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Abstract—Future exascale computing systems will have high  Tjyg 1o TAKE A CHECKPOINT ON SOME MACHINES OF THETOP500.
failure rates due to the sheer number of components presenti (SOURCE LLNL)
the system. A classic fault-tolerance technique used in teg’s Svsiem v = Checkoomt T T
supercomputers is a checkpoint-restart mechanism. Howeve inlﬁ RsoadRunner axlpeaglr:nﬂgn;g eckpoin ;’ge (minutes)
traditional hard disk-based checkpointing techniques wil soon LLNL BlueGene/L 500 ?eraFLOPS 20
hit the scalability wall. =~ _ _ Argonne BlueGene/F 500 teraFLOPS 30

Recently, many emerging non-volatile memory technologies | LNL Zeus 11 teraFLOPS 26

such as Phase-Change RAM (PCRAM), are becoming available
and can replace disks with the superior latency and power
characteristics. Previous research has demonstrated thatking

checkpoints at multiple levels referred to ashybrid checkpointing . .
and employing PCRAM for taking local checkpoints can dramat might be as low as several seconds. Table | lists the reported

ically reduce checkpoint overhead and has the potential tocale checkpoint tim? of a few modern Supercomputers. It i§ clear
beyond the exascale. In this work, we develop two prototypes that a checkpoint overhead of 20 to 30 minutes is typical in

to evaluate hybrid checkpointing. We find that, although gldal most systems. However, as the application size grows along
checkpointing is slow, by carefully scheduling checkpoinbpera-  ith the system scale, the poor scaling of existing techesqu

tions, we can hide its overhead using an extra checkpoint cgp . X
maintained in the local PCRAM of each node. In addition, as can increase the overhead to several hours. Oldéehl. [2]

local checkpointing gets faster, taking more frequent chegoints  Showed that a 1-petaFLOPS system can potentially take more
can help reduce the size of incremental checkpoints. Howeyén  than a 50% performance hit unless we significantly increase
order to benefit from incremental checkpointing, the checkpint  the I/O bandwidth of storage nodes. As this trend continues,
interval has to be less than 10 seconds. very soon the failure period will be as small as the checkipoin
overhead. In such a situation, a system either has to lirait th
number of nodes allocated to an application or risk ending up
Checkpoint-restart is a classic fault-tolerance techmidpat With an indefinite execution time.
helps large-scale computing systems recover from uneggect Although the industry is actively looking at ways to reduce
failures or scheduled maintenance. However, the currate-st failure rates of computing systems, it is impractical to man
of-the-art approach, which takes a snapshot of the entiréacture fail-safe computing components such as processor
memory image and stores it into a globally accessible storagpres, memories, etc. A feasible solution is to make check-
disk at regular intervals, is no longer feasible. pointing techniques more efficient. As shown in Fig. 1, a majo
There are two major roadblocks that severely limit checlkbstacle to the scalability of checkpointing is the limitéd
point scalability. Firstly, future exascale systems wititgn- bandwidth of the centralized storage device. All checkpoin
tially have more than 100,000 processing units and thelata have to go through these I/O nodes to get stored. Tyjpical
mean time to failure (a.k.a. MTTF) will be much shorteduring a checkpoint process, all the process nodes (whose
than existing petascale systems. One extreme example is shale is much larger than the scale of /O nodes) must take
“ASCI Q” supercomputer, which has an MTTF of less thasheckpoints at the same time and this causes high bandwidth
6.5 hours [1]. Even with an optimistic socket MTTF ofstress on the 1/O nodes and the centralized storage devices.
more than 5 years, we will soon arrive at a situation whei® maintain the consistency of the system and maximize 1/O
MTTF of an exascale system with thousands of nodes wilandwidth available for checkpointing, the workload idleth
be as low as half an hour. This trend implies that momntil the checkpoint operation completes and this leads to a
frequent checkpoint activities are required with an inabrvsignificant increase in workload execution time.
as low as a few minutes. Secondly, with hard disk drive A scalable solution to this problem is to take checkpoints
being a mechanical device, it is extremely difficult to scalim a local storage medium. Fig. 2 shows a new organization
its bandwidth as the rotation speed and the seek latency mrevhich the global checkpoints are still stored in the glhba
limited by physical constraints. Therefore, it is not fédeito accessible storage devices through 1/0 nodes but eachgsroce
use HDD and meet the checkpoint interval requirement thadde can take its own private local checkpoint as well. Since

|I. INTRODUCTION



Process Nodes 1/0 Nodes

are designed to either handle workload traffic or checkpoint
Storage data. While overlapping global checkpointing with exeenti

is beneficial, it is not possible to capture its deleterious
effects in the small simulation window. Similarly, incrental
checkpointing is a promising technique to reduce checkpoin
overhead. However, its effectiveness can vary dependiong up
the checkpoint interval and the characteristics of the Veartk.

A thorough analysis of incremental checkpointing will requ
many days worth of simulations.

Fig. 1. The typical organization of the contemporary supewguter. All the In this work, we build prototype platforms of a scaled-

permanent storage devices are taken control by I/O nodes. down paraIIeI system with hybrid checkpointing and study th
benefits of background and incremental checkpointing opti-
Process Nodes (i ocal storage) I/O Nodes mizations. We use Berkeley Lab Checkpoint/Restart (BLCR)

Storage library [8] to create coordinated checkpoints.

Il. RELATED WORK

There has been abundant work to reduce checkpoint over-
head in distributed systems [9]. The most widely-used check
point protocol iscoordinated checkpointingwvhich takes a
consistent global checkpoint snapshot by flushing theansit
messages and capturing the local state of each process node

) o ~simultaneously [10].Uncoordinated checkpointingeduces
Fig. 2. The proposed new organization that supports |dchiéy hybrid

checkpoint. The primary permanent storage devices ateatihected through networ_k conge_stlon by Iettmg each nOd? take CheCkpomtS
I/0 nodes, but each process node also has a permanent storage at a different time. To rollback to a consistent global state

each node maintains a log of all incoming messages and

takes multiple snapshots at different time. During recgver

the dependency information between various checkpoirts ar
local checkpointing does not involve network transfergail  communicated to find a consistent state [11].
be relatively fast. However, unlike global checkpointsttha apn alternate approach to reduce checkpoint overhead is
are accessible by any node in a system, local checkpoif§sreduce the checkpoint sizélemory exclusior[12] is a
are private to each node. Therefore, it cannot be reachggnyare approach, in which programmers segregate the data
in the event of a node loss or other permanent hardwafgo critical and non-critical, and reduces the checkpsinée
failures. To provide complete protection, it is necessary by removing non-critical data such as buffers and temporary
take both global and local checkpoints referred tohgbrid  matrices.Incremental checkpoinf5]—[7] is another way to
checkpointingWhile this approach looks expensive, Doely requce the checkpoint size. It consists of saving only tlie di
al. [3] showed that a significant checkpoint overhead reductiggrences between two consecutive checkpoints. Implerdente
can be achieved by maintaining multiple checkpoints. at the OS level, this approach saves a checkpoint that only

In an hybrid scheme, depending upon the percentage of #itains the virtual memory pages marked as dirty (modified)
failures that can be solely recovered by local checkpointshis approach requires several checkpoint images to belsave
the local and global checkpoint ratio can be appropriatelyr a single process: at least the previous “reconstructed”
tuned. Hence, a system that is mostly plagued with safteckpoint and the last incremental checkpoint. However,
errors (similar to “ASCI Q") need not have to take frequenhe effectiveness of incremental checkpointing reducet wi
global checkpoints. In addition, since a consistent stath@® increase in checkpoint interval. With the current generati
machine is already captured in the local checkpoint, glob&stems having a checkpoint interval of several hours, the
checkpointing can be done in parallel with program executigncremental checkpoint size is almost the same as the full
and this can dramatically reduce the execution time. Sinee tcheckpoint size.
traditional HDD device is not fast enough to take frequeoélo  Prior work on multilevel checkpointing considers either
checkpoints as required by the hybrid checkpointing schenBBRAM or local HDD for checkpoint storage [13]-[15]. The
emerging non-volatile technologies such as PCRAM [4] afgnited bandwidth of HDD coupled with its poor access time
ideally suited to hold local checkpoints. make it not suitable for fast checkpointing. While DRAM
Dong et al. [3] quantified the benefits of hybrid scheméias superior latency properties, its volatile nature wih#-

through analytical modeling and simulations. However, theantly increase the complexity of multilevel checkpangi
hidden overhead obackground checkpointingnd its inter- For example, when using DRAM, to provide a complete
play with other orthogonal optimizations suchiasremental fault coverage including power failures happening during
checkpointing[5]-[7] cannot be captured through simulacheckpointing, we either have to maintain multiple copiés o
tions. For example, the 1/O bandwidth in parallel systemgobal checkpoints or employ a log based scheme for global




TABLE Il

THE STATISTICS OF THE FAILURE ROOT CAUSE COLLECTED BYANL backup if necessary. Fig. 3 shows the conceptual view of the

DURING 1996-2005 local/global hybrid checkpointing scheme, in whicindicates

Cause Occurrence  Percentage the computation time slot. Every two computation slats,
Hardware (hard error) 5163 21.7% are divided by either a global checkpoint indicatedday or
Hardware (soft error) 9178 38.7% | | checkpoint indicated Wh fail h

Software 5361 99.6% a local checkpoint indicate by . en a failure happens,

Network 421 1.8% a global recovery timeRs or a local recovery timeRy, is

Human 149 0.6% added depending on whether the local checkpoint or the floba

Facilities 362 1.5% heckpoint i d durina th

Undetermined 3105 13.1% checkpoint is used during the recovery
Total 23739 100%

IV. PROTOTYPEPLATFORMS

The primary motivation of this work is to study the overhead

checkpoints. The use of non-volatile memory for local checRf background checkpointing and effectiveness of increalen
pointing significantly increases the number of faults ceder checkpointing. We develop two prototypes: the first prgpety
by local checkpoints and reduces the probability of a globeges existing libraries to model hybrid checkpointing aad ¢
failure in the middle of a global checkpoint to less than 1% [3execute MPI applications. The second prototype is builtnfro
Vaidya [16] proposed a two level recovery scheme to redugeratch to specifically study incremental checkpointing.

the checkpointing overhead. He employed a log based locaAs PCRAM is not yet available to the commercial market,
checkpointing method for the first level and coordinatedglo we use half of the DRAM main memory space to be the
checkpointing for the second level. The two level recovelgcal checkpoint storage. This device emulation is reasiena
scheme is aimed at using local checkpoints to recover fragince the future PCRAM can be also be mounted on a Dual-
all single node failures and using global checkpoints only fInline Memory Module (DIMM). While the write speed of
multi-node failures. Since the first level checkpoints eevePCRAM is slower than DRAM, data on PCRAM DIMM can
both transient and hard errors, local checkpoints are madebe interleaved across PCRAM chips so that write operations
neighboring nodes which is an order of magnitude slower thgan be performed at the same rate as DRAM without any
taking checkpoints in the local storage. In addition, the ofs stalls [3]. We also expect to see the write endurance of
log based scheme can result in domino effect [17]. PCRAM improve to10'? as projected by ITRS [23], which

Several checkpointing library implementations are alsaill eliminate the write limitations associated with PCRAM
available for the HPC community, such as BLCR [8], ConTherefore, we can use DRAM to model PCRAM and assume
dor [18], CRAK [19], Libckpt [20], and C3 [21]. However, the DRAM-based and the PCRAM-based checkpointing have
none of them implements the hybrid checkpointing schemethe same behavior in terms of performance, regardless of the

fact that PCRAM will be more energy-efficient due to its non-
I1l. LocAL/GLOBAL HYBRID CHECKPOINT volatile nature.

State-of-the-art checkpointing relies on global centeai A Prototvoe 1
storage as shown in Fig. 1. Its main motivation is to recover yp
from all failures including a complete node loss. However, The first prototype is built using existinBerkeley Labs
global checkpoint availability is obtained at the cost afvsl Checkpoint/RestatBLCR) [8] and OpenMPI [24] solutions.
access speed and hence large performance overhead. Aftee BLCR kernel is modified to add a “dump to memory”
studying the failure events logged in the Los Alamos Nationfeature. We modify theiwrite kernel function that is respon-
Laboratory (LANL) from 1996 to 2005, which covers 22sible for BLCR to enable memory-based checkpointing. As the
high-performance computing systems, including a total &LCR library is an independent module which merely controls
4,750 machines and 24,101 processors [22], Dengl. [3] the program execution, it can directly execute existing MPI
observed that a majority of failures are transient in natugpplication binaries without any changes to the source.code
(Refer Table II. Transient errors such as soft errors (38.7%¢ further extend the kernel function to track and log the
of total errors) together with software errors (22.6% ofatot overhead of checkpointing overhead.
errors) can be recovered by a simple reboot command. As a’he overhead of each checkpoint-to-memory operation is
result, a significant number of failures can be recovered byeasured by: 1kmalloc that allocates memory; dnemcpy
taking local checkpoints private to each node. that copies data to the newly-allocated memory spacée8.

Dong et al. [3] also projected that more than 83% othe allocated memory. However, in Linux 2.6 kerrlahalloc
failures in a 1-petaFLOPS system can be recovered by las a size limit of 128K, thus each actual memory-based
cal checkpoints while the remaining 17% of failures thatheckpoint operation is divided into many small ones. This
include hard errors or node loss require globally accessilgonstraint slightly impacts on the memory write efficiency.
checkpoints. Based on this observation, more than 90% ofTo evaluate the performance overhead of the background
the checkpointing operations can be made locally at a higlobal checkpointing, the original memory-based checdkpoi
speed without compromising the failure coverage, since timplementation cannot be used because it does not generate
remaining globally accessible checkpoints can be usedeas #my real checkpoint region in the main memory. To have a
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(c) Running with failure, recovered by global checkpointing

Fig. 3. A conceptual view of execution time broken by the &peint interval: (a) an application running without faidyr(b) an application running with a
failure, where the system rewinds back to the most recertkglmént, and it is recovered by the local checkpoint; (c) gpligation running with a failure
that cannot be protected by the local checkpoint. Hencesyktem rewinds back to the most recent global checkpoirg.réd block shows the computation
time wasted during the system recovery.

l system call. When a page is overwritten, a page fault exaepti
fork() occurs, which sends thelGSEGV signal, and the page fault
exception handler saves the address of the page in an dxterna
data structure. The page fault signal handler also marks the

Periodically g & accessed page as writable by usinguaprotectsystem call.
Sonal At the end of the checkpoint interval it is only necessary to
(SISUSRD Checkpointing scan the data structure that tracks the dirty pages. In tois p

totype, the register file and data in main memory are essentia
components of a whole checkpoint. Other components, such
. as pending signal and file descriptor, are not stored duhiag t
Checkpointing checkpointing operation because their attendant overbaad

| be ignored [8].

. Running
.. benchmark

V. EXPERIMENTS

Fig. 4. The basic programming structure of checkpointiibgaliy for single- = A, Hardware Configuration
thread applications. . .
The aforementioned prototypes were developed using the

C language on a hardware configuration with 2 Dual-Core

) ) ) AMD Opteron 2220 Processors and 16GB of ECC-protected

workable solution, the RAM file systentamfs is used 10 registered DDR2-667 memory. Since the MPI synchronization
generate the actual checkpoint files. overhead is on the scale of tens of microseconds [25] and
B. Prototype 2 is negligible compared to the chec_kpointing Iatt_ancy, we can
) ) use a scaled-down system employing two identical machines

Although the BLCR kernel is a widely-used checkyiih the same configuration to evaluate MPI applications
point/res_tar_t library, it does not have support for incrataé running across multiple nodes. Each machine is equipped
checkpointing. Hence, we developed a second prototypg fulljith a Western Digital 740 hard disk drive that operates at
from scratch which can be used to evaluate the timing overg 0oo RPM with a peak bandwidth of 150MB/s reported in
head of both in-HDD and in-memory checkpoints. It SUpporfs; gatasheet. The experiment is run on a 64-bit Ubuntu Linux

both C and Fortran single-thread programs, and it enab&s $1 2815 and the checkpoint libraries are all compiled &y g
incremental checkpoint feature through bookkeeping [5]. 433

The prototype consists of two parts: a primary thread
that launches the target application and manages chetkp&n In-HDD and In-Memory Checkpoint Speed
intervals; a checkpoint library to be called by applicatiés We first investigated the actual speed difference between in
shown in Fig. 4, a running shell spawns a new process DD and in-memory checkpointing. As a block device, the
run the application that requires checkpointing. Aftertttee  HDD had a large variation in effective bandwidth depending
shell periodically send$SIGUSRL1 signal to the application. upon the access pattern. In our system, although the da¢a she
The SIGUSRL1 signal handler is registered as a function teeports a peak bandwidth of 150MB/s, the actual working
store checkpoints to hard disk or main memory. This approasandwidth is much smaller. We measure the actual HDD
requires modification to the source code, although the amndpandwidth by randomly copying files with different sizes and
are limited to a couple of lines to invoke the handler. use the system clock to track the time spent. The result is

The incremental checkpoint feature is implemented usipdptted in Fig. 5, which shows all the points fall into two
the bookkeeping technique. After taking a checkpoint,tad t regions: one is near the y-axis and the other is at the 50MB/s
writable pages are marked as read-only usingngorotect line. When the write size is relatively small, the effectivete
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application, and we used BLCR platform that supports both
HDD-based and memaory-based checkpointing.

Table 11l and Table IV show the checkpoint size and the
o checkpoint completion time of HDD-based and memory-based
60 techniques. Not surprisingly, taking checkpoints in meyrier
50 1 s . 50 times faster than taking checkpoints in hard disks. Itde a
0 AT R clear that when all threads take checkpoint simultanegusly
: : the effective bandwidth available per thread goes down. In
0 500 1000 1500 addition, checkpointing process is further delayed comgéo

Write Size (MB) an application with single thread due to loss of spatial libca
as illustrated in Fig. 5 and Fig. 6. More quantitatively, the
HDD bandwidth reduces from 50MB/s to 33.7MB/s, and the
memory bandwidth falls sharply from 5000MB/s to 1690MB/s

100

90

80

Write Speed (MB/s)

30

Fig. 5. The hard disk drive bandwidth with different writeesi

6000 due to increase in row buffer conflicts.
5000 . Ll IO ’ s Hence, contention existing in multi-threaded checkpaointi
é 4000 . will cause a significant drop in performance especially when
=1 o0 A main memory is used to make checkpoints. This issue can be
- | solved by:
§ 2000 « Serializing the checkpointing operations of multiple
1000 threads, so that only one thread can access the checkpoint
0 A 4 s storage device at a time.
0 500 1000 1500 « Only one thread is assigned to each process node, so
Write Size (MB) that the entire memory bandwidth is available for the in-

Fig. 6. The main memory bandwidth with different write size. memory CheCprImIng'

C. Background Global Checkpointing

_ _ As mentioned earlier, the existence of local checkpoints in
bandwidth of the HDD can be as high as 100MB/s and as lawe hybrid scheme makes it possible to overlap global check-
as 60MB/s. This amount of variation is caused by the HDBointing with program execution. In order to find whether

internal buffer. If the buffer is empty, the incoming datancabackground checkpointing can effectively hide latency, we
be directly written to buffer which is significantly fastdran studied the following three scenarios:

the disk media; once the buffer overflows, the HDD needs to 1) Without checkpointingThe program is executed without
rotate and seek the proper sector to store the data. Hence, it' yiqqering any checkpointing activities. This is the attua
can be observed that when the write size is in megabyte scale, oyacution time of the program.

the effective write bandwidth of HDD drops dramatically and 2) With foreground checkpointingthe program is executed
the actual value is 50MB/s, which is only one third of its peak ~ |, .+, checkpoint enabled. Every checkpointing operation

bandwidth of 150MB/s. _ , , stalls the program, and takes snhapshots into HDD di-
We performed a similar experiment to find the effective rectly.

checkpointing speed in main memory by copying data of 3) With background checkpointingfhe program is exe-

different sizes to newly-allocated memory addresses. The * . tad with checkpoint enabled. Every checkpointing op-

result is shown iq Fig. 6. Sir_nilar to the hard disks, all the eration stalls the program, takes snapshots into memory,
collected data fall into two regions. Note, for a very fewess and then copies them to HDD in the background.

we noticed significant drop in write speed to DRAM. However, While background checkpointing stalls the program to make

the frequency of their occurrence is low and we attribute thli ? ST
o . ) . . ocal checkpoints, the overhead is significantly smallez thi
to noise in the simulation. However, unlike hard disks, th

. e . the low DDR latency compared to HDD or network latencies.
attainable bandwidth is higher when the write size is lange dBack round checkoointing makes it feasible to overlap the
to the benefit achieved from spatial locality. This is ddsga g b 9 P

. . S slow in-HDD global checkpoint process with program exe-
for checkpointing since checkpoint sizes are usually lahge ution. In this experiment. the in-memory local checkpoint
addition, the achievable bandwidth is very close to 5333<1§(IB/.C im .Iemented bp amf V\;hiCh mounts ay ortion of mgin
which is the theoretical peak bandwidth of the DDR2-667 P yamis P

memory used in this experiment. Compared to the in-HDREMOrY as a file system. To study the impact of the number

checkpoint speed, the attainable in-memory speed can be Y{Idnvolved cores on background checkpointing, 1-thread, 2

orders of magnitude faster read, and 4-thread applications were run in a quad-core

We also recorded the actual time spent on in-HDD arfjocessor, respectivély The results are listed in Table V

in-memory che_ckpointing for a _real application with 1.6GB 14 3.thread application is not included in the experimentisgtbecause
memory footprint. The analysis is performed on a 4-threadegme benchmarks only allow radix-2 task partitioning.



TABLE Il
HARD DISK-BASED CHECKPOINT PERFORMANCE OF A-THREAD APPLICATION

Thread 1 Thread 2 Thread 3 Thread|4 Total

Checkpoint size (Byte) 417828448 417861216 417558112 417803872593.64M

Checkpoint latency (Second) 42.656668  44.998514  46.308757  47.2208587.273500

Achieved bandwidth (MB/s) 9.3 8.9 8.6 8.4 33.7
TABLE IV

MEMORY-BASED CHECKPOINT PERFORMANCE OF Al-THREAD APPLICATION

Thread 1 Thread 2 Thread 3 Thread|4 Total

Checkpoint size (Byte) 417836216 417565880 417860792 417860872593.70M

Checkpoint latency (Second) 0.202096 0.501741 0.507173 0.687554 0.943159

Achieved bandwidth (MB/s) 1972 794 786 580 1690
TABLE V

EXECUTION TIME OF A 1-THREAD PROGRAM WITHOUT GLOBAL CHECKPOINTINGWITH GLOBAL CHECKPOINTING, AND WITH BACKGROUND GLOBAL

CHECKPOINTING(UNIT: SECOND)

1 2 3 4 5 6 Average
Without checkpointing 6.24 629 6.34 6.33 6.33 6.326.31:£t0.0014
With foreground checkpointing| 9.18 9.69 7.03 7.03 6.99 7.08 7.83t1.58
With background checkpointing 6.36 6.35 6.36 6.37 6.22 6.3D 6.34+0.0037
TABLE VI

EXECUTION TIME OF A 2-THREAD PROGRAM WITHOUT GLOBAL CHECKPOINTINGWITH GLOBAL CHECKPOINTING, AND WITH BACKGROUND GLOBAL

CHECKPOINTING(UNIT: SECOND)

1 2 3 4 5 6 Average
Without checkpointing 18.15 18.08 21.80 18.17 18.88 17.9918.85+2.20
With foreground checkpointing| 25.40 24.85 24.97 23.25 21.05 22.4623.66+-2.92
With background checkpointing 18.41 23.69 21.90 1844 18.33 18.3219.84+5.53
TABLE VII

EXECUTION TIME OF A 4-THREAD PROGRAM WITHOUT GLOBAL CHECKPOINTINGWITH GLOBAL CHECKPOINTING, AND WITH BACKGROUND GLOBAL

CHECKPOINTING(UNIT: SECOND)

1 2 3 4 5 6 Average
Without checkpointing 14.15 1411 1431 1410 14.15 13.3414.03t0.12
With foreground checkpointing| 20.03 16.78 17.02 17.56 19.65 18.6718.29+-1.89
With background checkpointing 19.10 22.46 20.47 19.87 18.82 19.5820.05+1.73

to Table VII, which show the total execution time with a « The background checkpointing becomes ineffective when

single checkpointing operation performed in the middle of
the program. Each configuration is run multiple times and the

average value is considered for the evaluation.

We observe from the results that:

« Foreground checkpointing always takes about 25% per-

the number of threads equals to the number of available
processor cores. Its associated overhead is even larger
than in the foreground case. This is because there is
no spare processor core to handle the 1/O operations
generated by the background checkpointing activity.

formance loss due to low HDD bandwidth and this value Therefore, although the background checkpointing tech-
is consistent with previous analytical evaluation [2].  Nique is an effective tool to hide the impact of slow in-HDD
When main memory is used for taking checkpoints, tHeheckpointing, designers need to ensure that a spare payces
checkpoint overhead for a 1-thread application is arouf§@'e is always available on each node when partitioning the
0.5% (as listed in Table V. This overhead is 50 timegomputation task. Also, it is necessary to perform global
smaller than the foreground case, and it is consistent wgReckpoints in a sequential manner to minimize row buffer
our previous finding that in-memory checkpointing is 5@onflicts.

times faster than in-HDD checkpointing.).

The background checkpoint overhead increases fr
0.5% to 5% when the application to be checkpointed Since in-memory checkpointing makes it possible to take
becomes multi-thread. This is because of conflicts rheckpoints every few seconds, it reduces the overhead of
row buffer due to interleaving of workload accessemcremental checkpointing. As the checkpoint interval de-
with checkpointing. In addition, the MPI synchronizatiorcreases, the probability of polluting a clean page becomes
overhead is another source of the extra latency, since @maller, hence, the average size of an incremental chaakpoi
checkpointing scheme isoordinated decreases.

AOR Incremental Checkpoint Size
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To measure the size difference between full checkpoirteeckpoint interval is shortened, the number of checkpoint
and incremental checkpointBrototype 2is used to trigger taken during a unit time is also increased. Therefore, the
checkpoint operations with the interval ranging from 1 seto amount of data to be stored during a unit time might increase,
to 30 seconds. Five workloads from the NPB benchmark withhich means the cumulative cost of frequent checkpointing

CLASS B and CLASS C configurations are tested. In ordemight be bigger compared to using larger intervals.
to have a fair comparison, a new metratieckpoint size per

Fig. 12 shows the result of seven different workloads. All
second is used to quantify the timing cost of checkpointingosts are normalized to the cost at the 0.5-second intdtval.

by assuming the checkpointing bandwidth is stable durieg tshows that, for all the workloads, the incremental cheakipoi
process. Fig. 7 to Fig. 11 show the checkpoint size of botlosts begin to go down for checkpoint intervals longer than
schemes for different intervals. 0.5 seconds. Based on Fig. 7 to Fig. 12, it is clear that
It can be observed that, in all the five workloads, thimcremental checkpointing is beneficial only if the chedkpo

incremental checkpoint size is almost the same as the finterval is between 0.5 to 10 seconds. Taking more frequent
checkpoint size when the checkpoint interval is greaten thaheckpoints can always enhance the system reliability as it
20 seconds. This shows that the incremental checkpointirggluces the amount of useful work lost in the event of a failur
scheme is not effective when the interval is not sufficientidowever, it is clear that when considering realistic chedkp
small. Hence, checkpointing processes that involve atagssintervals, most workloads do not benefit from incremental
HDD or network transfers cannot benefit from incrementaheckpointing. Note, in our current implementation, theydi
checkpointing. This could be the reason why the most populgages are tracked via page fault handler at the OS levelidn th
checkpoint library, BLCR [8], does not support incrementalase, the ultra-frequent checkpointing would cause alalbst
checkpointing. As the interval size goes down, all the worlthe memory accesses to result in a page fault and adds extra
loads except MG.C show a large reduction in checkpoint casterhead to the program execution time. However, this issue

with incremental checkpointing. Based on this observatibn can be solved by using hardware mechanisms to track dirty
is clear that in-memory checkpointing is essential to aehiepages.

benefits from incremental checkpointing.

VI. CONCLUSION
E. Frequent Incremental Checkpointing Current in-HDD checkpointing cannot scale to future ex-
Although the previous experiment shows the advantage adcale systems. Emerging PCRAM technologies provide us
incremental checkpointing over full checkpointing, ane tha fast-access and non-volatile memory and make in-memory
size of incremental checkpoints becomes smaller when ttleeckpointing an interesting alternative, especiallyafiybrid
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The normalized incremental checkpoint cost undtea-frequent checkpointing.

scheme that takes both local and global checkpoints and] Y.-M. Wang, P.-Y. Chung, I.-J. Liret al, “Checkpoint Space Recla-
provide complete fault coverage. In this work, we extend the
previous research on local/global checkpointing, anddowib
prototypes to study the benefits of background and incresthert2]
checkpointing. The background global checkpointing is tar
geted to hide the long global in-HDD checkpoint latency, ar*[g3]
frequent incremental checkpointing is targeted to redhee t

overall checkpoint size. In our evaluation we found thathwit
proper scheduling, background checkpointing is effective

hiding global checkpoint latency. On the other hand, inaem
tal checkpointing is only beneficial if checkpoints are matle [15]
a high frequency.
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