms of a scaled-
down parallel system with hybrid checkpointing and study the
benefits of background and incremental checkpointing opti-
mizations. We use Berkeley Lab Checkpoint/Restart (BLCR)
library [8] to create coordinated checkpoints.

II. RELATED WORK

There has been abundant work to reduce checkpoint over-
head in distributed systems [9]. The most widely-used check-
point protocol iscoordinated checkpointing, which takes a
consistent global checkpoint snapshot by flushing the in-transit
messages and capturing the local state of each process node
simultaneously [10].Uncoordinated checkpointingreduces
network congestion by letting each node take checkpoints
at a different time. To rollback to a consistent global state,
each node maintains a log of all incoming messages and
takes multiple snapshots at different time. During recovery,
the dependency information between various checkpoints are
communicated to find a consistent state [11].

An alternate approach to reduce checkpoint overhead is
to reduce the checkpoint size.Memory exclusion[12] is a
software approach, in which programmers segregate the data
into critical and non-critical, and reduces the checkpointsize
by removing non-critical data such as buffers and temporary
matrices.Incremental checkpoint[5]–[7] is another way to
reduce the checkpoint size. It consists of saving only the dif-
ferences between two consecutive checkpoints. Implemented
at the OS level, this approach saves a checkpoint that only
contains the virtual memory pages marked as dirty (modified).
This approach requires several checkpoint images to be saved
for a single process: at least the previous “reconstructed”
checkpoint and the last incremental checkpoint. However,
the effectiveness of incremental checkpointing reduces with
increase in checkpoint interval. With the current generation
systems having a checkpoint interval of several hours, the
incremental checkpoint size is almost the same as the full
checkpoint size.

Prior work on multilevel checkpointing considers either
DRAM or local HDD for checkpoint storage [13]–[15]. The
limited bandwidth of HDD coupled with its poor access time
make it not suitable for fast checkpointing. While DRAM
has superior latency properties, its volatile nature will signif-
icantly increase the complexity of multilevel checkpointing.
For example, when using DRAM, to provide a complete
fault coverage including power failures happening during
checkpointing, we either have to maintain multiple copies of
global checkpoints or employ a log based scheme for global



TABLE II
THE STATISTICS OF THE FAILURE ROOT CAUSE COLLECTED BYLANL

DURING 1996-2005

Cause Occurrence Percentage
Hardware (hard error) 5163 21.7%

Hardware (soft error) 9178 38.7%

Software 5361 22.6%

Network 421 1.8%

Human 149 0.6%

Facilities 362 1.5%

Undetermined 3105 13.1%

Total 23739 100%

checkpoints. The use of non-volatile memory for local check-
pointing significantly increases the number of faults covered
by local checkpoints and reduces the probability of a global
failure in the middle of a global checkpoint to less than 1% [3].
Vaidya [16] proposed a two level recovery scheme to reduce
the checkpointing overhead. He employed a log based local
checkpointing method for the first level and coordinated global
checkpointing for the second level. The two level recovery
scheme is aimed at using local checkpoints to recover from
all single node failures and using global checkpoints only for
multi-node failures. Since the first level checkpoints covers
both transient and hard errors, local checkpoints are made in
neighboring nodes which is an order of magnitude slower than
taking checkpoints in the local storage. In addition, the use of
log based scheme can result in domino effect [17].

Several checkpointing library implementations are also
available for the HPC community, such as BLCR [8], Con-
dor [18], CRAK [19], Libckpt [20], and C3 [21]. However,
none of them implements the hybrid checkpointing scheme.

III. L OCAL/GLOBAL HYBRID CHECKPOINT

State-of-the-art checkpointing relies on global centralized
storage as shown in Fig. 1. Its main motivation is to recover
from all failures including a complete node loss. However,
global checkpoint availability is obtained at the cost of slow
access speed and hence large performance overhead. After
studying the failure events logged in the Los Alamos National
Laboratory (LANL) from 1996 to 2005, which covers 22
high-performance computing systems, including a total of
4,750 machines and 24,101 processors [22], Donget al. [3]
observed that a majority of failures are transient in nature
(Refer Table II. Transient errors such as soft errors (38.7%
of total errors) together with software errors (22.6% of total
errors) can be recovered by a simple reboot command. As a
result, a significant number of failures can be recovered by
taking local checkpoints private to each node.

Dong et al. [3] also projected that more than 83% of
failures in a 1-petaFLOPS system can be recovered by lo-
cal checkpoints while the remaining 17% of failures that
include hard errors or node loss require globally accessible
checkpoints. Based on this observation, more than 90% of
the checkpointing operations can be made locally at a high
speed without compromising the failure coverage, since the
remaining globally accessible checkpoints can be used as the

backup if necessary. Fig. 3 shows the conceptual view of the
local/global hybrid checkpointing scheme, in whichτ indicates
the computation time slot. Every two computation slots,τ ,
are divided by either a global checkpoint indicated byδG or
a local checkpoint indicated byδL. When a failure happens,
a global recovery timeRG or a local recovery timeRL is
added depending on whether the local checkpoint or the global
checkpoint is used during the recovery

IV. PROTOTYPEPLATFORMS

The primary motivation of this work is to study the overhead
of background checkpointing and effectiveness of incremental
checkpointing. We develop two prototypes: the first prototype
uses existing libraries to model hybrid checkpointing and can
execute MPI applications. The second prototype is built from
scratch to specifically study incremental checkpointing.

As PCRAM is not yet available to the commercial market,
we use half of the DRAM main memory space to be the
local checkpoint storage. This device emulation is reasonable
since the future PCRAM can be also be mounted on a Dual-
Inline Memory Module (DIMM). While the write speed of
PCRAM is slower than DRAM, data on PCRAM DIMM can
be interleaved across PCRAM chips so that write operations
can be performed at the same rate as DRAM without any
stalls [3]. We also expect to see the write endurance of
PCRAM improve to1012 as projected by ITRS [23], which
will eliminate the write limitations associated with PCRAM.
Therefore, we can use DRAM to model PCRAM and assume
the DRAM-based and the PCRAM-based checkpointing have
the same behavior in terms of performance, regardless of the
fact that PCRAM will be more energy-efficient due to its non-
volatile nature.

A. Prototype 1

The first prototype is built using existingBerkeley Labs
Checkpoint/Restart(BLCR) [8] and OpenMPI [24] solutions.
The BLCR kernel is modified to add a “dump to memory”
feature. We modify theuwrite kernel function that is respon-
sible for BLCR to enable memory-based checkpointing. As the
BLCR library is an independent module which merely controls
the program execution, it can directly execute existing MPI
application binaries without any changes to the source code.
We further extend the kernel function to track and log the
overhead of checkpointing overhead.

The overhead of each checkpoint-to-memory operation is
measured by: 1.kmalloc that allocates memory; 2.memcpy
that copies data to the newly-allocated memory space; 3.free
the allocated memory. However, in Linux 2.6 kernel,kmalloc
has a size limit of 128K, thus each actual memory-based
checkpoint operation is divided into many small ones. This
constraint slightly impacts on the memory write efficiency.

To evaluate the performance overhead of the background
global checkpointing, the original memory-based checkpoint
implementation cannot be used because it does not generate
any real checkpoint region in the main memory. To have a
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Fig. 4. The basic programming structure of checkpointing library for single-
thread applications.

workable solution, the RAM file system,ramfs, is used to
generate the actual checkpoint files.

B. Prototype 2

Although the BLCR kernel is a widely-used check-
point/restart library, it does not have support for incremental
checkpointing. Hence, we developed a second prototype fully
from scratch which can be used to evaluate the timing over-
head of both in-HDD and in-memory checkpoints. It supports
both C and Fortran single-thread programs, and it enables the
incremental checkpoint feature through bookkeeping [5].

The prototype consists of two parts: a primary thread
that launches the target application and manages checkpoint
intervals; a checkpoint library to be called by application. As
shown in Fig. 4, a running shell spawns a new process to
run the application that requires checkpointing. After that the
shell periodically sendsSIGUSR1 signal to the application.
The SIGUSR1 signal handler is registered as a function to
store checkpoints to hard disk or main memory. This approach
requires modification to the source code, although the changes
are limited to a couple of lines to invoke the handler.

The incremental checkpoint feature is implemented using
the bookkeeping technique. After taking a checkpoint, all the
writable pages are marked as read-only using anmprotect

system call. When a page is overwritten, a page fault exception
occurs, which sends theSIGSEGV signal, and the page fault
exception handler saves the address of the page in an external
data structure. The page fault signal handler also marks the
accessed page as writable by using anunprotectsystem call.
At the end of the checkpoint interval it is only necessary to
scan the data structure that tracks the dirty pages. In this pro-
totype, the register file and data in main memory are essential
components of a whole checkpoint. Other components, such
as pending signal and file descriptor, are not stored during the
checkpointing operation because their attendant overheadcan
be ignored [8].

V. EXPERIMENTS

A. Hardware Configuration

The aforementioned prototypes were developed using the
C language on a hardware configuration with 2 Dual-Core
AMD Opteron 2220 Processors and 16GB of ECC-protected
registered DDR2-667 memory. Since the MPI synchronization
overhead is on the scale of tens of microseconds [25] and
is negligible compared to the checkpointing latency, we can
use a scaled-down system employing two identical machines
with the same configuration to evaluate MPI applications
running across multiple nodes. Each machine is equipped
with a Western Digital 740 hard disk drive that operates at
10,000 RPM with a peak bandwidth of 150MB/s reported in
its datasheet. The experiment is run on a 64-bit Ubuntu Linux
2.6.28-15 and the checkpoint libraries are all compiled by gcc
4.3.3.

B. In-HDD and In-Memory Checkpoint Speed

We first investigated the actual speed difference between in-
HDD and in-memory checkpointing. As a block device, the
HDD had a large variation in effective bandwidth depending
upon the access pattern. In our system, although the data sheet
reports a peak bandwidth of 150MB/s, the actual working
bandwidth is much smaller. We measure the actual HDD
bandwidth by randomly copying files with different sizes and
use the system clock to track the time spent. The result is
plotted in Fig. 5, which shows all the points fall into two
regions: one is near the y-axis and the other is at the 50MB/s
line. When the write size is relatively small, the effectivewrite
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Fig. 5. The hard disk drive bandwidth with different write size.

4000

5000

6000

M
B

/s
)

2000

3000

W
ri

te
 S

p
e
e
d

 (
M

0

1000

0 500 1000 1500

W

Write Size (MB)Write Size (MB)

Fig. 6. The main memory bandwidth with different write size.

bandwidth of the HDD can be as high as 100MB/s and as low
as 60MB/s. This amount of variation is caused by the HDD
internal buffer. If the buffer is empty, the incoming data can
be directly written to buffer which is significantly faster than
the disk media; once the buffer overflows, the HDD needs to
rotate and seek the proper sector to store the data. Hence, it
can be observed that when the write size is in megabyte scale,
the effective write bandwidth of HDD drops dramatically and
the actual value is 50MB/s, which is only one third of its peak
bandwidth of 150MB/s.

We performed a similar experiment to find the effective
checkpointing speed in main memory by copying data of
different sizes to newly-allocated memory addresses. The
result is shown in Fig. 6. Similar to the hard disks, all the
collected data fall into two regions. Note, for a very few cases,
we noticed significant drop in write speed to DRAM. However,
the frequency of their occurrence is low and we attribute this
to noise in the simulation. However, unlike hard disks, the
attainable bandwidth is higher when the write size is large due
to the benefit achieved from spatial locality. This is desirable
for checkpointing since checkpoint sizes are usually large. In
addition, the achievable bandwidth is very close to 5333MB/s,
which is the theoretical peak bandwidth of the DDR2-667
memory used in this experiment. Compared to the in-HDD
checkpoint speed, the attainable in-memory speed can be two
orders of magnitude faster.

We also recorded the actual time spent on in-HDD and
in-memory checkpointing for a real application with 1.6GB
memory footprint. The analysis is performed on a 4-threaded

application, and we used BLCR platform that supports both
HDD-based and memory-based checkpointing.

Table III and Table IV show the checkpoint size and the
checkpoint completion time of HDD-based and memory-based
techniques. Not surprisingly, taking checkpoints in memory is
50 times faster than taking checkpoints in hard disks. It is also
clear that when all threads take checkpoint simultaneously,
the effective bandwidth available per thread goes down. In
addition, checkpointing process is further delayed compared to
an application with single thread due to loss of spatial locality
as illustrated in Fig. 5 and Fig. 6. More quantitatively, the
HDD bandwidth reduces from 50MB/s to 33.7MB/s, and the
memory bandwidth falls sharply from 5000MB/s to 1690MB/s
due to increase in row buffer conflicts.

Hence, contention existing in multi-threaded checkpointing
will cause a significant drop in performance especially when
main memory is used to make checkpoints. This issue can be
solved by:

• Serializing the checkpointing operations of multiple
threads, so that only one thread can access the checkpoint
storage device at a time.

• Only one thread is assigned to each process node, so
that the entire memory bandwidth is available for the in-
memory checkpointing.

C. Background Global Checkpointing

As mentioned earlier, the existence of local checkpoints in
the hybrid scheme makes it possible to overlap global check-
pointing with program execution. In order to find whether
background checkpointing can effectively hide latency, we
studied the following three scenarios:

1) Without checkpointing:The program is executed without
triggering any checkpointing activities. This is the actual
execution time of the program.

2) With foreground checkpointing:The program is executed
with checkpoint enabled. Every checkpointing operation
stalls the program, and takes snapshots into HDD di-
rectly.

3) With background checkpointing:The program is exe-
cuted with checkpoint enabled. Every checkpointing op-
eration stalls the program, takes snapshots into memory,
and then copies them to HDD in the background.

While background checkpointing stalls the program to make
local checkpoints, the overhead is significantly smaller due to
the low DDR latency compared to HDD or network latencies.
Background checkpointing makes it feasible to overlap the
slow in-HDD global checkpoint process with program exe-
cution. In this experiment, the in-memory local checkpoint
is implemented byramfs, which mounts a portion of main
memory as a file system. To study the impact of the number
of involved cores on background checkpointing, 1-thread, 2-
thread, and 4-thread applications were run in a quad-core
processor, respectively1. The results are listed in Table V

1A 3-thread application is not included in the experiment setting because
some benchmarks only allow radix-2 task partitioning.



TABLE III
HARD DISK-BASED CHECKPOINT PERFORMANCE OF A4-THREAD APPLICATION

Thread 1 Thread 2 Thread 3 Thread 4 Total
Checkpoint size (Byte) 417828448 417861216 417558112 4178038721593.64M
Checkpoint latency (Second) 42.656668 44.998514 46.308757 47.22085847.273500
Achieved bandwidth (MB/s) 9.3 8.9 8.6 8.4 33.7

TABLE IV
MEMORY-BASED CHECKPOINT PERFORMANCE OF A4-THREAD APPLICATION

Thread 1 Thread 2 Thread 3 Thread 4 Total
Checkpoint size (Byte) 417836216 417565880 417860792 4178608721593.70M
Checkpoint latency (Second) 0.202096 0.501741 0.507173 0.687554 0.943159
Achieved bandwidth (MB/s) 1972 794 786 580 1690

TABLE V
EXECUTION TIME OF A 1-THREAD PROGRAM WITHOUT GLOBAL CHECKPOINTING, WITH GLOBAL CHECKPOINTING, AND WITH BACKGROUND GLOBAL

CHECKPOINTING(UNIT: SECOND)

1 2 3 4 5 6 Average
Without checkpointing 6.24 6.29 6.34 6.33 6.33 6.32 6.31±0.0014
With foreground checkpointing 9.18 9.69 7.03 7.03 6.99 7.03 7.83±1.58
With background checkpointing 6.36 6.35 6.36 6.37 6.22 6.39 6.34±0.0037

TABLE VI
EXECUTION TIME OF A 2-THREAD PROGRAM WITHOUT GLOBAL CHECKPOINTING, WITH GLOBAL CHECKPOINTING, AND WITH BACKGROUND GLOBAL

CHECKPOINTING(UNIT: SECOND)

1 2 3 4 5 6 Average
Without checkpointing 18.15 18.08 21.80 18.17 18.88 17.9918.85±2.20
With foreground checkpointing 25.40 24.85 24.97 23.25 21.05 22.4623.66±2.92
With background checkpointing 18.41 23.69 21.90 18.44 18.33 18.3219.84±5.53

TABLE VII
EXECUTION TIME OF A 4-THREAD PROGRAM WITHOUT GLOBAL CHECKPOINTING, WITH GLOBAL CHECKPOINTING, AND WITH BACKGROUND GLOBAL

CHECKPOINTING(UNIT: SECOND)

1 2 3 4 5 6 Average
Without checkpointing 14.15 14.11 14.31 14.10 14.15 13.3414.03±0.12
With foreground checkpointing 20.03 16.78 17.02 17.56 19.65 18.6718.29±1.89
With background checkpointing 19.10 22.46 20.47 19.87 18.82 19.5820.05±1.73

to Table VII, which show the total execution time with a
single checkpointing operation performed in the middle of
the program. Each configuration is run multiple times and the
average value is considered for the evaluation.

We observe from the results that:

• Foreground checkpointing always takes about 25% per-
formance loss due to low HDD bandwidth and this value
is consistent with previous analytical evaluation [2].

• When main memory is used for taking checkpoints, the
checkpoint overhead for a 1-thread application is around
0.5% (as listed in Table V. This overhead is 50 times
smaller than the foreground case, and it is consistent with
our previous finding that in-memory checkpointing is 50
times faster than in-HDD checkpointing.).

• The background checkpoint overhead increases from
0.5% to 5% when the application to be checkpointed
becomes multi-thread. This is because of conflicts in
row buffer due to interleaving of workload accesses
with checkpointing. In addition, the MPI synchronization
overhead is another source of the extra latency, since our
checkpointing scheme iscoordinated.

• The background checkpointing becomes ineffective when
the number of threads equals to the number of available
processor cores. Its associated overhead is even larger
than in the foreground case. This is because there is
no spare processor core to handle the I/O operations
generated by the background checkpointing activity.

Therefore, although the background checkpointing tech-
nique is an effective tool to hide the impact of slow in-HDD
checkpointing, designers need to ensure that a spare processor
core is always available on each node when partitioning the
computation task. Also, it is necessary to perform global
checkpoints in a sequential manner to minimize row buffer
conflicts.

D. Incremental Checkpoint Size

Since in-memory checkpointing makes it possible to take
checkpoints every few seconds, it reduces the overhead of
incremental checkpointing. As the checkpoint interval de-
creases, the probability of polluting a clean page becomes
smaller, hence, the average size of an incremental checkpoint
decreases.
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To measure the size difference between full checkpoints
and incremental checkpoints,Prototype 2 is used to trigger
checkpoint operations with the interval ranging from 1 second
to 30 seconds. Five workloads from the NPB benchmark with
CLASS B and CLASS C configurations are tested. In order
to have a fair comparison, a new metric,checkpoint size per
second, is used to quantify the timing cost of checkpointing
by assuming the checkpointing bandwidth is stable during the
process. Fig. 7 to Fig. 11 show the checkpoint size of both
schemes for different intervals.

It can be observed that, in all the five workloads, the
incremental checkpoint size is almost the same as the full
checkpoint size when the checkpoint interval is greater than
20 seconds. This shows that the incremental checkpointing
scheme is not effective when the interval is not sufficiently
small. Hence, checkpointing processes that involve accessing
HDD or network transfers cannot benefit from incremental
checkpointing. This could be the reason why the most popular
checkpoint library, BLCR [8], does not support incremental
checkpointing. As the interval size goes down, all the work-
loads except MG.C show a large reduction in checkpoint cost
with incremental checkpointing. Based on this observation, it
is clear that in-memory checkpointing is essential to achieve
benefits from incremental checkpointing.

E. Frequent Incremental Checkpointing

Although the previous experiment shows the advantage of
incremental checkpointing over full checkpointing, and the
size of incremental checkpoints becomes smaller when the

checkpoint interval is shortened, the number of checkpoints
taken during a unit time is also increased. Therefore, the
amount of data to be stored during a unit time might increase,
which means the cumulative cost of frequent checkpointing
might be bigger compared to using larger intervals.

Fig. 12 shows the result of seven different workloads. All
costs are normalized to the cost at the 0.5-second interval.It
shows that, for all the workloads, the incremental checkpoint
costs begin to go down for checkpoint intervals longer than
0.5 seconds. Based on Fig. 7 to Fig. 12, it is clear that
incremental checkpointing is beneficial only if the checkpoint
interval is between 0.5 to 10 seconds. Taking more frequent
checkpoints can always enhance the system reliability as it
reduces the amount of useful work lost in the event of a failure.
However, it is clear that when considering realistic checkpoint
intervals, most workloads do not benefit from incremental
checkpointing. Note, in our current implementation, the dirty
pages are tracked via page fault handler at the OS level. In this
case, the ultra-frequent checkpointing would cause almostall
the memory accesses to result in a page fault and adds extra
overhead to the program execution time. However, this issue
can be solved by using hardware mechanisms to track dirty
pages.

VI. CONCLUSION

Current in-HDD checkpointing cannot scale to future ex-
ascale systems. Emerging PCRAM technologies provide us
a fast-access and non-volatile memory and make in-memory
checkpointing an interesting alternative, especially fora hybrid
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Fig. 12. The normalized incremental checkpoint cost under ultra-frequent checkpointing.

scheme that takes both local and global checkpoints and
provide complete fault coverage. In this work, we extend the
previous research on local/global checkpointing, and build two
prototypes to study the benefits of background and incremental
checkpointing. The background global checkpointing is tar-
geted to hide the long global in-HDD checkpoint latency, and
frequent incremental checkpointing is targeted to reduce the
overall checkpoint size. In our evaluation we found that with
proper scheduling, background checkpointing is effectivein
hiding global checkpoint latency. On the other hand, incremen-
tal checkpointing is only beneficial if checkpoints are madeat
a high frequency.

REFERENCES

[1] D. Reed, “High-End Computing: The Challenge of Scale,” Director’s
Colloquium, May 2004.

[2] R. A. Oldfield, S. Arunagiri, P. J. Telleret al., “Modeling the Impact of
Checkpoints on Next-Generation Systems,” inMSST ’07. Proceedings
of the IEEE Conference on Mass Storage Systems, 2007, pp. 30–46.

[3] X. Dong, N. Muralimanohar, N. P. Jouppiet al., “Leveraging 3D
PCRAM Technologies to Reduce Checkpoint Overhead for Future Exas-
cale Systems,” inSC ’09. Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2009.

[4] S. Raoux, G. W. Burr, M. J. Breitwischet al., “Phase-Change Random
Access Memory: A Scalable Technology,”IBM Journal of Research and
Development, vol. 52, no. 4/5, 2008.

[5] R. Gioiosa, J. C. Sancho, S. Jianget al., “Transparent, Incremental
Checkpointing at Kernel Level: a Foundation for Fault Tolerance for Par-
allel Computers,” inSC ’05. Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2005.

[6] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira, “Adaptive
Incremental Checkpointing for Massively Parallel Systems,” in ICS ’04.
Proceedings of the ACM International Conference on Supercomputing,
2004, pp. 277–286.

[7] J. Heo, S. Yi, Y. Cho, J. Hong, and S. Y. Shin, “Space-Efficient Page-
Level Incremental Checkpointing,” inSAC ’05. Proceedings of the ACM
Symposium on Applied Computing, 2005, pp. 1558–1562.

[8] J. Duell, P. Hargrove, and E. Roman., “The Design and Implementa-
tion of Berkeley Lab’s Linux Checkpoint/Restart,” Lawrence Berkeley
National Laboratory, Tech. Rep. LBNL-54941, 2002.

[9] E. N. Elnozahy, D. B. Johnson, and W. Zwaenpoel, “The Performance
of Consistent Checkpointing,” inSRDS ’92. Proceedings of the IEEE
Symposium on Reliable Distributed Systems, 1992, pp. 39–47.

[10] K. M. Chandy and L. Lamport, “Distributed Snapshots: Determining
Global States of Distributed Systems,”ACM Transactions on Computer
Systems, vol. 3, no. 1, pp. 63–75, 1985.

[11] Y.-M. Wang, P.-Y. Chung, I.-J. Linet al., “Checkpoint Space Recla-
mation for Uncoordinated Checkpointing in Message-Passing Systems,”
IEEE Transactions on Parallel and Distributed Systems, vol. 6, no. 5,
pp. 546–554, 1995.

[12] J. S. Plank, Y. Chen, K. Liet al., “Memory Exclusion: Optimizing
the Performance of Checkpointing Systems,”Software - Practice and
Experience, vol. 29, no. 2, pp. 125–142, 1999.

[13] E. N. Elnozahy, L. Alvisi, Y. Wang, and D. B. Johnson, “A Survey
of Rollback-Recovery Protocols in Message-Passing Systems,” in ACM
Computing Surveys, 2002.

[14] K. Li, J. F. Naughton, and J. S. Plank, “Low-Latency, Concurrent
Checkpointing for Parallel Programs,” inIEEE Transactions on Parallel
and Distributed Systems, 1994.

[15] J. S. Plank, “Improving the Performance of CoordinatedCheckpointers
on Networks of Workstations Using RAID Techniques,” inSRDS ’96.
Proceedings of the 15th Symposium on Reliable Distributed Systems,
1996, pp. 76–85.

[16] N. H. Vaidya, “A Case for Two-Level Distributed Recovery Schemes,”
in SIGMETRICS ’95. Proceedings of the ACM SIGMETRICS Joint
International Conference on Measurement and Modeling of Computer
Systems, 1995, pp. 64–73.

[17] B. Randell, “System Structure for Software Fault Tolerance,” in IEEE
Transactions on Software Engineering, 1975.

[18] M. Litzkow, T. Tannenbaum, J. Basneyet al., “Checkpoint and Migration
of Unix Processes in the Condor Distributed Processing System,”
University of Wisconsin, Madison, Tech. Rep. CS-TR-199701346, 1997.

[19] H. Zhong and J. Nieh, “CRAK: Linux Checkpoint/Restart as a Kernel
Module,” Columbia University, Tech. Rep. CUCS-014-01, 2001.

[20] J. S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent
Checkpointing under Unix,” inUSENIX ’95. Proceedings of the USENIX
Technical Conference, 1995, pp. 213–223.

[21] G. Bronevetsky, D. Marques, K. Pingaliet al., “C3: A System for
Automating Application-Level Checkpointing of MPI Programs,” in
LCPC ’03. Proceedings of the International Workshop on Languages
and Compilers for Parallel Computers, 2003, pp. 357–373.

[22] Los Alamos National Laboratory, Reliability Data Sets, http://institutes.
lanl.gov/data/fdata/.

[23] International Technology Roadmap for Semiconductors, “Process Inte-
gration, Devices, and Structures 2007 Edition,” http://www.itrs.net/.

[24] Open MPI: Open Source High Performance Computing, http://www.
open-mpi.org/.

[25] W. Jiang, J. Liu, H.-W. Jin, D. K. Pandaet al., “High Performance
MPI-2 One-Sided Communication over InfiniBand,” inCCGRID ’04.
Proceedings of the 2004 IEEE International Symposium on Cluster
Computing and the Grid, 2004, pp. 531–538.


