
Efficient Prevention of Credit Card Leakage

from Enterprise Networks

Matthew Hall1, Reinoud Koornstra2, and Miranda Mowbray3

1 No Institutional Affiliation, mhall @ mhcomputing.net
2 HP Networking, USA, koornstra @ hp.com
3 HP Labs, UK, miranda.mowbray @ hp.com

An extended abstract of this paper has been published in the Proceedings
of CMS 2011, B. de Decker et al. (Eds.) CMS 2011, LNCS 7025, 2011 (Boston:
Springer), pp 238-240. The extended abstract is c©IFIP, 2011. The definitive
version of the extended abstract is the one in the Proceedings. This is the authors’
version of the work. It is posted here by permission of IFIP for your personal
use. Not for redistribution.

Abstract. We describe some challenges we have found in deploying ap-
plications for preventing the leakage of credit card numbers in traffic on
a large enterprise network. To address them, we have developed a new
approach to this problem. In contrast to a previously-used method, our
new method has higher performance—in a benchmarking experiment,
it achieved a throughput more than 4.7 times that for a competitive
method—and it can be partly implemented in hardware without any
additional libraries if this is required for processing high traffic volumes.

Keywords: cloud security, privacy, data leak prevention

1 Introduction

According to Gartner, Inc., the market in content-aware data loss prevention
will reach $400m in 2011 [1]. Products in this market examine the data layer of
a packet on an enterprise network and determine whether it contains private or
commercially sensitive data items, so as to prevent these items from being leaked
(for example, sent into the public Internet or to a less secure part of the enterprise
network). Credit card numbers are a very important category of data which these
products must cover. The danger of card number leakage is exacerbated both
by the rise of targeted phishing attacks, and by the increasing use of cloud
computing and consequent increase in data traffic between enterprises and the
public cloud.

In this paper we describe some challenges which we encountered when de-
ploying applications for preventing the leakage of credit card numbers in traffic
on a large enterprise network. To address these challenges we have developed
and prototyped a new approach to this problem, making use of a novel high-
speed streaming Luhn check algorithm. We have applied for a US patent for

the algorithm (application number PCT/US2011/022709), but this paper con-
tains some content relating to the algorithm that is not mentioned in the patent
application, including discussion of a benchmarking experiment and of some re-
finements and extensions of our method. Our approach can prevent the leakage
of any credit card numbers, not just a predetermined set of such numbers. In
the benchmarking experiment, a software implementation using our approach
achieved more than 4.7 times the throughput of an implementation that used a
competitive approach. For even higher throughput, our method can be partially
implemented in hardware without the need for additional libraries.

2 Previous Approaches

There are several existing applications which address the problem of detecting
credit card numbers in data traffic, so as to prevent them from being leaked.
These include data loss prevention products and services by Symantec [2], Web-
sense [3], Vericept [4], Mimecast [5] and Code Green networks [6], and the
OpenDLP open source suite [7]. With one exception, all of these applications
use one of two approaches (some companies offer both approaches).

The first approach, which can be used to prevent the leakage of any credit
card numbers, begins by performing a first pass on the packet data to identify
candidate numbers that fit a regular expression for potential card numbers.
For example, all American Express (Amex) card numbers are 15-digit numbers
beginning with 34 or 37, and the regular expression used in this pass should
match, among other things, all numerical substrings of the data that have this
format. Then a second pass is performed to determine if any of the candidate
numbers satisfy the Luhn check [8]. All valid credit card numbers satisfy this
check, although the converse does not hold.

One way to carry out the Luhn check is to double every alternate digit in the
number including the penultimate digit, and check whether the sum of digits of
the resulting numbers is divisible by 10. For example, 932152 passes the Luhn
check because the sum of the digits of the numbers 18 3 4 1 10 2 is 20, but 93215
does not because the sum of the digits of the numbers 9 6 2 2 5 is 24, which is
not divisible by 10.

The candidate numbers that are found to pass the Luhn check are sent to
leakage inspectors for Visa, MC, Amex, etc. that are responsible for determining
if any of these sequences are indeed valid card numbers issued by the associated
provider. These leakage inspectors have full information about the set of valid
numbers issued by the provider. If they identify a candidate number sent to them
as being a valid credit card number, this is recorded, and further transmission
of the packet or the flow containing this number may be blocked.

Unfortunately, performing the first regular-expression pass is an expensive
operation in terms of resource requirements when trying to handle the high
packet volumes on modern enterprise networks. Our experience with deploying
applications that use this approach is that as packet volumes increase, it quickly
becomes impossible or prohibitively expensive to perform the regular-expression

pass on all the packets in the relevant network flows. To use this approach at
all, it becomes necessary to sample a fraction of the packets in these flows, and
only search the sampled packets for strings fitting the regular expression. Any
credit card numbers in the unsampled packets remain undetected.

We considered the possibility of speeding up the first pass by implementing it
in hardware. However this would require the regex library, which has considerable
size, to be stored in the hardware. We concluded that this was impractical.

The second approach is to store digital fingerprints of a set of card numbers
(for example, the card numbers in a customer database) and check the data
for exact matches to these digital fingerprints. This eliminates the need to do a
Luhn check, but requires all the contents of the data to be checked for matches.
The fundamental limitation of this approach is that it can only detect credit
card numbers whose fingerprints are in the stored set. It requires a system for
obtaining a list of all the credit card numbers that might be leaked, and for
keeping this list updated. We rejected this approach because we consider it
important to be able to prevent the leakage of any credit card numbers.

The one exception is a data loss prevention product offered by Lancope [9]
which uses traffic sampling and looks at the flow telemetry without considering
the data layer. This approach provides only an educated guess as to whether
there is leakage, and thus suffers from false positives.

3 Our Approach

To address these challenges, we have developed and prototyped a new approach
to detecting credit card numbers in data traffic on an enterprise network. In
contrast to the approach using regular expression matching, our approach carries
out Luhn checks in a first rather than a second pass of the data.

The process begins by collecting network traffic for analysis. Any traffic flows
that do not need to be checked are excluded from analysis using Access Control
Lists defined by the customer to fit their network layout. Where packet volumes
are so high that it is still necessary to use sampling, we use the sFlow sampling
standard [10]. The packets collected are decoded into the character sets used in
the customer’s locale.

As the batch of packets is collected, we run a novel high-speed streaming
algorithm on the resulting data stream. In a single pass of a data stream, this
algorithm identifies all 14, 15 or 16-digit numbers that satisfy the Luhn check,
and which are substrings of the stream obtained by deleting all spaces and
dashes from the original stream. The algorithm is simple and easy to implement
in hardware, without the need for additional libraries, if this is required for
processing very high traffic volumes.

Lightweight custom string check functions (in software) are then run on the
set of numbers that are reported by the algorithm as passing the Luhn check,
for example to identify potential Amex card numbers by checking whether any
of these numbers have length 15 and begin with 34 or 37. The combination of
the Luhn check algorithm and string check performs the same end function as

the first two passes of the approach that uses regular expressions, but with much
less computation. This allows us to inspect more (possibly all) of the relevant
packets in a network with high packet volumes than would be feasible using
the same amount of resources and regular expression matching. In networks
with low enough packet volumes that the previous approach could inspect all
relevant packets, it allows us to do the same with less resources.

The numbers that satisfy the checks are saved into a table which is directed
to leakage inspectors. Any sequences that are identified by an inspector as being
valid card numbers are saved into another table along with key data from the
packet to produce an event report for the user.

Our prototype implements the streaming Luhn check, the string check, and
the event report generation, but not the final step of blocking a packet from
further transmission if it has been found to contain a credit card.

The event reports generated by our prototype include the IP and MAC ad-
dresses of the sender and, if resolvable, the recipient; the last four digits of the
credit card number; the sampling device used, if relevant; vendor-specific data,
for example a measure of the magnitude of the leakage; and an event ID number.
We can identify IP, ICMP, TCP or UDP data as relevant. If the leak is found in
IP data and the transport layer protocol is unknown, IP data is reported. For
known IP subprotocols, the report includes data for that protocol, e.g. type(s)
and codes(s) for ICMP or Source→Dest port mappings for TCP or UDP.

3.1 Streaming Luhn Check Algorithm

The pseudocode for the algorithm is below. The notation sd(a,b) is shorthand
for the string consisting of entries d[a],d[a+1], ... d[b], where a, b ∈ ZZ

with 0 ≤ a ≤ b.
The underlying idea of the algorithm is as follows. The vector d stores the

sequence of digits received from the stream since the beginning or the last char-
acter other than a space, dash or digit, and i records this sequence’s length.
When a new digit is read in from the string, i is updated and the variable x[i]

is set such that x[i] is equivalent mod 10 to L(sd(1,i)). Then the algorithm
determines whether the substrings of length 13, 14 or 15 ending at this new digit
pass the Luhn check.

To determine this, the algorithm uses the fact that if s1, s2 are digital
strings and s2 is of even length, and s1 · s2 is the concatenation of s1 with
s2, it follows from the definition of L that L(s2) = (L(s1 · s2) − L(s1))%10.
If i > 13, putting s1=sd(1,i-14), s2=sd(i-13,i) in this equation implies
that sd(i-13,i) passes the Luhn check if and only if (x[i]-x[i-14])%10 =
0. The checks for sd(i-14,i) and sd(i-15,i) can be derived similarly by set-
ting s1=d[i-14], s2=sd(i-13,i) and s1=sd(1,i-16), s2=sd(i-15,i) respec-
tively.

Start by setting i=0, d[0]=0, x[0]=0.

While there are more entries in the string, repeat the following:

Get the next entry, and set e to it

if e is other than a base-10 digit, space or dash

set i = 0

if e is a base-10 digit

increase i by 1

set d[i] = e

if i == 1 set x[1] = e

if i > 1

set x[i] = d[i] + 2d[i-1] + x[i-2]

if d[i-1] > 4 increase x[i] by 1

if i > 13

set c = (x[i] - x[i-14]) % 10

if c == 0 report sd(i-13,i) as passing the check

if i > 14

add d[i-14] to c

if c % 10 == 0 report sd(i-14,i) as passing the check

if i > 15 and (x[i] - x[i-16]) % 10 == 0

report sd(i-15,i) as passing the check

The underlying idea of the algorithm is as follows. The vector d stores the
digits received from the stream since the beginning or the last character other
than a space, dash or digit, and i records this vector’s length. When a new
digit is read in from the string, i is updated and x[i] is set such that x[i] is
equivalent mod 10 to L(sd(1,i)). Then the algorithm determines whether the
substrings of length 13, 14 or 15 ending at this new digit pass the Luhn check.

To determine this, the algorithm uses the fact that if s1, s2 are digital
strings and s2 is of even length, and s1 · s2 is the concatenation of s1 with
s2, it follows from the definition of L that L(s2) = (L(s1 · s2) − L(s1))%10.
If i > 13, putting s1=sd(1,i-14), s2=sd(i-13,i) in this equation implies
that sd(i-13,i) passes the Luhn check if and only if (x[i]-x[i-14])%10 =
0. The checks for sd(i-14,i) and sd(i-15,i) can be derived similarly by set-
ting s1=d[i-14], s2=sd(i-13,i) and s1=sd(1,i-16), s2=sd(i-15,i) respec-
tively.

3.2 Benchmarking Experiment

The performance advantage of our approach depends on how frequently credit
card numbers and other numerical strings appear in the input data. For a bench-
marking experiment we used two data files, one in which they appear frequently
and the other in which they appear infrequently. Both files consisted of a mil-
lion lines of 80 ASCII characters each. Every line of File 1 contained a 14, 15
or 16-digit string, at a random offset. Half of these strings were chosen so that
they would pass the streaming Luhn check and string check—or equivalently,
the regular expression pass and Luhn check pass. The other characters in the
lines were random. File 2 consisted just of random ASCII characters.

We processed the two files 40 times with our prototype (which is in software)
and 40 times with a software implementation of the approach using a regular
expression pass followed by a Luhn check pass.

The experiment used an Intel Core 2 Duo E8500 CPU, with 3.166Ghz and
6144 KB of layer 2 cache. It had 4 GB of RAM, 2.9 GB of which was available
to the operating system (32-bit Linux Ubuntu 10.4).

For each run we measured the time taken from when the packet data was
available in memory until the two checks or two passes had been completed
for the whole file. Every run took within 15% of the average time for the file
and method, which for File 1 was 8.32988 seconds with the regular expression
method and 1.70410 seconds with our new method, and for File 2 was 8.61835
and 0.88082 seconds respectively. All but one of the runs took within 6% of the
average time. The shortest time for the regular expression method divided by
the longest time for our method was 4.72 for File 1, and 9.37 for File 2: thus, the
implementation using our method achieved more than 4.7 times the throughput
of the implemention using the competitive method.

4 Refinements and Extensions

There are some possible refinements to the Luhn check algorithm that will make
our approach more effective in certain circumstances.

– If it is known that the digits of card numbers appearing in the data will
be consecutive, rather than potentially separated by spaces or dashes, the
condition if e is other than a base-10 digit, space or dash can be
replaced by the condition if e is other than a base-10 digit.

– The computation requirements can be further reduced, at the expense of a
small increase in memory use, by using lookup tables in the calculation of
x[i].

– We did not find the amount of memory used to be a problem in our experi-
ments with the algorithm. However, only the 17 most recent entries of the x

vector and the 16 most recent entries of the d vector are ever used, so if mem-
ory resources are scarce they can be conserved by over-writing earlier entries
of these vectors. If necessary, memory requirements could be further reduced
at the expense of a small increase in computation by setting x[i] to (d[i]

+ 2d[i-1] + x[i-2]) % 10 rather than d[i] + 2d[i-1] + x[i-2].
– The international standard for identification card numbers [11] requires all

numbers issued by the banking or financial industries to begin with the dig-
its 3, 4, 5 or 6. Therefore the number of strings processed by the string
check can be reduced at the expense of slightly more computation dur-
ing the Luhn check pass, by replacing the condition if e is a base-10

digit by the condition if i>0 and e is a base-10 digit, or i=0 and

e = 3,4,5 or 6. This tradeoff can be further extended by modifying the
Luhn check algorithm to only report numbers beginning with 3, 4, 5 or 6.

These refinements would still allow the algorithm to be easily implemented in
hardware without additional libraries.

An obvious extension of our method for detecting credit card numbers is
to apply our approach of using a streaming algorithm rather than a regular

expression check to the detection of some other types of personal data. For ex-
ample, International Bank Account Numbers (IBAN, [12]) consist of a two-letter
country code followed by a numerical string of a length l that depends on the
country, and satisfy a checksum. It is straightforward to write a streaming al-
gorithm which looks up l for the appropriate country if the last two characters
received are a country code, and checks whether the next l characters are nu-
merical digits; and if they are, checks the checksum requirement and reports the
relevant string of length l + 2 as a possible IBAN if it is satisfied. Similarly, a
streaming algorithm might be used to detect any numbers in a particular na-
tional ID or tax number scheme, with higher throughput than would be possible
with the use of regular expression matching on packet data.

The prototype detects card numbers in data traffic. There is increasing use
of protocols such as SSL which transmit data in encrypted form. This protects
data while it is in transit, but leaves open the possibility that personal data may
be transmitted by mistake and misused after the packet containing it has been
decrypted by the recipient. Several companies offer products that can intercept
data before transmission (they are known as Endpoint DLP products), for ex-
ample Symantec, Code Green Networks and Trend Micro. If used in combination
with some means of intercepting data, our method could be used to inspect data
before it is transmitted, and block its transmission where necessary.

Our approach could also be used to inspect static data files in areas of the
enterprise network that are not supposed to contain personal data.

References

1. Ouellet, E., Proctor, P.E.: Magic Quadrant for Content-Aware Data Loss Protec-
tion. Gartner RAS Core Research Note G00200788, 2 June 2010. Gartner, Inc.
(2010).

2. Symantec Data Loss Prevention products and services,
http://www.symantec.com/business/theme.jsp?themeid=vontu

3. Websense data security, http://www.websense.com/Content/DataMonitor.aspx
4. Vericept Corporation: Vericept Awarded Patent For Data Loss Prevention Technol-

ogy, Press Release, 15 January 2008. https://www.vericept.com/index.php?id=913
5. Mimecast data leak prevention solutions, http://www.mimecast.com/data-leak-

prevention-solutions/
6. Code Green networks, http://www.codegreennetworks.com/index.htm
7. OpenDLP Data Loss Prevention suite, http://code.google.com/p/opendlp/
8. Luhn, H.P: Computer for Verifying Numbers. US Patent 2,950,048, 23 August

1960.
9. Lancope Inc. Data Loss Prevention. Market Brief MB07092010 (2010).

10. sFlow.org—Making the Network Visible, http://www.sflow.org
11. International Standards Organization. Identification cards - Identification of issuers

- Part 1: Numbering system. ISO/IEC 7812-1:2006.
12. International Standards Organization. Financial services - International bank ac-

count number (IBAN) - Part 1: Structure of the IBAN. ISO standard 13616-1:2007.

