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Abstract. Given d input time series, an aggregated series can be formed
by aggregating the d values at each time position. It is often useful to
find the time positions whose aggregated values are the greatest. Instead
of looking for individual top-k time positions, this paper gives two al-
gorithms for finding the time interval (called the plateau) in which the
aggregated values are close to each other (within a given threshold) and
are all no smaller than the aggregated values outside of the interval. The
first algorithm is a centralized one assuming that all data are available
at a central location, and the other is a distributed search algorithm that
does not require such a central location. The centralized algorithm has
a linear time complexity with respect to the length of the time series,
and the distributed algorithm employs the Threshold Algorithm by Fa-
gin et al. and is quite efficient in reducing the communication cost as
shown by the experiments reported in the paper.

1 Introduction

Given a set of d input time series, by aggregating the d values at each time
position, we obtain an aggregated time series A. A top-k query is to determine
the top k time positions on A, namely, the time positions with the k greatest
aggregated values. The well-known threshold algorithm (TA) [2] may be used to
answer this type of query.

Recently, there has been active research on data aggregation in sensor net-
works [5, 6, 7, 1] and the top-k query can be very useful. For example, in an
environmental monitoring system, multiple sensors may be used in an interested
area to measure the temperature, humility, etc., at every minute. The measured
data are stored in these sensors, and the system may need to find, within a spe-
cific time period, the time positions with the k highest average temperatures [3].

Assume the aggregated time series contains the average temperature for each
minute during the past week and k = 3. If Friday is the warmest day during the
week and the highest temperature during the week is at 1:30pm on Friday, we
may very likely get the following three time positions as the answer to our top-3
query: 1:29pm on Friday, 1:30pm on Friday, and 1:31pm on Friday.
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We believe that a more interesting query is to find the plateau over the ag-
gregated time series. The plateau is defined as the maximum interval such that
all the values on the time positions in the interval are no less than all the values
at the time positions outside of the interval. Compared to the top-k time posi-
tions, the plateau may give us more information. The plateau definition becomes
more interesting and useful when we add another constraint: all the values in
the plateau should be “close enough” to the top-1 value of the whole sequence.
How close is “close enough” can be a value specified by the user.

In the example above, assume that the user considers two degrees as close
enough, and asks for the plateau. The answer will be the interval [1:10pm on
Friday, 1:45pm on Friday] if the temperature at each time position in this interval
is at most two degrees lower than the highest temperature observed at 1:30pm on
Friday, and all the time positions outside of this interval have temperature values
no higher than the value of each time position in the interval. Obviously, the
plateau carries more information about high-temperature time positions than
that of the k time positions we get from a traditional top-k query.

In this paper, we formally define the plateau over time series and present effi-
cient algorithms to find the plateau in both centralized and distributed settings.
We show that the plateau can be found in linear time with respect to the length
of time series in the centralized setting. For the distributed setting, we develop
a distributed search algorithm and through experiments we show that it signif-
icantly outperforms a direct extension of the TA algorithm in terms of number
of accesses to the distributed sources.

The rest of the paper is organized as follows. In the next section, we introduce
some basic notions and formally define the key concept of plateau. Sections 3
and 4 describe our algorithms for finding the plateau in an aggregated time
series in a centralized setting and a distributed setting, respectively. We present
our experimental results in Section 5 and draw conclusions in Section 6.

2 Preliminary and Basic Assumptions

We first define time series. A time series is a finite sequence of real numbers and
the number of values in the sequence is its length. We assume all time series are
sampled at the fixed (discrete) time positions t1, . . . , tn. A time series is denoted
as s, possibly with subscripts, and its value at time t is denoted s(t).

An aggregated time series is a time series whose value at time position t is
from aggregating the values from multiple input time series. Specifically, given
s1, . . . , sd and an aggregation function f , the aggregated time series is sf with
sf (t) = f(s1(t), . . . , sd(t)) for each t. We shall use A to denote aggregated time
series, and omit the mentioning of function f when it is understood. A “normal”
time series can be considered as a degenerated aggregated time series, and hence
we shall use A to denote both “normal” time series and aggregated ones.

Definition 1. Given a time series A and a real value ε, a time interval [tl, tr]
is said to be an ε-plateau of A if for each time position t ∈ [tl, tr], we have
(1) |A(t)−A(t′)| ≤ ε for all t′ ∈ [tl, tr], and (2) A(t) ≥ A(t′′) for all t′′ �∈ [tl, tr].
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Intuitively, an ε-plateau in a time series is the largest time interval that has
values no less than the value of any time position outside of the interval, and the
difference between the values within the time interval is at most ε. An ε-plateau
must contain a time position with the greatest value in the time series.

We abbreviate ε-plateau to simply plateau when ε is implicit or irrelevant. A
maximum ε-plateau is an ε-plateau that is not a proper subinterval of another
ε-plateau. In the sequel, when not explicitly stated and clear from the context,
we will use the term plateau to mean the maximum plateau.

When there are more than one top-1 time position in the aggregated time
series, two cases arise: all the top-1 time positions are either contiguous or not.
In the former case, we will have only one maximum plateau. For the latter,
the only (maximum) plateaux we will find are formed by top-1 time positions,
regardless of the ε value. This is rather trivial algorithmically since it is equivalent
to finding all top-1 time positions (and possibly combine these positions that are
contiguous with each other). We do not pursue this case any further. Since the
former case is equivalent to having a unique top-1 position, we will in the sequel
assume that the top-1 position is unique in each aggregated time series, and
hence we will have a unique maximum plateau for each ε value.

Example. Consider the maximum plateau in the (aggregated) time series shown
in Fig. 1. The top-1 time position is td = t10 with value 12. If ε = 2, then the
plateau is [t9, t10]. If ε = 10, then the plateau is [t8, t11].

An equivalent way of defining a plateau is by a minimum value threshold τ .
That is, instead of condition (1) in the definition, we would insist that A(t) ≥ τ
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Fig. 1. Example time series

for all t ∈ [tl, tr]. Obviously, this is
equivalent to the original definition
if we take τ = A(tm) − ε, where tm
is a time position with the great-
est value. In the sequel, we may
use plateau to mean an ε-plateau or
equivalently a plateau with a mini-
mum value threshold.

We may also define the ε-plateau
via the notion of rank as follows.

Definition 2. Given a time series, the top-rank, or simply rank, of a time
position t, denoted R(t), is defined as 1 plus the number of time positions that
have greater values, that is, R(t) = 1 + |{t′|A(t′) > A(t)}|.
If R(t) ≤ k, we will also say that t is a top-k time position. Hence, a
top-1 time position has a value that is no less than that of any other time
positions.

Given a time series and real value ε, if [tl, tr] is an ε-plateau, then for each
time position t ∈ [tl, tr], all the time positions with ranks higher (or R() values
smaller) than R(t) must be in [tl, tr]. For example, if the plateau includes a rank
3 time position then all the rank 1 and rank 2 time positions must also be in the
plateau.
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Much has appeared in the literature for algorithms that look for top-k items
from multiple data sources (e.g., [4]). Many algorithms use a variant of Fagin et
al.’s threshold algorithm (TA), which has been shown to be optimal [2]. In TA,
the aggregation function f is assumed to be monotonic, i.e., x1 ≤ y1, . . . , xd ≤ yd

implies f(x1, . . . , xd) ≤ f(y1, . . . , yd). Many practical aggregation functions, like
sum, average, maximum, are monotonic.

We now briefly review TA, as applied to look for top-k time positions in
the aggregated time series. Assume we have d input time series s1, . . . , sd. We
sort each time series based on the values (from large to small), and keep the
time position information with the values. Thus, we have d such sorted lists:
L1, . . . , Ld. In TA, we proceed as follows.

1. Do sorted access in parallel (or using a round-robin schedule) to each of the d
sorted lists. As a value v is retrieved under the sorted access from one list (as-
suming the associated time position is t), do random access to the other time
series to find the values si(t) for all i, and compute A(t) = f(s1(t), . . . , sd(t)).
We say time position t has been “seen” and A(t) is kept for each “seen” time
position t.

2. For each list Li, let vi be the last value returned under the sorted access. De-
fine the threshold value θ to be f(v1, . . . , vd). Stop as soon as there are at least
k distinct A(t) values on the “seen” time positions that are greater than θ,
and then output the top-k time positions among all the “seen” time positions.

3 Centralized Algorithm

In this section, we discuss how to find the plateau for an aggregated time series
when all the input time series are available at a central point. For example, we
can imagine each sensor in a sensor network sends its measurement data to the
control center every hour. In such a setting, the central point can calculate the
aggregated time series A based on the input time series and the given aggregation
function. We present a linear time algorithm for finding the plateau on A.

We first define a left ε-plateau of the time series A to be an ε-plateau when
we only consider the time series on the left of (and including) the top-1 time
position. That is, it is an ε-plateau we find in A(t1), . . . , A(tm), where tm is
the top-1 time position. Right ε-plateaux are defined analogously. We define the
maximum left and right ε-plateaux in a similar way as we defined the maximum
ε-plateau, and use the term left and right plateau to mean the maximum left and
right plateau, respectively, when the context is clear. Note, however, the union
of a left and a right ε-plateaux does not necessarily form an ε-plateau as will be
shown in the example at the end of this section.

The following result directly follows the definitions.

Theorem 1. Denote min right(i)= min
{
A(tj)

∣
∣ i ≤ j ≤ m

}
, and max left(i) =

max
{
A(tj)

∣
∣ 1 ≤ j < i

}
. Interval [tl, tm] (l ≤ m) is a left ε-plateau if and only if

min right(l) ≥ A(tm) − ε and min right(l) ≥ max left(l) where tm is the top-1
time position.
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In the above theorem, we assume max left(1 )=−∞. We have an analogous the-
orem for the right ε-plateaux. These theorems give the basis for our linear
time algorithm in finding the maximum left and right ε-plateaux. It is obvi-
ous that min right and max left for the time positions before tm (and min left
and max right for the positions after tm) can be computed in an incremen-
tal fashion with two sequential scans, using for example the recurrence relation
min right(i) = min{min right(i + 1), A(i)}. Assume these values are available
and assume τ = A(tm) − ε. Then we can easily design the procedure:

find left plateau ([tL, tm] , τ) : [tl, tm] , τl

The input parameters are [tL, tm] and τ , where tL is the left boundary of the
time series to be considered, tm is the right boundary of the time series to be
considered (tm is also the top-1 position in [tL, tm]), and τ is the required min-
imum value threshold. The output parameters are [tl, tm] and τl, where [tl, tm]
is the maximum left plateau and τl = max

{
τ, A(ti)

∣∣ i = l, . . . , l − 1
}
. The

procedure simply scans from tL towards tm and finds the first time position tl
such that min right(l) ≥ max left(l) and min right(l) ≥ τ .

The correctness of this procedure follows Theorem 1 directly. It is also clear
that the time complexity of the procedure is O(l − L + 1).

The question now is how to get the global ε-plateau. Assume find left plateau
and find right plateau return [tl, tm] and τl, and [tm, tr] and τr, respectively. By
Theorem 1, all the positions in [tl, tm] have values no smaller than τl while all the
positions in [t1, tl) have values no greater than τl. We have similar conclusions
for [tm, tr] and τr. If τl = τr, we can merge the left and right ε-plateaux to obtain
the maximum ε-plateau. Otherwise, we should shrink the side with the smaller
τ using the greater τ . This shrinking process is repeated until τl = τr and we
then merge the left and right ε-plateaux into the ε-plateau. The whole process
is summarized in Fig. 2. The algorithm finds the maximum ε-plateau [tl, tr] of
time series A. It also returns a real value τ such that all the values in [tl, tr] are
no smaller than τ while all the values not in [tl, tr] are no greater than τ .

Algorithm Find Plateau
Input: Time series A of length n, and ε.
Output:[tl, tr]: maximum ε- plateau

τ = max{A(tm) − ε,A(tj)|tj �∈ [tl, tr]}, where tm is the top-1 time position
(1) Find the top-1 time position tm.Set τ = A(tm) − ε, and compute min right ,

max left , min left and max right as described earlier.
(2) Call find left plateau([t1, tm], τ ). Return [tl, tm], τl.
(3) Call find right plateau([tm, tn], τ ). Return [tm, tr], τr.
(4) Let tL = tl and tR = tr. If τl = τr then τ = τl. Return [tL, tR], τ . Done.
(5) If τl > τr then call find right plateau([tm, tR], τl). Return [tm, tr], τr. Goto Step 4.
(6) If τl < τr then call find left plateau([tL, tm], τr). Return [tl, tm], τl. Goto Step 4.

Fig. 2. The Find Plateau algorithm

.
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Theorem 2. Algorithm Find Plateau correctly finds the ε-plateau of time series
A in linear time and space.

Proof. The space complexity of the algorithm is obvious since we only need to
store two numbers for each time position. Now we analyze its time complexity.
Steps 1-3 take linear time as mentioned earlier. The nontrivial part of the proof
is that find left plateau and find right plateau may be called multiple times due
to Steps 5 and 6. However, each repeated call to find left plateau will start the
scan from the stopping position of the previous call. That is, even in the worst
case, the multiple calls to find left plateau will scan up to m positions and thus
the complexity of all calls is O(m). Similarly, the complexity of all possible
multiple calls to find right plateau is O(n − m + 1). Hence, the time complexity
of Algorithm Find Plateau is O(n).

The correctness follows the correctness of the procedures find left plateau and
find right plateau . Indeed, with Steps 2 and 3, we find the respective maximum
plateaux with A(tm) − ε as the minimum value threshold for the plateaux. It is
clear that Steps 5 and 6 will both still return ε-plateaux. The question is whether
the final result is the maximum ε-plateau. The answer is positive since each time
we used smallest τl and τr value that is necessarily to maintain the combined
interval to be a plateau.

Example. We want to find the 10-plateau in the time series shown in Fig. 1. The
top-1 time position is tm = t10 with value 12. Given ε = 10, we have threshold
τ = 12 − 10 = 2 initially. The call to find left plateau([t1, t10], 2) returns with
the maximum left plateau [t8, t10] and τl = 7, and find right plateau([t10, t12], 2)
returns with the maximum right plateau [t10, t12] and τr = 2. Note that we
cannot combine the left and right plateaux into one yet since τl �= τr (actually,
[t9, t12] is not a plateau). Since τl > τr, so we call find right plateau([t10, t12], 7).
This time, it returns a new right plateau [t10, t11] and a new τr = 7. Now we can
combine the left and right plateaux into P = [t8, t11]. We also output τ = 7.

4 Distributed Algorithm

In this section, we discuss how to find the plateau for an aggregated time series
without bringing all the data into a centralized server. The reason for this may
include the large size of the time series from the data sources, and the high
communication costs. In this setting, we would like to calculate the ε-plateau
with a minimum amount of communication. To do this, we assume that data
sources have some computation power to support the local processing as required
by the Threshold Algorithm (TA) of [2].

In the distributed setting, as required by the TA, we assume the aggregation
functions are monotonic.

4.1 A Naive Algorithm

A straightforward way of finding the plateau in a distributed setting is to find
the top-1 time position tm in the aggregated time series, and then to find all the
time positions whose aggregated values are no smaller than A(tm) − ε.
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The top-1 time position tm and its aggregated value A(tm) can be found by
a direct use of TA. We may trivially extend the TA algorithm to proceed, after
finding top-1 time position, to repeatedly find the next top time positions and
their associated aggregated values until the threshold θ is smaller than A(tm)−ε.
In this way, we find all the time positions with values no smaller than A(tm)−ε.
With these time positions, we can use our linear algorithm to find the maximum
ε-plateau. Indeed, a little deeper analysis of the linear algorithm indicates that if
we change all the values smaller than A(tm)− ε to a very small number (smaller
than all possible values), then the plateau found by the linear algorithm is the
same as the one found with all the data available.

4.2 A Distributed Search Algorithm

In some situations, the above naive algorithm performs very poorly. Indeed, con-
sider the following aggregated time series of length n:

2, 2, . . . , 2, 1, 3
and consider 1-plateau (i.e., ε = 1). Clearly, the top-1 time position is tn, and
the 1-plateau is [tn, tn]. However, the above naive algorithm will need to retrieve
all the time positions t1 through tn−2, in addition to tn. The run time and the
communication cost will be proportional to n. A simple observation will yield
that if we find out that the time position tn−1 has a value 1 that is lower than
A(tn) − ε = 3 − 1 = 2 and the greatest value between t1 and tn−1 is 2, then we
can safely conclude that [tn, tn] is the plateau we are seeking.

values

Time

Value

Case 1

Case 2

Case 3

Left top-1 

Current left plateau

Local bottom-1 

between left top-1 and 

current left plateau 

Extending the left plateau

Fig. 3. Three cases for the distributed algorithm

Similar to the linear centralized algorithm in Section 3, we first concentrate
on finding the left and right plateaux, separately, and then combine them into
a single plateau. The above example is for the left plateau. Let us examine it a
little closer with the help of the diagram in Fig. 3. In this diagram, the current
(not necessarily maximum) left plateau is the one we have already found (e.g.,
[tm, tm] where tm is the top-1 point in the whole series), and we would like to
see if we can extend the current left plateau towards the left in order to find
the maximum left plateau. For this purpose, we find the top-1 time position
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(called “left top-1” in the digram) on the left of the current left plateau, and
then we find the bottom-1 time position (called “local bottom-1” in the diagram)
between the left top-1 and the current left plateau.

Three cases arise based on the τ value as depicted in Fig. 3. (Recall that τ
gives the restriction that all the values in the plateau must be no less than τ).
Consider Case 2 first as this is the case for the above example. In this case, the τ
value is between the left top-1 value and the local bottom-1 value. The following
are two useful observations for this case:

(1) Any value in the maximum plateau must be no less than the value of this
left top-1. This gives us a new τ value for the left plateau.

(2) The left plateau cannot be extended to the time position of the local bottom-
1. This gives us a new boundary when extending the left plateau.

By using these observations, we can extend the left plateau by using the new τ
value and the boundary. This can be done with a recursive call to the extending
procedure itself. One condition for the recursion to stop is if the new boundary
is actually the current plateau. Going back to the above example, the proce-
dure stops after we find the local bottom-1 is at position tn−1, which is at the
immediate left of the current left plateau (i.e., [tn, tn]).

Now consider Case 1. Since the left top-1 value is below τ , we know no time
positions on the left of the current left plateau can be in the maximum left
plateau. In this case, the current left plateau is the maximum left plateau.

Finally consider Case 3. In this case, we may be tempted to conclude that
the left plateau can be extended to the time position of left top-1. However, this
would be wrong if going to further left (left of the left top-1), we would meet a
time position with a value lower than τ and then another time position with a
value higher than the value of the local bottom-1. See Fig. 3 for this situation.
What we need to do in this case is to find out if such a situation actually occurs.
To do this, we recursively consider the time series on the left of (and including)
the time position for the left top-1. Now local top-1 forms a left plateau by
itself since it is a top-1 value in this subseries, and we try to extend the “local”
plateau to the left. This (recursive) procedure will return a “local” left plateau
starting from left top-1, and returns the actual τ value used by this “local” left
plateau. If this returned τ value is still lower than the value of the local bottom-
1, then we can conclude that all the positions on the right of the left top-1 are
indeed in the left plateau (together with all the time positions in the “local” left
plateau). Otherwise (i.e., the returned τ value is greater than the value of the
local bottom-1), then we can conclude that the left plateau cannot be extended
to the time position of left top-1, and the new τ value to use is the returned τ
value from the “local” left plateau procedure.

We can now summarize our search algorithm in Fig. 4. In this algorithm, we
refine the TA algorithm to look for top-1 and bottom-1 time positions (in terms of
aggregated values) in an interval of [left , right ] of the time series. We assume TA
will return the aggregated values associated with the top-1 and bottom-1 time
positions. This extension can be obtained straightforwardly without requiring
the data sources maintain separate sorted lists for each different time interval.
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Procedure: find left plateau
Input: [tl, tm] where tl is the left boundary of the time interval

to be considered and tm is the top-1 position in [tl, tm]
and the right boundary of the time series to be considered,
τ : the minimum value threshold for the left plateau

Output: [tl′ , tm]: maximum left plateau
τ ′ = max{τ,A(ti)|i = l, . . . , l′ − 1}.

(0) If l = m, then return [tm, tm] and τ .
(1) Let tt = top[tl, tm−1], and tb = bot [tt, tm−1].
(2) Three cases.

(2.1) if A(tt) < τ , then return [tm, tm] and τ .
(2.2) if A(tt) ≥ τ and A(tb) < τ , then

if b = m − 1, then return [tm, tm] and A(tt);
else recursively call find left plateau with [tb+1, tm] and τ = A(tt), and

return what’s returned from recursive call
(2.3) if A(tb) ≥ τ , then

if tt = tl, then return [tl, tm] and τ ;
else recursively call find left plateau with [tl, tt] and τ

assume the returned values are [tl′ , tt] and τ ′

(2.3.1) if τ ′ ≤ A(tb), then return [tl′ , tm] and τ
(2.3.2) if τ ′ > A(tb), then set τ = τ ′ and goto Step (2).

Fig. 4. The find left plateau procedure for the distributed setting

We will use the notation top[left , right ] and bot[left , right ], where left and right
are time positions, to denote the top-1 and bottom-1 time positions found by
TA within the interval [left , right ], respectively.

Theorem 3. The algorithm in Fig. 4 correctly finds the maximum left plateau.

The procedure to find the right plateau is similar. The complete algorithm that
finds the plateau is the same as for the centralized algorithm, but will use TA
to find the top-1 time position (Step 1, without computing the four arrays) and
the search algorithms to find the left/right plateaux (Steps 2-6). It is easily seen
that this complete procedure will find the correct plateau.

Example. Consider the time series in Fig. 5. We will only show how to find the
left 8-plateau with tm = t6 and τ = 2. During the initial call (C-1) with [t1, t6],
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Fig. 5. Another example time series

we find left top-1 is at tt = t4, and
local bottom-1 is at tb = t5. Since
A(tb) = A(t5) = 3 > τ = 2, we are
in Case 3 (Step 2.3), and we make
a recursive call (C-2) with interval
[t1, t4] and τ = 2. In C-2, we have
tt = t2 and tb = t3, and we are
looking at Case 2. Since b = 3 =
m−1 = 4−1 in this case, we return
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to C-1 with [t4, t4] and a new τ = A(t2) = 5. In C-1, we were in Case 3 with
returned τ ′ = 5, and since τ ′ = 5 > A(tb) = A(t5) = 3, we set τ = 5 and
go back to Step 2. Now we are looking at Case 2 since A(tt) = A(t4) = 7 >
τ = 5 > A(tb) = A(t5) = 3. Since 5 = b = m − 1 = 6 − 1, we return [t6, t6].
Hence, we have found the maximum left 8-plateau to be [t6, t6] and the return
τ = A(tt) = A(t4) = 7.

4.3 Optimizing the Distributed Search Algorithm

There are many optimization techniques to add to the search algorithm. Here
we only mention three of them that are used in our implementation. Other
opportunities are abundant but are not pursued in this paper.

To start with, for Step 1, we may want to find the leftmost top[tl, tr−1] and
rightmost bot [tt, tr−1] if there are multiple left top-1 and local bottom-1 time po-
sitions. While the algorithm is still correct if we use an arbitrary top[tl, tr−1] and
bot [tt, tr−1] time positions among the multiple possibilities, the use of the left-
most and rightmost time positions, respectively, generally gives us the advantage
in obtaining the plateau faster.

For Step 2.3, if tt = tb, then we know that all the time positions between
[tb, tm] have values no less than A(tt) (also no less than τ), then we may im-
mediately extend the left plateau to [tb, tm] without any recursion (although
recursion will eventually find this extension as well).

Since we repeatedly use TA to find top[tl, tr] and bot [tl, tr], it is possible
to reuse of the results across the different runs. For example, we may need to
find top[tl, tr] and later top[tl, tr−k]. During the search for top[tl, tr], the final
threshold value θ for TA used may be on a time position within [tl, tr−k]. In this
case, we have already obtained the top[tl, tr−k].

5 Experimental Results

In this section, we report the experimental evaluation of our distributed search
algorithm. For the purpose of comparison, we also implemented the naive algo-
rithm as mentioned in Section 4.1.

In order to control the experiments, we used synthetically generated data
sets. We are interested in the situation that all the distributed data sources
are monitoring the same phenomenon and hence the data should be somewhat
correlated. In order to simulate this, to generate one data set, we first use a
random walk to generate a core time series sc, and then generate each input time
series by (1) adding to the core with a fixed “shift” value, and then (2) randomly
perturbing the value at each time position. That is, s(t) = sc(t)+shift+randpert ,
where shift is a fixed (randomly picked) value for the entire time series s, and
randpert is a random number at each time position. The parameters we used in
our experiments are as follows: each step of the random walk takes a random
value between [−0.5, +0.5], i.e., sc(i) = sc(i − 1) + rand [−0.5, 0.5], and the shift
is a random value between [−5, 5] and the randpert is a random number between
[−2.5, 2.5]. We used the sum as our aggregation function.
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To give a “trend” to the random walk data, we modified the above generation
of sc with a slight bias. For the first half of the core time series, we add a small
value (0.01 is used in the experiments) to each step, i.e., add 0.01 to sc(i), and
in the second half of the core time series, we subtract the same small bias. This
way, it’s more likely that the time series will peak when reaching the middle of
the time series. Since the bias is rather small, the trend is not prominent in our
data sets.

Basically, three parameters affect the performance: the length of time series,
the number of time series, and the ε value used for the plateau. Therefore, we
tested our distributed search algorithm in three different ways, each varying
one parameter while keeping the other two constant. The performance of our
algorithm is measured on the number of accesses needed to the data sources
(i.e., the number of sorted and random accesses required by the TA). For each
fixed set of parameters, we generated 10 different data sets as described above
and report the average number of accesses.

The result of the first experiment is reported in Fig. 6. In this experiment,
we fixed number of series to 30, and ε to 90. As can be seen, the length of
the series do not affect the performance too much on both algorithms, al-
though our distributed algorithm performs better with one scale of magnitude.
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Fig. 6. Varying series length

Intuitively, the naive algorithm would
be affected by the series length be-
cause there may be more time po-
sitions with aggregated value above
A(tm) − ε. However, in our particular
setting, due to the one “peak” nature
of our time series, the performance of
the naive algorithm does not degen-
erate as series length increases. As we
observed (but not reported here), if we
use a larger ε value, the performance
of the naive algorithm generally goes
poorer as the series length increases.
In general, however, the performance of our distributed algorithm scales well
with series length even in multiple-peak situations.

The result of the second experiment is reported in Fig. 7. In this experiment,
we fixed the time series length to 3, 000, but varied the number of input time
series from 1 to 100. Since we used sum as our aggregation, we varied the ε
value in proportion to the number of time series. Specifically, ε is three times
the number of time series (thus, if we have 30 time series, ε = 90). As can be seen
that our distributed algorithm performs much better than the naive algorithm,
with one scale of magnitude, consistently.

The result of the third experiment is reported in Fig. 8. In this experiment,
we fixed the time series length to 3, 000 and the number of time series to 30. In-
terestingly, when ε value is very small, the naive algorithm performs better than
our distributed algorithm. In such cases, the naive algorithm retrieves almost
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Fig. 7. Varying number of series
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Fig. 8. Varying ε value

exactly all the time positions in the plateau. In general, if the plateau consists
of all (or most of) the points that is above A(tm) − ε, then the naive algorithm
works very well. However, such cases should be rare in practice.

6 Conclusion

In this paper, we introduced the notion of the plateau in time series and presented
two algorithms to find the plateau in aggregated time series. The first algorithm
deals with the situation when all the data are available at a central location.
In such a setting, we showed how the plateau can be found in linear time with
respect to the length of the time series. The second algorithm is for distributed
data sources in which we would like to reduce the communication cost. We
presented a search algorithm that gives one scale of magnitude reduction in terms
of communication cost over a straightforward use of the Threshold Algorithm [2].

As we observed, in some very special situations, the naive algorithm actually
performs better than our more sophisticated search algorithm. It will be inter-
esting to see how to merge the naive strategy into the search algorithm to take
advantage of the special situations.
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