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ABSTRACT
The wide spread of databases for managing structured data, com-
pounded with the expanded reach of the Internet, has brought for-
ward interesting data retrieval and analysis scenarios to RDBMS.
In such settings, queries often take the form of k-constrained op-
timization, with a Boolean constraint and a numeric optimization
expression as the goal function, retrieving only the top-k tuples.
This paper proposes the concept of supporting such queries, as
their nature implies, by a functional optimization machinery over
the search space of multiple indices. To realize this concept, we
combine the dual perspectives of discrete state search (from the
view of indices) and continuous function optimization (from the
view of goal functions). We present, as the marriage of the two
perspectives, the OPT* framework, which encodes k-constrained
optimization as an A* search over the composite space of multi-
ple indices, driven by functional optimization for providing tight
heuristics. By processing queries as optimization, OPT* signif-
icantly outperforms baseline approaches, with up to 3 orders of
magnitude margins.

1. INTRODUCTION
The wide spread of databases for managing structured data, com-

pounded with the expanded reach of the Internet, has brought for-
ward interesting data retrieval and data analysis scenarios. While
databases have been applied predominately in business settings with
well-defined query logic, they are now frequently used in retriev-
ing or analyzing data: In these scenarios, the target answers are
described with some qualifying constraint B, which specifies what
tuples should be considered valid, and a quantifying function O,
which measures their degree of matching, and the query returns
only some k top-matched answers– thus overall with a query form
Q= (B, O, k). As a simple example, a query (B: dept = CS ∧
(year = 2 ∨ year = 3), O: gpa, k: 5) will return the top-5 2nd or
3rd-year students in CS with highest gpa.

We refer to such a query as a k-constrained optimization query,
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which effectively specifies a goal function G and retrieval size k.
The goal function G consists of both Boolean constraint expres-
sion B and a numeric optimization expression O, i.e., G= B · O
(by treating B as a function of {0,1} values). As its semantics, in-
tuitively, such a k-constrained optimization query, over a database
D, is to optimize the goal function G over the domain defined by
D, i.e., find the k top tuples t ∈ D, such that G(t) is maximized.

To begin with, such k-constrained optimization queries, by flex-
ibly specifying the retrieval criteria over relational structured data,
are well suited for data retrieval (by which we intend to parallel in-
formation retrieval over unstructured text). In such scenarios, user
requests often involve some “hard” constraints B and “soft” crite-
ria O, resulting in the overall goal G. Meanwhile, as a retrieval
task over large data, users are often interested in a relatively small
number k of best matches.

Example 1 (Data Retrieval): To search for houses with a reason-
able tradeoff of size and price, from a House relation h, we may
formulate query Q = (B: h.price ≤ 200k ∨ h.price ≥ 400k, O:

h.size

|h.price−300k| , k: 1) , or in the SQL form as below. The query will
select the top-1 house from h, by qualifying only those with price
in the given range, and quantify their scores with some ratio of size
over price (i.e., some form of per-dollar size).

select h.address from House h
where h.price ≤ 200k ∨ h.price ≥ 400k

order by h.size
|h.price−300k| limit 1

Similarly, such queries can also retrieve from multiple relations.
To illustrate, we may now decide to also consider the safety of the
district, and thus join another relation CrimeRate (with alias c).
The new join query, say for top-10, is thus, in our simplified form:
Qc = (B: (h.price ≤ 200k ∨ h.price ≥ 400k) ∧ h.zipcode =

c.zipcode, O: h.size
|h.price−300k| × c.crimerate−1, k: 10)

Further, such queries, with B as a range specifier for categorizing
objects and O for aggregating them, are also useful for data anal-
ysis. By joining multiple relations (say R1 and R2), the B expres-
sion will select qualified tuples (say r1 ∈ R1 and r2 ∈ R2), and
the O expression will evaluate their aggregate scores (i.e., O(r1,
r2)). Such scenarios often arise in decision support tasks:
Example 2 (Data Analysis): Consider a data warehouse scenario
for a retailer store, with a table Sale(itemid, year, sale) for collect-
ing the sales history data over the past 10 years, with one entry per
item per year, e.g., (a012, 1998, 600k). A data analyst may exe-
cute the following query, looking for the top-10 items that have the
largest increase of sales in any consecutive years. The query joins
the same table Sale to itself, which we refer to as aliases s1 and s2,
resulting in Qd = (B: s1.itemid = s2.itemid∧s2.year−s1.year =
1, O: s2.sale − s1.sale, k: 10)
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However, while useful, such queries are not fundamentally sup-
ported in RDBMS, and thus their evaluation is rather naive and in-
efficient. We note that k-constrained optimizations are already syn-
tactically expressible in most SQL variants (e.g., where B order
by O limit k of Example 1 follows the PostgreSQL syntax). While
expressible, however, these optimization queries are evaluated in
naive ways; the limitations come in two ways: First, condition sep-
aration: As current systems are not aware of optimization across
both B and O, they often process the two expressions step-by-step,
lacking an overall integrated search in the G-function space. Sec-
ond, function restriction: While some existing algorithms can be
adapted to deal with “optimization”– or finding top-k – they essen-
tially rely on a rigid assumption, that G functions are monotonic.
The monotonicity requires G to be non-decreasing if all its param-
eters are non-decreasing. With the general combined Boolean and
ranking conditions of B· O, G is rarely monotonic– In fact, none of
the above examples is monotonic.

As the main thesis of this paper, we propose to process such
a query by what the query actually means: That is, we believe
such queries, as their nature implies, should be evaluated simply
by k-constrained optimization of G over the database D as the do-
main. Much like function optimization in numeric analysis, we are
to maximize a function G. Conceptually, with the focused search
that optimization schemes (e.g., hill climbing) typically achieve,
this concept of “processing queries by optimization” is appealing.
However, unlike functional optimization, we shall search in a database,
instead of a continuous numeric domain, for the maximizing tuples.

Toward realizing this concept, we take dual perspectives: Essen-
tially, for efficient evaluation, our objective is to optimize G, with
the help of indices as access methods, over tuples in D. First, from
the view of using indices, we are to search the maximizing tuples
on the index nodes as “discrete states”– and thus the perspective of
discrete state search. Second, from the view of maximizing goal
functions, we are to optimize G– and thus the perspective of con-
tinuous function optimization. We stress the two complementary
perspectives– While function optimization helps us to focus on the
goal, state search helps to navigate the index. A satisfactory solu-
tion, hence, hinges on the “marriage” of the two.

To realize k-constrained optimization over databases, this paper
develops the OPT* framework, which integrates the two concepts.
The gist of OPT* lies in correctly transforming the optimization
problem into search on the indices, thus achieving the marriage.
On the one hand, OPT* builds upon the state search perspective:
To enable such search, it constructs a state space, or a “map,” of
the index nodes and their interlinks, upon which the optimization
problem (of maximizing the score of tuples) is equated to an A*
search (of minimizing the path to reach the tuples). On the other
hand, OPT* leverages the function optimization perspective: To
ensure the correctness and optimality of the embedded A* mech-
anism, OPT* resorts to functional optimization to measure the
“landscape,” so as to configure the state space with a right heuristics
function and sound initial states. Together, with A* search driven
by functional optimization, OPT* completes the encoding of the
k-constrained optimization problem, and thus the search algorithm
naturally follows.

In summary, OPT* framework achieves the challenge of opti-
mizing a goal function over index structures that access a database–
for any goal functions (not necessarily monotonic), any access paths
(not necessary hierarchical parent-child links), and over a com-
pound space of indices. While we develop OPT* for the new prob-
lem of evaluating general k-constrained optimization, we stress
that, in this general form, it also conceptually unifies several previ-
ously proposed frameworks: e.g., KNN and spatial joins in spatial

queries and TA in monotonic top-k queries, which Section 7 will
discuss in details.

We have implemented the OPT* framework, and evaluated it
over both real datasets with benchmark queries, as well as over
synthetic datasets with controlled queries. We compared OPT*
with several baseline approaches, albeit with their limitations, that
can evaluate some forms of k-constrained optimization. The per-
formance margin with such optimization-driven search is often sig-
nificant – in the range of up to 3 orders of magnitude. In summary,
the contributions of this paper are:

• We propose to evaluate queries by the concept of k-constrained
optimization over databases.

• We realize the concept with the framework of OPT*, which
builds functional optimization upon discrete state search.

• We extensively evaluate OPT* for its performance.

We formalize and motivate the problem in Section 2. To develop
the OPT* encoding, Section 3 begins with the state search per-
spective, and Section 4 completes with the functional optimization
perspective. We then discuss the OPT* framework in Section 5,
report experiment in 6, and summarize the related work in 7.

2. MOTIVATION

2.1 Query Model
As Section 1 discussed, querying a database can be successfully

modeled as a k-constrained optimization problem, with the dual
goals of optimizing both constraint expression B and optimization
expression O to retrieve the top results of size k.

Toward seamless optimization of both B and O, we view that the
two expressions together form a unified goal function G: That is,
the score of G for a tuple t that satisfies the constraint expression B
is simply its score of optimization expression O(t). In contrast, a
tuple that fails to satisfy B is assigned with a low score such that it
can never make to the top-k results.

We develop this intuition into a formal definition of k-constrained
optimization query. Let Ai, i = 1, . . . , m denote m query at-
tributes (either all from a single relation, e.g., as in Q, or from
multiple joined relations, e.g., as in Qc), D a database instance,
and dom(Ai) the domain values of attribute Ai. A k-constrained
optimization query can be formally defined as follows:

Definition 1 (Query model): Let a k-constrained optimization query
Q be defined over query attributes Ai, i = 1, . . . , m and join n re-
lations D1, . . . , Dn. Let rel(Ai) denote the relation Dj that Ai

belongs to, dom(Ai) the domain values of Ai and D = D1 ×
· · · × Dn. A k-constrained optimization query Q is a two tuple
< G, k >, where:

• Goal function G: dom(A1) × . . . ×dom(Am) → R+ maps
a tuple t of m attribute values to a positive numeric score. G
is composed from optimization expression O: dom(A1) × . . .
×dom(Am) → R+ and constraint expression B: dom(A1)
× . . . ×dom(Am) → {0, 1} as follows:

G(t) = O(t) · B(t)1 (1)

• result size k ∈ N : specifies the number of tuples in result.

The result of a k-constrained optimization query Q is thus a
sorted list of k tuples in the database D that maximizes G.

1This definition assumes O maps to a positive real number in R+

and B maps to a binary value of 0 or 1. More rigorously, we can let
O map to any real number and set G(t) as −∞ when B(t) = 0.
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Figure 1: k-constrained optimization.

To illustrate our query model, consider query Q in Example 1 with
two query attributes price and size. Figure 1(a) describes an exam-
ple database instance D, while Figure 1(b) plots the landscape of G
over the domains of price and size. Q =< G, 1 > retrieves the top
tuple in D maximizing G, i.e., (600k, 4500), which corresponds
to the high-scoring point in the landscape. With this abstraction,
Section 2.2 develops a query mechanism to efficiently search D for
top-k answers.

2.2 Query Mechanism
As Section 2.1 has defined a semantic model of querying databases,

we now develop how to answer such queries with the optimal cost.
More specifically, our goal is to search for database tuples in D
that maximize the goal function G with the minimal cost. Toward
the goal, the first requirement of searching over database tuples in
D clearly suggests the use of access methods, e.g., table scan or
index scan, over D. In particular, as table scan always requires an
exhaustive search and thus not optimizable, we rather use indices
that enable a “focused” search by organizing data tuples into dis-
crete states preserving “attribute value locality” (as we will discuss
later). The second requirement of minimizing the cost suggests to
effectively guide the search toward maximizing G.

To satisfy these dual requirements, we view the problem from
the following two perspectives:

• Discrete state search perspective: From the view of using in-
dices, our problem is essentially to search over a discrete set of
index nodes to find the satisfying data tuples.

• Continuous function optimization perspective: From the view
of optimizing G, our problem is essentially to optimize the goal
function G over the domain of a database.

First, from discrete state search, our goal is to search over indices
for top-k data tuples. An index is essentially a set of nodes (p, ptr)
with pointer ptr to reach data tuples (either directly or through
multiple “reachable” index nodes) preserving the locality to satisfy
predicate p, e.g., 100K < price < 200K. Such structures concep-
tually discretize domains into nodes preserving locality of values.
Each of such nodes clusters data tuples with close values, with ef-
ficient traversals provided among them by node pointers. In partic-
ular, we focus on B+-trees, as commonly available in DBMS. Such
an index essentially presents a graph with internal, leaf, and tuple
nodes, and realizes locality in the following two types of internode
linkages: First, hierarchical traversals among internal nodes real-
ize locality of containment, ensuring tuples within the child node
also fall within the parent node. That is, following such pointers
can be conceptually viewed as “zooming into” a subrange. Sec-
ond, interleaf traversals among leaf nodes realize the locality of
contiguity, ensuring two sibling nodes refer to contiguous ranges.
Ultimately, leaf nodes point to data tuples that satisfy the given lo-
cality condition.

With this abstraction, query answering is essentially performing
a search on indices to reach data tuples of top-k results with mini-

mal use of indices. In a Boolean query like B = price > 100K,
such a search is straightforward as the constraint expressions B ex-
plicitly suggests how to carry out a focused search, e.g., visiting
only the nodes with locality potentially satisfying B. In contrast, for
a general k-constrained optimization query potentially involving
arbitrary ranking combined with Boolean conditions and joining
multiple relations, e.g.. Q maximizing size

price
ratio, it is no longer

clear how to focus the search.
Second, from continuous function optimization, our goal is to

optimize G over the domain of the database. To perform a focused
search toward optimizing G, we may consider using existing func-
tion optimization schemes, e.g., hill climbing or genetic algorithm
[16]. However, such schemes identify the values optimizing the
given function over continuous value space, defined by domains of
the query attributes dom(A1) × · · · × dom(Am). In contrast, a
k-constrained optimization query optimizes over database D with
arbitrary “membership” restriction. Meanwhile, existing function
optimization schemes optimize over either continuous space (e.g.,
reals) or discrete space (e.g., integers) with regular structures, and
thus cannot support arbitrary database membership.

Putting together, neither discrete state search nor continuous func-
tion optimization itself can stand as a solution to answer k-constrained
optimization queries. Our challenge is thus to develop a seamless
integration of the two– We can view such integration as an “in-
formed” discrete search, guided by function optimization on G, to
minimize the overall cost. We state the goal of such an integrated
framework below:
Definition 2 (Query evaluation): Given a database D and indices
I =< I1, . . . , Im > on query attributes Ai, i = 1, . . . , m, the
goal of answering a given query Q =< G, k > is to find top-k
results t1, . . . , tk in D, such that G(ti) is maximum, over a state
space constructed by I (as we will discuss in Section 3) with a
minimal access cost, which we formulate as

cost = wl ∗ Nl + wt ∗ Nt + wi ∗ Ni (2)

where wl, wt and wi are the costs of visiting a leaf, tuple and inter-
nal state respectively, and Nl, Nt and Ni are the numbers of leaves,
tuples and internal states visited during the search.
To illustrate our evaluation goal, consider our running example
query Q. Figure 1(c) describes two indices on our query attributes
price and size, which essentially partition the domains of price and
size into a discrete set of regions, or states, preserving the value lo-
cality, as Figure 1(d) demonstrates. Our goal is to use hierarchical
and interleaf traversals provided by the two indices effectively to
get to the top-k results with the minimal access cost.

2.3 Challenges
The essential challenge in realizing the marriage of function opti-

mization with discrete state space search is to encode k-constrained
optimization query as an appropriate search problem, which looks
for solutions that optimize the goal function. To illustrate the chal-
lenge, recall from Section 2.2 that indices essentially lay out a
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“map” of a discrete set of regions and provide effective traversals
among them (Figure 1(d)). However, this map of regions is flat
with no distinction among regions, while each region differs in G
scores as Figure 1(b) illustrates. To enable an efficient search, we
thus let regions to reflect the landscape of G (as in Figure 1(b)),
to pursue an informed search guided by such a landscape. In par-
ticular, such informed search schemes should be guided properly
with some heuristics. Among the informed discrete space search
schemes, A* [18], which we will describe algorithmically in Sec-
tion 5, is a well-known search algorithm that finds the shortest path,
given an initial and a designated goal state (or alternatively, a “well-
specified” goal test condition). A* has been proven to be complete
and optimal with a proper heuristics, that is, under certain restric-
tions (which we will discuss in Section 4), A* is guaranteed to find
the correct answer (completeness) by visiting the least number of
states (optimality).

We therefore ask two important questions: Why and how do we
encode our problem into an A* search problem?

First, we ask why. Why do we need to encode as a general
search problem, while existing algorithms do not? As we will
discuss further in Section 7, existing algorithms build upon their
problem-specific assumptions on the goal functions or index traver-
sal. To illustrate, a representative top-k algorithm TA [6] assumes
the monotonicity of G and the use of sorted accesses, or interleaf
navigation, based on which the search is implicitly “hard-wired”.
In contrast, by encoding into a generic search with no problem-
specific assumptions on G or how we traverse on index, we general-
ize our search to support (1) arbitrary G, (2) over potentially multi-
ple indices, and (3) a combination of both hierarchical and interleaf
traversals, in order to enable a general support for k-constrained
optimization queries.

Second, with the need of encoding identified, we now move on
to ask how. For this purpose, we connect back to our two perspec-
tives: From the discrete state search perspective, we need to define
our “map” for A* search, by mapping index nodes into states and
interconnecting them in a correct way to ensure the correctness of
the problem. As one of the challenges, A* search requires either a
designated goal state or a well-specified goal test condition testing
each state independently. However, in our context of k-constrained
optimization, it is challenging to identify such an independent test
condition, as our objective of identifying top-k results is essentially
“context-dependent”– it depends on the rest tuples to score lower to
decide the top ones. Another challenge is to transform our problem
into a shortest path problem, which A* aims at. Such transforma-
tion is non-trivial, as the purpose of the search in k-constrained
optimization is to reach the goal state maximizing G, while the
purpose of search in A* is to find out how to reach the goal state
with the shortest distance. Therefore, we need to encode the search
space in a way to distinguish the quality of states, rather than distin-
guishing the quality of paths as in a typical shortest path problem.
From the continuous function optimization perspective, we develop
the “landscape” to determine where to start search and how to pro-
ceed. As overviewed above, with a proper heuristics that guides
the search correctly and efficiently as well as initial states that can
reach the goal, A* search satisfies the completeness and optimal-
ity, as desired by query answering. To claim the completeness and
optimality, we need to develop a proper heuristics and appropriate
initial states using A*.

Putting together, to enable this encoding, we will address the
challenges identified above in the following sections. First, Sec-
tion 3 will discuss the challenges from the discrete state search
perspective, including constructing states from individual indices
into a map and encoding our problem as a shortest path problem

on the map. Second, Section 4 will discuss the challenge from the
continuous function optimization perspective, by introducing the
landscape of G to the search space, which involves defining search
heuristics to quantify the “promise” of states and identify valid ini-
tial states.

3. INDEX-INDUCED STATE SPACE:
A*-DRIVEN CONSTRUCTION

As motivated in Section 2, from the view of indices, k-constrained
optimization is essentially to find tuples satisfying the query by
traversing indices. Such indices thus induce a discrete state space
that lays out the “map” for traversing and eventually reaching tuples
in the database. This index view motivates answering k-constrained
optimization queries from the perspective of discrete state search.

To enable such discrete state search, we first need to construct
the state space induced by indices. As an analogy, this is to lay
out a “static” map that reflects the available index structures in the
database. The map gives “locations”(as states) and “routes” (as
transitions), and will be further “dynamically” configured with goal
function induced landscape to complete an efficient exploration of
the map to find query answers.

While an index defines an individual search map over a partic-
ular attribute, a k-constrained optimization query usually involves
multiple related attributes, which together optimize the goal func-
tion. Therefore we need to construct a joint space over multiple
indices, which Section 3.1 discusses. Further, after constructing
states and transitions, we need to set up a well-defined destination
on the map which the search heads to, and capture the distance
of route. Identifying such a destination and capturing their dis-
tance effectively transform our k-constrained optimization problem
to finding a shortest path to reach the destination, which Section 3.2
discusses. As the main product of state space construction, Figure 3
formally defines such a joint space over a database using indices,
which we will refer to along our discussion.

As a joint state space is composed from individual search graphs
induced from indices, we thus first present an index in terms of
search graph. An index Ii over relation Di defines a search graph
Ii = (V, E), where V = R ∪ T is the union of the set of index
nodes R and database tuples T . We use dom(ni), ni ∈ R to de-
note the range of values defined by index node ni. For instance,
in Figure 1(c), node a2 has dom(a2) = [0, 250k]. The edges E
in index graph contain a set of parent-child links between index
nodes, a set of sibling links between leaf nodes, and a set of TID
links from leaf nodes to the containing tuples. Figure 1(c) shows
the nodes and edges of index graph for index I1 and I2. As we can
see, given a node n, the reachable nodes from n depend on the type
of n. For an internal node n ∈ I.V , the reachable nodes from n are
the children of n, denoted as Child(n). For a leaf node, the reach-
able nodes consist of sibling nodes Sibling(n) reached through the
bidirectional interleaf pointers and tuples Tuple(n) reached through
TID pointers stored in n. In the following discussion, we will use
object-oriented notation to refer to a component of an index graph.
For instance, the nodes of index graph are referred to as I.V and
edges as I.E.

3.1 Mapping the Space: State and Transition
Given individual search graphs from multiple indices, we first

need to compose a joint graph, as a map of the space which will be
searched for query answers. In principle, such a composite graph,
as a cartesian product of those individual index graphs, describes
all paths to reach tuples in D. Specifically, to construct the state
space from a set of index graph I =< I1 . . . Im >, we need to
define a composite graph I = (V, E) over I, where V is the set of
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Figure 2: Illustration of state space: States and Transitions.
states and E is the set of transitions between states.

3.1.1 States
States in a search graph represent “localities” of values at differ-

ent granularity– from coarse to fine, and eventually reach tuples in
the database. Therefore, a state effectively summarizes a set of tu-
ples within this locality. In parallel to the two types of vertices– in-
dex nodes and tuple nodes in an index graph, there are two types of
vertices in the composite state graph. R nodes represent “regions”
of values defined by a set of index nodes and T nodes represent
tuples in database D.
Region State: While an individual index node defines a range of
values along an attribute, a composition of multiple index nodes
thus defines a region. For instance, a pair of index nodes [a3, b3]
from index I1 and I2 in Figure 1(c) defines a region M33 =[a3, b3]
in Figure 1(d). In general, any combination of index nodes <n1,
. . . , nm> from ��i Ii.R is a valid state representing a region de-
fined by dom(<n1, . . . , nm>) =��i dom(ni). We call such a
state region state. A region state r represents a set of tuples with
attribute values falling into dom(r). As Figure 3 formally defines,
given a set of index graphs, the set of region states is the cartesian
product of index nodes from each index. (As convention, we will
use region Mij and state [ai, bj ] interchangeably to refer to a state
or region defined by index node ai and bj .)

Similar to nodes in an index, region states in the composite graph
can be categorized into leaf state and internal state. A state r =
<n1, . . . , nm> is a leaf state if all nodes ni, i = 1, . . . , m are leaf
nodes in corresponding indices, otherwise, r is an internal state. A
leaf state directly reaches all tuples in region r. For instance, state
M66 is a leaf state defined by a6 and b6, and it reaches tuple 5 that
falls in region M66, as shown in Figure 1(d).
Tuple State: In parallel to tuple component T in an index graph,
each tuple t ∈ D also defines a state, which we call tuple state.
Tuple states correspond to potential query answers. The goal of
search is to find the tuple states that maximize the goal function G.

3.1.2 Transitions
While states of space give “locations” in the map, transitions

further capture possible paths followed to reach our destination of
query answers. With the states of composite graph being defined
upon the nodes of index graphs, the transitions between states are
further defined upon the edges in the index graphs. Different types
of transitions lead to different behaviors of traversing the space,
e.g., hierarchical and interleaf traversals as motivated in Section 2.

Essentially, to construct transitions between states, we need to
define a Next function, which returns the possible states directly
reacheable from a given state. That is, for two states u and v, there
is a transition (u, v) if v ∈ Next(u). Similar to individual index

graphs, in a composite graph, the reachable states from a state r
depend on the type of the state.
Internal state–Branch in: For internal state r, the reachable states
are generated by following the parent-child links in the index nodes
of r. Therefore, such a transition effectively branches from a par-
ent state to subsuming children states. Such branch-in transitions
enable a top-down search approach, which starts from root region
and gradually zooms into query answers.

Specifically, to generate reachable states for an internal state
r, we expand all the internal index nodes of r to their children
nodes and generate children states. For instance, from an inter-
nal state M33, by expanding both a3 and b3, we reach four states,
M66, M67, M76 and M77. We choose to expand simultaneously
all internal nodes because such expansion gives the shortest way to
reach a leaf state. Alternatively, we may expand a subset of internal
nodes in r, but such selective expansion does not improve search
performance– As data tuples can be only reached at the leaf nodes,
it is always better off to expand all internal nodes to find the most
efficient path early on, rather than expand one index at a time.
Leaf state–Branch out and materialize: As in a leaf node of an
index, which reaches both sibling nodes and tuples, the reachable
states for a leaf state r also consist of two parts– neighbors of r and
tuples contained in r. Expansion to the neighbor states effectively
branches out from a leaf region to its surrounding leaf regions, and
expansion to the tuple states materializes tuples from TID. Such
branch-out transitions enable bottom-up search, which starts from
specific leaf states and gradually spreads out to reach answers.

To generate neighbor states, the expansion follows the sibling
pointers in the leaf nodes to new leaf nodes. The neighboring
leaf states are generated by combining each new leaf node with
leaf nodes from other indices. To illustrate, consider a leaf state
[a6, b6]. By following sibling links in two indices, we can reach a7

and b7 respectively. Taking a cartesian product of them, we reach
the neighbors M67, M76 and M77.

In addition to generating neighboring regions, at a leaf state,
expansion also reaches out to tuple states by following the TIDs
stored in the leaf nodes of indices. For instance, from state M66,
we can reach tuple 5 by following TID pointer in a6 ∩ b6. Al-
though from the two leaf nodes, we actually have the opportunity
to reach all tuples covered in a6 ∪ b6, the region M66 only defines
tuples in a6 ∩b6. As we will see later, the estimated score bound of
heuristics function only bounds the states in a6 ∩ b6, not the others,
e.g., tuple 2. Therefore, allowing the transitions from a leaf state
r to those tuples other than a6 ∩ b6, we will violate the properties
required by the heuristics function to guarantee the correctness of
search. For the same reason, in expansion of the internal states, we
do not follow the TID links to reach tuple states even if there exists
a leaf node in this state. Based on the consideration, for a set of
leaf nodes from the same relation, we allow the transitions only to
TIDs defined in the intersection of those leaves. With leaf nodes
from multiple relations in a state, the reachable tuple states are the
cartesian product of such intersected TIDs from each relation.

By defining the Next function, as formally described in Figure 3,
we construct transitions between states. Following different types
of transitions among states, search navigates the space in different
ways, as the following example illustrates. Note that although the
Next function is defined for every state, paths to the children states
are only followed and thus materialized when the search selects to
follow that particular state, as Section 5 will discuss. Therefore, the
graph is effectively constructed and selectively materialized “on-
the-fly” rather than statically pre-computed.

Example 3: Continue Example 1. Given a set of states constructed
from the set of index graph I, Figure 2 further illustrates (part of)
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the transitions among the states. The search, in principle, should
follow those transitions to look for the tuple states maximizing the
goal function. For instance, suppose we decide to start from the
root of the graph M11. The search may follow the path M11 →
M33 → M77 → 1 to reach the target tuple state. This essentially
follows a top-down search strategy. Alternatively, as a bottom-up
search, suppose we start from M67, the search may follow an alter-
native route M67 → M77 → 1.

OPT* ENCODING: k-CONSTRAINED OPTIMIZATION OF G OVER D USING I
Input: Indices I = (I1, . . . , Im), Goal function G, DatabasesD = ��

i=1,...,n
Di

Output: State space I = (V, E), BlackLink set Ē, Initial states S

INDEX-INDUCED SPACE CONSTRUCTION

——————————————————————–
Input: Indices I = (I1, . . . , Im),Goal function G, DatabaseD = ��

i=1,...,n
Di

Output: State space I = (V, E)
/*construct states of I*/
I.R = ��

i=1,...,m
Ii.R

I.T = D
I.V = I.R ∪ I.T ∪ {t∗}
/* construct transitions of I*/
∀r =< n1, . . . , nm >∈ I.V :
/*construct reachable states for r*/
Next(r) = {t∗} if r is a tuple state
Next(r) = ��

i=1,...,m
Child(ni) if r is an internal state

Next(r) =Neighbor(r)∪ Tuple(r) if r is a leaf state, where
Neighbor(r) = ��

i=1,...,m
Sibling(ni) ∪ {ni} \ r

/*join TIDs from multiple relations D1, . . . , Dn*/
Tuple(r) = ��

i=1,...,n
Ti, where Ti =

T

{j|rel(Aj )=Di} Tuple(nj)

E = {(r, v)|v ∈ Next(r)}
∀(u, v) ∈ E:

d(u, v) = −G(u) if v = t∗

d(u, v) = 0 otherwise

GOAL-INDUCED SPACE CONFIGURATION(I, G)
——————————————————————–
Input: State space I = (V, E), Goal function G
Output: Black set Ē, Initial states S
hG(r) =OPTMAX(G, r)
Ē = {(u, v)|(u, v) ∈ I.E ∧ h(u) < h(v)}
O =OPTPOINT(G, dom(I.root))
S = {r ∈ I.R|∀p ∈ O, ∃r ∈ S ∧ p ∈ dom(r)}

Figure 3: State space: OPT* encoding.

3.2 Where to Head to: Goal State
While states and transitions compose the map for search, we

need further identify our destination, i.e., the goal state, to head
to. Among the states in the space, the actual goal states are the
ones that correspond to the tuples maximizing the goal function G.
Therefore, our problem is to find out such “optimal tuple states”
with maximal G-score. This is different from the traditional short-
est path problem addressed by A*, where the search looks for an
“optimal path” to reach a testable goal state. To apply A* for k-
constrained optimization we thus need to transform our problem
of finding optimal tuple states to finding the optimal path to reach a
goal state. The key to the transformation is: First, to encode a tuple
state with a path passing the state towards a testable goal; Second,
to encode the quality of those tuple states with quality of those
paths so that the optimal state corresponds to the shortest path.

To begin with, to transform a tuple state to a path which passes
the state towards a testable goal, we need to add a pseudo goal
t∗ as a goal state and connect each tuple to this pseudo goal t∗.
Therefore, in the state space, the reachable states for a tuple state
t is the pseudo goal t∗, i.e., Next(t) = {t∗}. With this pseudo
goal t∗, each path reaching t∗ corresponds to a unique tuple state
(since there is no edge between tuple states), and therefore finding
a path corresponds to finding a tuple state. For instance, a path
P1 = (M11, M33, M77, 1, t∗) corresponds to tuple state 1.

Further, to transform the optimal tuple state into the shortest path
passing this state, we need to assign proper distances to edges be-
tween the states. As Figure 2 illustrates, the key observation en-
abling the transformation is that the actual goal state 1 maximizes
the goal function, and thus such a tuple (with a maximal score)
must by definition have the shortest path to t∗. To reverse distance
minimization to score maximization, we thus define the distance
from a tuple state t to t∗ as the inverse G-score of the tuple state,
i.e., d(t, t∗) = −G(t).

Meanwhile, while the above distance assignment ensures the op-
timal tuple state o has the shortest distance to the goal, we need
further ensure that a path passing through o has the shortest over-
all distance. For instance, among the two paths P1 = (M11,
M33, M77, 1, t∗) and P2 = (M11, M32, M65, 2, t∗), it should be
d(P1) < d(P2) because tuple 1 is the top answer. Note that the dis-
tance of a path P = (v1, . . . , vn, vn+1) is the overall distance of P ,
i.e., d(P ) =

P
i=1,...,n d(vi, vi+1). Specifically, for any two paths

P1 = (v1, . . . , vn, t∗) and P2 = (v′
1, . . . , v

′
n, t∗), we should have

d(P1) < d(P2) if d(vn, t∗) < d(v′
n, t∗). To ensure this inequal-

ity, we therefore assign, for all internal edges, i = 1, . . . , n − 1,
d(vi, vi+1) = 0, which yields d(P1) = d(vn) < d(P2) = d(v′

n).
Therefore a tuple state with the shortest distance to t∗, or equiva-
lently maximal score, corresponds to the shortest path to t∗

As Figure 3 depicts, by assigning all edges between “physical”
states with distance 0 and edges from tuple states to the pseudo
goal with distance as inverse G-score, we transform finding the
tuple state with maximal score to finding the shortest path to the
pseudo goal. As an extension, to find top-k results in k-constrained
optimization is to find k shortest paths to the pseudo goal.

4. GOAL-INDUCED SPACE: OPTIMIZATION
DRIVEN CONFIGURATION

The previous section discussed answering k-constrained opti-
mization queries from discrete state search perspective, specifically,
how to encode a static state space, reflecting the index structures
available for search. In this section, we turn to the function op-
timization perspective. As discussed in Section 2, answering k-
constrained optimization query is essentially to search in discrete
state space driven by function optimization. Therefore, to com-
plete the picture of search, we study how function optimization
contributes to the evaluation of k-constrained optimization queries.

Specifically, while indices induce a static map of state space, we
further need a landscape over the map so that the search is guided
efficiently towards the goal. Conceptually, such a landscape mea-
sures the relative “qualities” of different states with respect to the
goal function, and thus gives dynamic “query-specific” configura-
tion over the static space. Such configuration refines the state space
to be searchable by A* algorithm, and completes the encoding of
k-constrained optimization query into A* search problem. The con-
figuration involves two aspects: First, it defines a proper heuristics
based on the goal function to guide the search and configures the
state space with respect to this heuristics (Section 4.1). Second, it
identifies a set of initial states decided by the goal function to start
the search properly (Section 4.2).

Our tool of such measurement is continuous function optimiza-
tion, a well-studied technique. First, to define a heuristics to guide
A* search, as we will see in Section 4.1, we need function optimiza-
tion techniques to estimate the upper bound score of tuple states
reachable from the current state. Second, to identify a set of ini-
tial states, as we will see in Section 4.2, essentially boils down to
finding local optimal points of the goal function in a value domain.

To achieve the two goals, we define a function optimization pro-
cedure OPT. The procedure takes as input a function G(x1, . . . , xm)
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and a domain of values dom = [x1
1, x

2
1] × · · · × [x1

m, x2
m] where

xi ∈ [x1
i , x

2
i ]. It returns a set of local optima O and an upper bound

score U that can be achieved within the domain, i.e.,

<O, U> = OPT(G, dom) (3)

where O = {p|p ∈ dom∧p is a local optima} and U = max
p∈dom

G(p).

Specifically, we use OPTMAX to denote the function that returns
the U component of OPT, and OPTPOINT to denote function that
returns O component of OPT.

As implementation to this procedure, there are three categories
of techniques. First, analytical methods [16] for function optimiza-
tion compute the derivatives (or gradient for multivariable func-
tions) of the goal function, and get the extremum at the points
where their derivatives are equal to zero. Second, search-based
methods, e.g., hill climbing or conjugate gradient method [16], find
extremum by approximating them gradually and infinitely in the
regular structured value space. Third, template-based approach
“hard-codes” extremum, if the goal functions are parameterized
with certain fixed form. In practice, due to the problem-specific
assumptions, this approach is often very simple and useful. For in-
stance, for monotonic functions, the upper bound score of a region
is achieved by taking maximal value at each dimension. In a KNN
problem with Euclidean distance as a goal function to minimize,
the upper bound score is achieved either at the query point or one
of the boundary planes of the region.

4.1 Measuring the Landscape: Heuristics
With state space laying out a map of search, we need to fur-

ther measure the landscape indicating the “ups” and “downs” of
the states with respect to the goal function. As Figure 2 illustrates,
different states have different “promises,” or heights as indicated by
the dotted line, to reach the goal– Some are closer to the goal while
others are farther. For instance, at state M33, the search faces multi-
ple children states, e.g., M67 and M77, showing different promises.
It can be verified that the maximal score of tuples in region M67 is
0 and that of region M77 is 45. Therefore, the search should favor
the choice of M77 over M67 because it is more promising.

To drive efficient search, A* algorithm needs a heuristics esti-
mation for the cheapest path to reach the goal. To guarantee the
completeness of the A* algorithm, such a heuristic must be ad-
missible and descending. First, admissibility requires the heuristic
function does never overestimate the distance to the goal. Second,
descendence2 requires the heuristics estimation never decreases on
any path possibly visited by A* from the initial state to reach the
goal state. In our problem, it means the estimated G-score never
increases, and we therefore call it as descendence property.

The admissibility requirement means that, given a state r, our
heuristics can only estimate optimistically about the scores of tu-
ples reachable from r. Therefore, the estimation should be an up-
per bound score of those reachable tuples. Further, to make the
estimation as accurate as possible, the heuristics should give tight-
est upper bound for the state. Intuitively, given that the available
information at state r is only the value ranges dom(r) provided by
index nodes, we may design our heuristics h as the tightest upper
bound that goal function G can achieve within the value ranges, i.e.,

hG(r) = OPTMAX(G, dom(r))

However, although such an estimation is the best we can make,
it does not satisfy the admissibility and descendance property be-

2To avoid ambiguity between the monotonicity property of func-
tions, typically referred to by top-k queries, we use the term de-
scendance.

cause of the sibling edges between leaf states. Let us use the fol-
lowing example to illustrate.
Example 4: Consider state M67. Using the heuristics h(M67), we
get the upper bound score of M67 is 0, which bounds only the tuples
located within region M67. However, if following the link to its
neighbor state M77, we can actually reach tuple 1 with score 15.
This means that the heuristics function does not give upper bound
of all tuples reachable from M67, and thus violates the admissibility
property. Further, traversing from M67 to M77, the heuristics score
increases from 0 to 45, and thus violates descendance property.

The reason that such heuristics violates admissibility and descen-
dence is that we introduce some “problematic” links, as we aim
to support all access paths, not only the parent-child transitions but
also sibling transitions available in indices. Such sibling links make
leaf states fully connected in the state space. Therefore, at any re-
gion state r, we can reach every tuple state, and thus the upper
bound of state r should be the upper bound of the entire database
D, instead of just tuples confined in region r. However, such an ad-
missible heuristics will end up with giving the same estimation to
every region state, and thus provide no guidance on how the search
should proceed.

Given that the heuristics h is the best estimation we can make at
a state r, to enable A* search, we therefore need to configure the
state space to make this heuristics admissible and descending. We
observe that the admissibility and descendance are violated when
the search takes “up-hill” edges between leaf states, such as M67

to M77. Therefore, if we remove all those blacklinks that should
not be followed (named as in “black list”’ which we will formally
define later), starting at any state, the score only decreases. This
on the one hand obviously satisfies the descendance property, on
the other hand also meets the admissibility property because a state
can only reach tuple states through downhill links, and thus the
heuristics gives upper bound to the reachable tuple states, as the
following example illustrates.
Example 5: Consider the state space (partially) shown in Figure 2.
All leaf states M6i, i = 4, 5, 6, 7 (corresponding to regions in the
third column of Figure 1(d)) have heuristics score 0 because they
disqualify the price range in query Q. Therefore, the blacklink set
Ē contains, along with others, all edges originated from M6i, e.g.,
(M67, M57), (M67, M77). In the configured graph, these states be-
come “sinks” with only incoming links. Therefore if we start from
M57, we can reach M67 and M56 through downhill links, but not
any of the states M7i, i = 4, 5, 6, 7 (corresponding to the states in
the fourth column).

Definition 3: Given a state space I = (V, E), a heuristics function
h, we say an edge (u, v) ∈ E is a blacklink if h(u) < h(v). All the
blacklinks in I compose the blacklink set Ē = {e|e is a blacklink}.
A configured state space Ih of I is a subgraph of I with blacklinks
removed, i.e., Ih = I \ Ē.

By removing the blacklinks, as Figure 3 formally describes, we
configure the conceptual state space into a space searchable by
A* algorithm, which guarantees the admissibility and descendence
properties. However, the implication of removing the blacklinks
is that leaf states become not fully connected. Such disconnection
impacts the reachability of the search, i.e., some tuple state may be
unreachable if we start at a wrong initial state. This is the problem
to be addressed in the next section.

4.2 Where to Start: Initial States
While configuration of the state space with blacklinks guarantees

the admissible and descending properties required by heuristics
function, it also imposes the problem of reachability, i.e., change
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of the landscape makes two leaf states become disconnected and
unreachable from the search. To illustrate, consider Example 5–
suppose the search starts at M57, it cannot reach M77, which con-
tains the top answer to query Q. Therefore, the search fails.

To address this reachability problem, we need to pick up a set of
states from which we can reach every tuple state in the space. Does
such a set of states exist? Obviously, the root state of the state space
satisfies the requirement, and thus top-down search can always find
the correct answers. However, top-down may be inefficient because
starting from root needs more hops to reach the goal than starting
from, say, a leaf state. Therefore, we want to find out better alter-
natives, starting closer to the goal. Observe that the states which
are possibly missed are those containing local optima of the goal
function, e.g., M77. Other states, e.g., M74, M75 and M76, can all
be reached by taking “downhill” edges from their surrounding local
optima states, e.g., M77.

To guarantee that every tuple is reachable during the search, we
therefore initialize the search with a set of states that cover all
the local optima points returned by OPTPOINT(G,dom(I.root)),
where I.root is the root state of I , defined by roots of each index.

Example 6: As the landscape of Figure 1(b) shows, the goal func-
tion G has two local optima <200k, 4500> and <400k, 4500>.
The two local optima are located in M57 and M77 respectively.
Therefore S = {M57, M77} covers all local optima points of G.
Starting from S–closest to the goal state, bottom-up approach leads
to the most efficient search, as shown in Section 5.

Specifically, given state space I = (V, E), heuristics function h,
we say a set of states S ⊆ V is a sound set of initial states, if S cov-
ers all local optima points , i.e., ∀p ∈ OPTPOINT(G, dom(I.root)),
there exists a state r ∈ S ∧ p ∈ r.

By initializing the search with this sound set, we can guarantee
the correctness of A* search framework, as the following theorem
states. Due to space restriction, we omit the proof.

Theorem 1: Given a query Q=< G, k >, a state space I , a heuris-
tics function h(r) =OPTMAX(G, r), a set of states S , A* search
guarantees to correctly find answers to Q if S is a sound set of
initial states.

By initializing the search with local optimal states, A* search au-
tomatically ignores the blacklinks because the search always chooses
the best state currently available for processing. For instance, con-
sider again Example 5, starting with the best initial state M57, the
search expands to its neighbors, e.g., M67. However, since M77

has a higher score than M67, the search now will not follow outgo-
ing links from M67 anyway, but rather jump to M77, which is the
state currently with the best heuristics score.

While Theorem 1 states the correctness requirement for choos-
ing initial states, it also leaves us with different options of initial-
ization. For instance, a top-down search may choose to start at root
of the graph, which trivially covers all local optimal points. Or
alternatively, a bottom-up search starts with a set of local optimal
leaf states, and gradually expands the search to query answers. Dif-
ferent initialization strategies will result in different search cost, as
Section 5 will discuss.

5. OPT* SEARCH
Upon the state space correctly encoded (as shown in Figure 3),

the A* search naturally follows. First introduced by Hart et. al, A*
is a graph search algorithm that finds the shortest path from a given
initial node to a given goal node (or one passing a given goal test). It
employs a “heuristic estimate” that ranks each node by an estimate
of the best route that goes through that node. As implementation,
A* maintains a priority queue, which stores the partial paths starting

Procedure OPT*(I, G, k)
Input: Indices I =< I1, . . . , Im >

Goal function G
Result size k

Output: top-k results TupleQ
begin

τ ← −∞
OPT INITIALIZE(ToDoQ , I)
While not REACHGOAL():

r = GETNEXTSTATE()
if r ∈ HaveDoneQ: continue
insert r to HaveDoneQ
newR← EXPAND(r)
for each state s ∈ newR:

OPT HEURISTIC(s, G)
if ELIGIBLE(s):

case s is:
Region State: insert t into ToDoQ
Tuple State:

insert t into TupleQ
τ = min(TupleQ)

end

Figure 4: Query algorithm: OPT* search.

from the initial node, prioritized by the estimated minimal distance
to the goal state. A* thus visits the nodes in order of this heuristic
estimate from the priority queue.

In this section, we briefly present our OPT* search algorithm as
a specialization of A* search algorithm. As mentioned in Section 3,
by different realization of the initialization operation, OPT* ends
up with visiting different set of states. This section therefore also
discusses how such difference affects the performances.

5.1 Skeleton of OPT*
In this section, we present our OPT* algorithm. Figure 4 out-

lines the skeleton of the algorithm. Specifically, the algorithm keeps
two priority queues - ToDoQ to keep the region states to be further
explored and TupleQ to keep track of current top-k tuple states
among all those visited thus far. Further, the algorithm also main-
tains a hash table HaveDoneQ to record all leaf states that have been
visited. ToDoQ is initialized with a sound set of initial states. The
algorithm continues to retrieve a state r from ToDoQ and expands
it until we reach the goal states. At each iteration, given a state
r passed by GETNEXTSTATE, procedure EXPAND first checks the
type of state r. If r is an internal state, EXPAND generates new
set of states newR using the children nodes of indices in r, as dis-
cussed in Section 3. If r is an unvisited leaf state, the algorithm
adds r to HaveDoneQ, and then EXPAND takes two actions: to gen-
erate neighbor states and to reach tuple states respectively. The
expansion will update ToDoQ if new region states are generated, or
update TupleQ if tuple states are reached. The search terminates
when the stop condition is met.

To initialize, we apply the function optimization procedure OPT-
POINT to find out the set of local optima points. As we will show in
the next section, such initialization gives the most efficient search.
For each (optimal) point, we traverse the index to locate the leaf
state containing this point. As an optimization, instead of fully ma-
terializing all local optimal leaf states beforehand in the ToDoQ, we
can materialize them “on-demand.” Specifically, we keep track of
those local optima points in OptimaQ prioritized by their G-scores,
and initialize the ToDoQ with only the global optimal leaf state. A
point in OptimaQ will be materialized into a leaf state only when its
G-score is greater than the score of the top-scored state in ToDoQ.
By doing this, we only materialize the leaf states that need to be vis-
ited during the search. Due to space limitation, we omit the proof
of the correctness of this “on-demand” materialization.

The algorithm stops when ToDoQ is empty. This stop condition
can further be sped up by comparing the current top-k answers with
the top-scored state in the ToDoQ. In particular, we set the thresh-
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Figure 5: Search Tree.

old τ to keep track of the score of the kth-tuple in TupleQ. If τ
is greater than the best state in ToDoQ, we can empty the queue.
Actually, this testing can happen even earlier at the time when a
candidate state is attempted to enter the queue. The eligibility test
operation implemented by ELIGIBLE realizes this testing.

5.2 Optimality of OPT*
While A* is an optimal algorithm in discrete state space search,

such optimality does not directly address our cost function defined
in Section 2. First, A* optimizes the total number of nodes visited
in the state space, i.e., Nl +Nt+Ni, not our cost function. Second,
A* is optimal only with respect to the given initial and goal state as
well as heuristics. Therefore, starting at different initial states will
make a difference in A* search cost. In this section, we discuss the
optimality of OPT* in terms of our cost function and compare the
cost of search with different initialization strategies.

First, we examine the optimality of OPT* search comparing
with other search algorithms for a given set of initial states. It can
be shown that OPT* as specialization of A* not only optimizes
the total number of states visited, but also optimizes the number of
leaf states visited. That is, any leaf state visited by OPT* will be
visited by other algorithms using the same heuristics function. The
intuition is that each visited leaf state has a heuristics score higher
than the k-th tuple in the final top-k result. Therefore, without vis-
iting this leaf state, an algorithm cannot conclude to find the top-k
answers. Visiting the least number of leaf states in turn optimizes
the number of tuple states visited because the set of tuple states vis-
ited is determined by the set of leaf states. Given that the cost of
internal state access is less than the cost of leaf and tuple access,
we show that OPT* optimizes the cost function, as the following
theorem states. The proof is straightforward, and we omit it here.

Theorem 2: Given a set of initial states and a heuristics function,
OPT* search optimizes the cost function wl∗Nl+wt∗Nt+wi∗Ni

if wl > wi and wt > wi

While the above theorem states the optimality of OPT* search
with respect to the assumption wl > wi and wt > wi, such an
assumption typically holds true in practice, as internal nodes typ-
ically reside in memory while leaf and tuple reside in disks, i.e.,
wl � wi and wt � wi. Observe also that, this optimality is
with respect to given initial states. Therefore, OPT* framework
may result in different costs if starts with different initial states. As
Figure 2 shows, by starting from different initial states, the search
makes different numbers of “hops” to reach the goal. For instance,
taking the top-down approach, we start from the root state, which
makes the largest number of hops to get to the the goal. Taking a
bottom-up approach, we start from a leaf state from a sound set,
e.g., M77, which has only one hop to reach the target tuple state.

In particular, to compare the cost of different initialization strate-
gies, we need to examine the number of internal, leaf and tuple
states visited. Let us first examine leaf and tuple state accesses us-
ing the two extreme approaches. As we observe that although top-
down search does not explicitly start with the optimal leaf state,
e.g., M77, it eventually gets there, because M77 maximizes goal

function G and thus maximizes the bounds of all its ancestors,
which in turn will have the highest heuristic score in the search.
Therefore, starting with the root, top-down search essentially fol-
lows the path to reach M77 first. Applying the same intuition, we
can prove that the second leaf state visited by top-down is also the
same as bottom-up. More generally, different sound initialization
strategies will visit exactly the same set of leaf states, and therefore
reach the same set of tuple states. The following property formally
states this.

Property 1: Given a state space and a heuristics function, OPT*
always visits the same set of leaf states and thus tuple states if the
search is initialized with any sound set of initial states.

Given that different search approaches visit the same set of leaf
and tuple states, their costs thus differ only in the number of in-
ternal node accesses. As we observe, the set of internal states ac-
cessed by the top-down approach is essentially the subtree of the
state space that consists of paths from root to all visited leaf states,
as illustrated by the solid lines in Figure 5. Similarly, the set of in-
ternal states accessed by bottom-up consists of the paths from root
to all the local optima. However, with on-demand materializing
the leaf states, the internal nodes visited consist of only the paths
to those visited local optima, as highlighted in Figure 5 with thick
solid lines. Obviously, the leaf states visited during the search are
a superset of local optima states visited, and therefore, the inter-
nal states visited by top-down are a superset of the internal states
visited by bottom-up. The following property formally states this.

Property 2: Given a state space and a heuristic function, the bottom-
up approach visits the least number of internal states if initialized
with a sound set of initial states.

Combining the two properties, we know that bottom-up search
always has the lowest cost than other search algorithms, given the
same state space and heuristics function. Therefore, if applicable,
we will prefer bottom-up search over other initialization schemes.
However, bottom-up approach may not be applicable if G has an
infinite number of local optima. For instance, consider goal func-
tion G = 1

(x−y)2+1
. Any value satisfying x = y maximizes the

function, and therefore there is no way to initialize the search with
a finite set of states. In this situation, only top-down approach
is applicable. In our experiments of Section 6, we will assume
the bottom-up approach. Putting together, the following example
shows the search route taken by OPT*.

Example 7: Consider Example 1. We initialize the search with
S = {M57, M77}. Starting from M77, the search visits a sequence
of leaf and internal states in the order labeled in Figure 5. The
search returns the top 1 answer as tuple 1. As we can see, this
bottom-up search visits a total number of 7 leaf states and 3 inter-
nal states. It can be verified that starting from root, the top-down
approach will visit the same set of leaf states but 5 internal states.

6. EXPERIMENTS
This section reports our experiments on OPT* framework for

answering k-constrained optimization queries. In particular, our
goal is two-fold: First, to validate practicality in real-world sce-
narios, we evaluate OPT* using benchmark queries over real data.
Second, to validate extensively, we then study its performance over
a wider range of queries and data settings, by simulating over ex-
tensive synthetic queries and datasets. Toward the goal, we first
overview our experiment settings in Section 6.1, then report our
benchmark query experiments over real data in Section 6.2 and
controlled query experiments over synthetic data in Section 6.3.
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Figure 6: Average number of page accesses.

6.1 Experiment Settings
This section overviews our experiment settings, including imple-

mentation details, evaluation metrics, and baseline approaches we
use for comparison.
Implementation: In our implementation, we use B+ tree as access
methods, because B+ tree is the most commonly used index struc-
ture in databases. The fanout of B+ tree is set to 200, which yields
a storage of around 4KB for each node. As commonly practiced in
commercial DBMS, the internal nodes of B+ tree reside in memory,
and leaf nodes in disks. For the implementation of our framework,
we use the bottom-up approach, as it is the most efficient for G with
a finite number of local optima, as argued in Section 5.

Evaluation Metrics: The evaluation cost is decided by the cost
sum of visiting internal, leaf, and tuple nodes, as captured in our
cost model in Section 2. However, due to the fact that leaf and
tuple accesses dominate the overall cost, we can adapt a simpler
metric– number of leaf and tuple accesses as an approximation of
the evaluation cost. That is,

cost = Nl + Nt (4)

We can further infer the number of page accesses from the number
of leaf and tuple accesses. In particular, assuming the number of
leaves per page is 1 and the number of tuples per page is T , the
number of page accesses in the worst case scenario is equivalent to
Nl + Nt, while in the best case scenario, the number reduces to
Nl + Nt/T .
Baseline Approaches: We introduce two baseline approaches we
compare against. As we will discuss, these two approaches are
representatives of the existing works, as the adaptation of the ex-
isting works for k-constrained optimization queries falls into either
of these approaches. Although RankSQL [11] attempts a finer in-
terleaving of the two approaches, there is no optimization to pose
such interleaving yet, which thus corresponds to choosing the best
of the two approaches for now.

Boolean then Rank (BthenR): This approach first evaluates the
constraint expression to retrieve qualified tuples, and then applies
the optimization expression to sort the results to retrieve top-k.
This approach can generally process any k-constrained optimiza-
tion queries, and is particularly good for queries with selective
constraint expressions. We define the “boolean selectivity” of con-
straint expression as the ratio of tuples that satisfy the constraint
expression, as typically defined for boolean queries.

To process constraint expressions we may use index scan or sim-
ply table scan with filtering. Table scan, by exhaustively accessing
all N data tuples, incurs N/T page accesses. In contrast, index
scan, by selectively retrieving the qualified tuples, accesses only
the qualified Nt tuples– Such accesses incur Nt/T page accesses
when the index is clustered (BthenR Min) and up to Nt accesses
otherwise (BthenR Max). In DBMS, optimizer will select the de-
sirable access method, while in our evaluation, we only report the
best of the two.

To process the optimization expression, we may either rank all
the qualified tuples, or alternatively apply top-k algorithms like TA.
Recall that, top-k algorithms require sorted accesses, which can be
simulated by traversing leaf nodes of index trees. However, after
processing constraint expressions, the index cannot be used to pro-
vide sorted accesses on intermediate results. We thus do not con-
sider using top-k algorithms to process optimization expression.

Rank then Boolean (RthenB): This approach first processes the
optimization expression using existing top-k algorithms, specifi-
cally, TA algorithm, and applies the constraint expression to filter
out unqualified ones. An optimization of this approach is to evalu-
ate the constraint expression during ranking. Because TA performs
random access to retrieve tuples with TID, and therefore once the
tuple is retrieved, we can evaluate its G-score with optimization and
constraint expression together. This approach is suitable for queries
with selective optimization constraints. We define this “ranking se-
lectivity” of a ranking expression as the ratio of tuples accessed to
generate top-k results using only ranking expression.

However, as TA requires monotonic ranking function, this ap-
proach only applies to those queries with monotonic ranking func-
tion. To support sorted accesses on each dimension required by TA,
we use interleaf links in the indices to simulate. The number of
pages visited includes both the leaf nodes visited by sorted access
and the tuples retrieved by random access.

6.2 Benchmark Queries on Real Data
To validate the practicality of our framework over real-world

data retrieval scenarios, we evaluate OPT* using benchmark queries
on real data.

Datasets: Our real dataset contains 19706 houses listings crawled
from realtor.com. The dataset has four attributes on (price, size,
bathrooms, bedrooms).

Queries: Our benchmark queries were handcrafted simulating house
search scenarios. The three queries are specified as following:

Q1: size×bedrms
|price−450k| : [40k ≤ price ≤ 50k]

Q2: size×ebedrms

|price−350k| : [price < 400k ∧ size > 4000]

Q3: size
price

: [bedrms = 3 ∨ bedrms = 4]

Results: Figure 6(a) shows the performance results for query Q1,
Q2 and Q3 on real dataset. Note that, as the optimization expres-
sion is not monotonic, only BthenR approaches and OPT* are ap-
plicable for queries in this set. For BthenR approaches, we show
both the best case scenario where tuples accessed are clustered
(BthenR Min) and worst case scenario where tuples are scattered
in the disks (BthenR Max). Observe that, in all queries, OPT* per-
forms better or close to the best baseline approach. Particularly, in
query Q2, OPT* outperforms BthenR Max and BthenR Min sig-
nificantly by more than three and one order of magnitude respec-
tively, as constraint expression is less selective in this query.
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6.3 Controlled Queries on Synthetic Data
To evaluate our framework in a more extensive setting, we now

evaluate OPT* using controlled queries on synthetic data.

Varying Data Distributions and Query Values: In this set of ex-
periments, we evaluate over a wide range of datasets and queries,
varying data distributions and query values of three representative
query forms.
Datasets: Our synthetic dataset contains three randomly generated
datasets from different distributions – uniform, gaussian and log-
variatenormal, which we believe are representative for many real
world applications. Each dataset represents a relation of four at-
tributes (x1, x2, x3, x4), which are generated using the same dis-
tribution with pre-set parameters– In particular, we set uniform
to generate attributes x1, . . . , x4 in ranges of (0, 100), (0, 1000),
(0, 5000) and (0, 10000) respective. We generate gaussian and
logvariatenormal distributions with means 100, 1000, 5000, and
10000 for x1, x2, x3, and x4 respectively and variations propor-
tionally to means.
Queries: We generate three sets of queries of three representa-
tive query forms. Each form can be configured with query values,
which we randomly vary to generate 33 queries for each of the three
datasets, to yield a total of about 300 queries by running over three
synthetic datasets. For this set of parameterized queries, we use
template-based approach, as discussed in Section 4, to compute the
local optima for function optimization.

• F1: The first set of queries is linear average, which are widely
used in top-k algorithms. The queries are generated using:

O(x1, . . . , x4) =
P

i=1,...,4 wi × xi;B : x2 ⊆ r1 ∨ x3 ⊆ r2

where parameter wi are randomly generated from (0,1), while
r1 and r2 are randomly generated value ranges for x1 and x2

respectively.
• F2: This set of queries in a form of nearest neighbor queries

simulates two scenarios. First, it simulates typical house search
queries where a user specifies her desired house as a query point,
and wants to find “similar” houses using distance function O.
Second, this set of queries simulates KNN queries to find the
closest neighbors of a query point defined by Euclidian distance
function. Note that we use four individual indices on the four di-
mensions, unlike KNN which uses multidimensional spatial in-
dices such as R-tree. The queries are generated using:

O(x1, x2) = c1 × (x1 − a)n + (1 − c1) × (x2 − b)n

B : x1 ⊆ r1 ∧ x2 ⊆ r2

where parameter c1 is randomly generated from (0,1), a from
(0,100), b from (0,10000), and n = 1, . . . , 10, while r1 and r2

are randomly generated value ranges for x1 and x2 respectively.
• F3: This set of queries in a form of join queries simulates queries

involving query attributes from multiple relations in goal func-
tions. We use two datasets as two tables. Let S(a1, a2, a3, a4)
and T (b1, b2, b3, b4) denote the schemas of the two tables. The
queries are generated using the formula

O(s, t) = s.a1 ∗ t.b1 + s.a2 ∗ t.b2 : [s.a2 = t.b2]
B : s.a1 ⊆ r1 ∧ t.a1 ⊆ r2

where r1 and r2 are randomly generated value ranges for x1 and
x2 respectively.

Results: Figure 6(b) to (d) show the average number of page ac-
cesses of three sets of queries against three synthetic datasets. In
particular, Figure 6(b) shows the average page accesses for 33 lin-
ear average queries over the three datasets. Observe that, in all
queries, RthenB exhausts the entire database tuples. The reason is
that for all three datasets, we generate the first attribute x1 within a

small range of 0 to 100, and therefore there are only a small num-
ber of keys in the index and each key corresponds to many tuples.
As a result, when we generate sorted accesses using such an in-
dex, TA algorithm quickly exhausts all tuples from the index. This
suggests that TA can perform better by focusing on more effective
sorted accesses than by retrieving from multiple sorted lists in par-
allel. Observe also that, in all queries and datasets, OPT* performs
better or closely to BthenR Min. In particular, in Figure 6(d) over
gaussian dataset, OPT* outperforms BthenR Max and BthenR Min
by more than three and one orders of magnitude respectively. The
performance contrasts significantly in F3, as constraint expressions
generated on a1 with the smallest range incur many duplicates and
thus low boolean join selectivity.

As a remark, we discuss the issue of random vs. sequential I/O
costs. Although our results measure the number of page accesses
without explicitly accounting the cost of random vs. sequential I/O,
with simple extrapolation, we claim that OPT* outperforms other
baseline approaches in most common settings. The sequential scan
can be used when 1) DBMS chooses table scan as the access method
in the baseline approach (BthenR in particular) and 2) DBMS chooses
index scan, and the index chosen is clustered.

To begin with, when table scan is used, it will sequentially ac-
cess all pages, which is 4K in our experiment. When factoring in
the random vs. sequential cost ratio, which is 10 to 12 in a com-
mon disk configuration (see PCGuide.com), OPT* will be more
efficient, if the gain on the number of page accesses is more than
12. Using the results in Figure 6, OPT* accesses 13 to 80 times
less pages (and 100+ times for join queries) than table scan, thus
more efficient. This performance gap will enlarge when the table
size scales up (or when more tables are joined), since OPT* scales
sublinearly (i.e., log n as in B-tree search) with the table size, while
table scan only linearly.

Further, when index scan is used (which results in Figure 6), the
execution cost will depend on whether the index is clustered. For an
unclustered index, the most common situation, as in BthenR Max,
sequential scan is generally not possible, and therefore the signifi-
cant performance gain shown in Figure 6 still holds. For a clustered
index with sequential scan, the BthenR approach will outperform
OPT* for some scenarios. However, we stress that our goal is to
have OPT* as a viable alternative scheme, which will outperform
baseline approaches in many scenarios, and thus a good choice for
the query optimizer.

Varying Boolean and Ranking Selectivity Ratio: We finally also
study the impact of boolean and ranking selectivity to the perfor-
mance of different approaches. Due to space limitation, we omit
the experimental details but only report our observations. We ob-
serve that the performance of BthenR increases when the constraint
expression becomes increasingly selective and the performance of
RthenB increases when the ranking expression becomes increas-
ingly selective. Again, OPT* generally performs the best, by out-
performing baseline approaches by an order of magnitude.

7. RELATED WORK
As mentioned in Section 1, many existing query processing algo-

rithms can be considered as a special instance of OPT* framework.
We examine and relate with those algorithms categorized by appli-
cation scenarios.

The first category is middleware based top-k algorithms [5, 6, 7,
15, 17, 13, 3, 12, 2, 1] which act as middleware to combine the top
results from the individual subsystems. The individual subsystems
are responsible for evaluating partial score functions and generating
the rankings along a specific dimension.

The second category is index-based spatial query algorithms (e.g., [8,

369



category G I traversal
MT monotonic G = O interleaf
IS G = O one idx (KNN) hierarchical
DT monotonic O hierarchical

Figure 7: Problem-specific assumptions
19]) which navigate attribute indices to process spatial queries, e.g.,
KNN or spatial join queries. In particular, they navigate index struc-
tures top-down, expanding the children nodes with the minimal es-
timated distance to the query point (KNN) or the joinable pair (spa-
tial joins) until we can safely prune out the unvisited regions.

The third category is database internal top-k algorithms [9, 14,
4, 11] supporting ranking inside the database system and tightly
coupling with the Boolean query engine. Recent works on [9, 11]
ranking-aware query optimization fall into this category. This ap-
proach augments the query optimizer to consider the ranking as an
interesting order and therefore those rank-aware query plans are
considered during plan enumeration. The work mainly focuses on
how to incorporate ranking into Boolean query processing to gen-
erate query plans aware of the existence of ranking operator.

In contrast, our work, by encoding query answering as a generic
A* search problem, generalizes existing works summarized above
to: first, support arbitrary goal function G; second, over multiple in-
dices; and third, using both hierarchical and interleaf traversals. To
begin with, KNN query is a special case of k-constrained optimiza-
tion query with goal function contains only ranking expression,
which is the Euclidian distance from a given query point. KNN al-
gorithms follow top-down search approach to traverse indices and
look for query answers. Further, existing works on spatial distance
join, such as [8], can also cast as a top-down search instance of
our framework, where multiple spatial indices are jointly used to
support the search that aims to minimizes a given distance function
as the goal function G. Third, while not intended, a representative
top-k algorithm TA [6] also falls into our OPT* search framework.
TA assumes a monotonic goal function without boolean constraints,
and thus starts the search from a unique local optima point over the
value space. Further, as TA builds on sorted accesses, i.e., travers-
ing from a region to neighboring regions by value locality, which is
essentially following interleaf traversals.

Figure 7 summarizes the problem-specific assumptions of the
three lines of existing works discussed above, i.e., middleware top-
k, index-based spatial, and DB-internal top-k (which we denote
MT,IS, and DT respectively), on G, the indices used, and their
traversals. Observe that all three lines of works build upon problem-
specific assumptions on G and use either hierarchical or interleaf
traversal. Further, KNN algorithms make an additional assumption
to traverse a single index. In contrast, our framework enables to
support general k-constrained optimization queries by eliminating
such problem-specific assumptions and generally supporting arbi-
trary G, combining multiple indices, using both hierarchical and
interleaf traversals.

Finally, people have studied constrained logic programming or
CLP for short [10] to solve combinatorial optimization problems
mostly over discrete (e.g., integer) domains. Like our framework,
the evaluation approaches generally fall into two paradigms– top-
down and bottom-up evaluation. In this paper, we are addressing
constrained optimization in a more specific setting, i.e., relations
in databases. Although we share the similar search paradigms,
the search spaces are constructed and represented differently. The
search space in our problem is constructed from indices over ir-
regular tuple space and represents the candidate solutions to the
problem. The search space in general CLP is constructed from the
logic rules, and represents the transitions of logic inferences to-
wards solutions. As the value space of CLP is regularly structured,

the exploration of this space is thus mechanic instead of assisted by
index structures as in our problem.

8. CONCLUSION
This paper presents OPT* framework for answering k-constrained

optimization queries. The framework abstracts k-constrained op-
timization queries as a discrete space search problem over exist-
ing access methods, i.e., indices. Such an abstraction imposes two
perspectives for query answering– discrete space search perspec-
tive induced by index, and function optimization perspective in-
duced by continuous function optimization. Combining both tech-
niques, we develop our OPT* framework by constructing a “static”
state space over indices and dynamically configuring the space with
function optimization. Upon this space, OPT* employs A* search
algorithm to achieve the completeness and optimality. The exper-
imental results show that OPT* framework improve the perfor-
mance of baseline approaches in order of magnitude.

9. REFERENCES
[1] N. Bruno, L. Gravano, and A. Marian. Evaluating top-k queries over

web-accessible databases. In ICDE, 2002.
[2] K. C.-C. Chang and S.-W. Hwang. Minimal probing: Supporting

expensive predicates for top-k queries. In SIGMOD, 2002.
[3] S. Chaudhuri and L. Gravano. Optimizing queries over multimedia

repositories. In SIGMOD, 1996.
[4] P. Ciaccia and M. Patella. The M2-tree: Processing complex

multi-feature queries with just one index. In Proceedings of the First
DELOS Network of Excellence Workshop on “Information Seeking,
Searching and Querying in Digital Libraries”, 2000.

[5] R. Fagin. Combining fuzzy information from multiple systems. In
PODS, 1996.

[6] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms
for middleware. In PODS, 2001.
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