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DB2 XML is a hybrid database system that combines the relational capabilities of DB2

Universal Databasee (UDB) with comprehensive native XML support. DB2 XML

augments DB2t UDB with a native XML store, XML indexes, and query processing

capabilities for both XQuery and SQL/XML that are integrated with those of SQL. This

paper presents the extensions made to the DB2 UDB compiler, and especially its cost-

based query optimizer, to support XQuery and SQL/XML queries, using much of the

same infrastructure developed for relational data queried by SQL. It describes the

challenges to the relational infrastructure that supporting XQuery and SQL/XML poses

and provides the rationale for the extensions that were made to the three main parts

of the optimizer: the plan operators, the cardinality and cost model, and statistics

collection.

INTRODUCTION

As XML has been increasingly accepted by the

information technology industry as a ubiquitous

language for data interchange, there has been a

concomitant increase in the need for repositories

that natively store, update, and query XML docu-

ments. Together with extensions to SQL (Structured

Query Language) for formatting relational rows into

XML documents and for querying them, called SQL/

XML,
1

XQuery has emerged as the primary language

for querying XML documents, with the publication

in 2005 of a draft standard for the language.
2

XQuery

combines many of the declarative features of SQL

and the document navigational features of XPath,
3

but subsumes neither.

Despite the ascendancy of XML, SQL/XML, and

XQuery, the huge investment in relational database

technology over the last three decades is unlikely to

be supplanted abruptly. Hence the XML ‘‘revolu-

tion’’ is more likely to be a gradual evolution, in

which XML documents will be stored in relational

tables and queried interchangeably by either SQL or

XQuery for the foreseeable future.

Accordingly, IBM has developed DB2* XML, a

hybrid database system that combines the relational

capabilities of DB2 Universal Database* for Linux**,

Unix**, and Windows** with comprehensive native

XML support. This means that XML is supported as

a native data format alongside relational tables, and

XQuery is supported as a second query language
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alongside SQL. Moreover, the hybrid nature of DB2

XML makes it much easier to fully support the SQL/

XML language, which allows arbitrary nesting of

SQL and XQuery statements within each other.

To support query processing in the XQuery and

SQL/XML languages on the native XML store, the

DB2 XML team has extended existing components in

DB2 UDB with support for XQuery and added new

components. The overall rationale and architecture

of DB2 XML, as well as an overview of the design of

its major components, are described in Reference 4,

including the new native XML store, XML indexes,

query modeling, and query processing. In this paper

we describe in more detail the extensions made to

the cost-based optimizer portion of the DB2 UDB

query processor to efficiently support XQuery and

SQL/XML.

XQuery language

In explaining the role of the DB2 XML optimizer, we

first review how DB2 XML stores XML data and how

XQuery queries it. In DB2 XML, a new native XML

type is introduced to represent XML data. Tables can

be created having one or more columns of this XML

type, with each row in any XML column containing

an XML document, or, more precisely, an instance

of the XML Query Data Model.
5

As with other

column types, the contents of XML columns can be

indexed optionally by one or more indexes. Example

1 shows the creation of a table with an XML column,

the insertion of an XML document into that column

of the table, and the creation of two XML indexes on

that column.

Example 1

create table Product (

pid varchar(10) not null primary key,

Description xml

);

insert into Product values(

’100-100-01’,

xmlparse(document

’,product pid¼ 0 0100–100–010 0.

,description.

,name.Snow Shovel, Basic 220 0,/name.

,details.

Basic Snow Shovel, 220 0 wide,

straight handle with D-Grip

,/details.

,price.9.99,/price.

,weight.1 kg,/weight.

,/description.

,category.Tools,/category.

,/product.’

preserve whitespace)

);

create index I_PRICE

on Product(Description)

generate key using xmlpattern

’//price’ as sql double;

create index I_CATEGORY

on Product(Description)

generate key using xmlpattern

’/product/category’ as sql varchar(10);

In this example, //price and /product/category

are XPath patterns. The last two statements in

Example 1 define indexes I_PRICE and I_CATEGORY

that contain references to only those nodes in

‘‘Description’’ documents whose root-to-node paths

match these XPath patterns, organized by the values

of such nodes. The ‘‘//’’ notation in the first XPath

pattern permits any number of nodes between the

root node of each document and an instance of a

price node.

XQuery resembles SQL in that it is largely declara-

tive; that is, it specifies what data is desired, not

how to access that data. Each XQuery statement

contains a FLWOR (for, let, where, order by, and

return, pronounced ‘‘flower’’) expression, which

specifies (1) zero or more FOR and LET clauses that

describe the data to be accessed, (2) an optional

WHERE clause that defines conditions on that data,

(3) an optional ORDER BY clause for ordering the

result, and (4) a RETURN clause that specifies the

structure of the data returned by that query. The

FOR and LET clauses can optionally assign inter-

mediate results to variable names, denoted by a

preceding ’$’.

The FOR clause can be thought of as an iterator that

accesses items from XML data, creating one row per

item. The LET clause effectively arranges those data

items into a sequence in one row. This mapping in

DB2 of XQuery items to rows and XQuery FOR

clauses to the iterators used in processing relational

rows is crucial for exploiting much of the existing

infrastructure of DB2, as we explain in the section

‘‘Plan generation.’’

Example 2 shows a sample XQuery that returns all

products having a price less than 100 and a category

of ‘‘Tools.’’ The FOR clause iterates over the product
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nodes in all documents of PRODUCT.DESCRIPTION

that match the given XPath pattern, assigning each

to the variable $i. Those whose category is ‘‘Tools’’

survive the filtration of the WHERE clause and are

RETURNed to the user. This query has no LET

clause.

Example 2

for $i in

db2-fn:xmlcolumn(’PRODUCT.DESCRIPTION’)

//product[.//price , 100]

where $i/category ¼ ’Tools’
return $i;

Although the semantics of the XQuery language

require that results be returned in the order specified

by any nested FOR clauses, the requirement does

not mandate the strategy for evaluating those

clauses by an optimizer, and many aspects of

XQuery, such as nested FOR loops and XPath

navigation, partially restrict the order in which it

should be processed. XQuery has enough alternative

execution choices to need cost-based optimization in

the same way that SQL queries do. The above

example illustrates that even simple XQuery queries

require many of the same optimization decisions

required for SQL queries. Because a DB2 XML user

can define multiple XML indexes on an XML

column, as well as a traditional index on any

combination of relational columns, the optimizer

must decide which of these alternative access paths,

either individually or in combination, to exploit in

evaluating a query.

A plan is defined as an ordered set of steps used to

access information. Alternative plans for the query

in this example might exploit the I_PRICE index, the

I_CATEGORY index, both indexes (ANDed togeth-

er), or neither. The choice of the optimal plan

depends on the characteristics of the database and

may have enormous impact on the query’s per-

formance. For example, if most of the products fall

into the ‘‘Tools’’ category, but very few of them have

a price less than 100, then the plan that uses the

I_PRICE index will be much more efficient than one

that scans the entire table or one that accesses both

I_PRICE and I_CATEGORY indexes and intersects

the result.

Although our simple example did not illustrate it,

XQuery permits join predicates, that is, WHERE

clauses or XPath predicates that relate the values of

multiple columns, or nodes from documents in

multiple XML columns. Similar to relational predi-

cates that were proven to be commutative and

associative by using relational algebra, XQuery

predicates may largely be reordered in a similar

way, potentially providing huge performance bene-

fits. Hence, the DB2 XML optimizer still needs to

determine the best way to order those joins and the

best join method (algorithm) to accomplish each

join. This is the major contributor to complexity in

SQL optimizers. These and other considerations

offer many opportunities for optimization of XQuery

queries.

Challenges

Why then is it not possible to reuse the results of

three decades of research and experience with

relational query optimization to optimize XQuery

queries? It is in fact possible for the most part, but

XQuery introduces several major new challenges.

First and foremost of these is heterogeneity. SQL

optimization was significantly aided by the simple

homogeneity of rows in relational tables having

identical ‘‘flat’’ schemas. In contrast, the XML data

model is inherently heterogeneous and hierarchical.

For a given XML schema, one or more elements may

be missing in any XML document, and there is no

requirement for explicit NULL values for these

elements. LET clauses effectively construct varying-

length rows containing sequences of elements

whose number is difficult to estimate and may vary

from row to row; a FOR loop over such a sequence

removes the nesting of that sequence and changes it

into as many rows as there were elements in a single

row. We further postulate that XML schemas

themselves are likely to change frequently from

document to document, or even be unavailable or

unknown for a given XML document, leading to

schema heterogeneity within even a single table

containing a single XML column.

Another major challenge was engineering a hybrid

optimizer that facilitates combining XML and rela-

tional access paths and is able to interchange and

optimize both SQL and XQuery operations in a

unified framework on an equal footing, even when

combined within the same SQL/XML statement. A

unified optimizer is crucial for enabling the DB2

XML system to efficiently support mixed relational

and XML workloads. Our approach to query

optimization in DB2 XML, therefore, reuses the

existing infrastructure in DB2 UDB for relational

query optimization, extending it where needed to
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meet the new challenges posed by XQuery and XML

documents. Because XQuery requires the same

fundamental choices of access path, join order, and

join method as in relational optimization, it makes

sense to largely reuse the DB2 UDB infrastructure

that generates alternative query execution plans

(QEPs) and estimates an execution cost for each by

first estimating the size (or ‘‘cardinality’’) of each

intermediate result, using statistics on the database

that are collected beforehand. Exploiting the rela-

tional infrastructure permits DB2 XML to inherit the

existing functionality, scalability, and robustness of

DB2 UDB and reduce its time to market.

Organization

The paper is organized as follows. We describe

related work in the second section. In the third

section we give an overview of the DB2 optimizer

and point out specific challenges that had to be

addressed in DB2 XML. In the following three

sections, we describe the design and XML exten-

sions of each of the three main parts of the

optimizer; namely, plan generation, cardinality and

cost modeling, and statistics collection. Then we list

directions for future work, and finally, we summa-

rize our conclusions.

RELATED WORK
In recent years, many different approaches have

been proposed for XML data management. Ap-

proaches that reuse the relational DBMS (database

management system) and translate XML queries to

SQL do not require changes to the relational

optimizer, whereas approaches that store XML data

natively benefit from an XML-specific optimizer.

Although numerous papers on XML query process-

ing have been published, only a few have addressed

cost-based optimization of XQuery queries. Most of

these adapt or extend relational optimization tech-

niques. Major native XML data management sys-

tems that employ cost-based optimization include

Lore,
6

Niagara,
7

TIMBER,
8

Natix,
9

and ToX.
10

Most

of these systems translate XML queries into some

logical algebra first, whereas DB2 XML represents an

XQuery query in its internal entity-relationship

representation, called the query graph model

(QGM).

At the time of this writing, both Microsoft
11

and

Oracle
12

have released or announced support for a

wide spectrum of XML and XQuery functionality in

their database products. However, to our knowl-

edge, no prior work describes in detail a cost-based

optimizer for an XQuery compiler, let alone a

relational-XML hybrid. Because the runtime oper-

ators supported by the preceding systems have

different capabilities and complexity, they differ in

the way that they evaluate the plans constructed

with those operators.

The techniques used in these systems for evaluating

path expressions can roughly be divided into two

categories: structural joins that process path ex-

pressions in small steps at a time and then join the

results, and holistic algorithms that process complex

path expressions in one operator. DB2 XML takes

the holistic approach, evaluating an entire path

expression with a single operator by invoking an

adaptation of the stream-based TurboXPath algo-

rithm.
13

The holistic operator makes use of efficient

algorithms and optimization heuristics to compute a

complete path expression in one pass through the

document, without generating large intermediate

results. Furthermore, the holistic approach reduces

the number of plans generated in comparison to

systems using structural joins
7,8

and does not

necessarily sacrifice plan quality.

The first cost-based optimizer for an XML query

system was implemented by the Lore system.
14

The

Lore query language was based on the Object Query

Language (OQL) and did not have XML sequences,

which are central to the XQuery language. Lore had

a number of indexes supporting various operations,

and it enumerated various plans with different

access methods, much as relational optimizers do.

To estimate the cardinality of path expressions

embedded in a query, the Lore optimizer used a

Markov model technique.

This approach was extended by the Markov table

method of Aboulnaga et al.
15

and further improved

by XPathLearner.
16

Lore also proposed a ‘‘Data-

Guides’’ data structure for compactly summarizing

the structure of each semistructured document. This

idea was later extended with correlated subpath

trees,
17

XSketch,
18,19

and TreeSketch structures
20

that were designed for structural join cardinality

estimation. Other work on XML cardinality estima-

tion includes StatiX,
21

position histograms,
22

Bloom

histograms,
23

and CXHist.
24

These cardinality esti-

mation techniques differ in whether they are online

or offline algorithms, whether they handle subtree

queries or linear path queries only, whether they
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handle leaf values, and whether the leaf values are

assumed to be strings or numbers.

OVERVIEW OF DB2 XML COST-BASED
OPTIMIZATION
To understand the extensions to the DB2 optimizer

needed to support XQuery, it is first necessary to

understand the context in which those extensions

were made. This section therefore gives a brief

overview of the DB2 optimizer’s approach to rela-

tional query optimization.

The DB2 cost-based query optimizer is responsible

for determining the most efficient evaluation strat-

egy for an SQL query. There are typically a large

number of alternative evaluation strategies for a

given query. These alternatives may differ signifi-

cantly in their use of system resources or response

time. A cost-based query optimizer uses a sophisti-

cated enumeration engine (i.e., an engine that

enumerates the search space of access and join

plans) to efficiently generate a profusion of alter-

native query-evaluation strategies and a detailed

model of execution cost to choose among those

alternative strategies.

There is an extensive body of work on query-

evaluation strategies and cost-based query optimi-

zation for relational query languages such as SQL.

The IBM research and development community has

made significant contributions in both of these areas

over the past three decades.
25–30

This legacy

continues with System RX
4

and DB2 XML. This

section provides a high-level overview of the DB2

XML cost-based optimization architecture, high-

lighting the key aspects of the architecture that were

modified or extended in support of the XQuery and

SQL/XML languages. The remaining sections of the

paper provide more detailed descriptions of each of

these key aspects.

DB2 XML query compilation
Cost-based optimization is part of a multistep query

compilation process, as illustrated by Figure 1.

Language-specific parsers first map SQL or XQuery

to an internal representation, called the query graph

model (QGM). The QGM represents the entities of

the query and their relationships in a way that

captures the semantics of both languages. Next, the

query rewrite phase employs heuristics to transform

the QGM into a more optimization-friendly repre-

sentation. It eliminates unnecessary operations and

reorders or merges other operations to provide the

cost-based optimizer with more options for access-

ing tables and reordering joins.

For this transformed QGM, the cost-based optimizer

then determines the most efficient evaluation

strategy, called a query execution plan (QEP). The

code-generation phase then maps the QEP to a

sequence of execution engine calls, called a section.

The section is stored in the database and interpreted

by the runtime engine whenever this query is

executed.

Generation of alternative query execution plans

The number of alternative QEPs for a given query is

typically vast. This stems from both the large

number of equivalent logical query representations

it might have, due mainly to the commutative and

associative nature of relational join operations, as

well as from the number of possible implementa-

tions for each logical representation. For example,

the equivalent logical join sequences

JOIN(JOIN(CUSTOMER, ORDERS),LINEITEM) and

JOIN(JOIN(LINEITEM, ORDERS), CUSTOMERS) are

valid for the query in Example 3, which is taken

from the TPC-H
31

industry-standard benchmark.

Moreover, either of these logical join sequences can

Figure 1
DB2 XML query compilation

SECTION

SQL Parser XQuery Parser

Query semantics

Runtime Engine 

Code generator

Cost-based
Optimization

Query rewrite
QGM

QEP
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have many implementations, depending upon

available table access methods, join methods, and

so forth.

Example 3

SELECT *

FROM LINEITEM L, ORDERS O, CUSTOMER C

WHERE C.CUSTKEY ¼ O.CUSTKEY AND

O.ORDERKEY¼L.ORDERKEY AND

C.NAME ¼ 0Acme0 AND

L.PRICE . 1,000

ORDER BY O.ORDERDATE

As each partial QEP is generated, its execution cost

is estimated and compared to other QEPs producing

equivalent results, so that the more expensive QEPs

can be pruned. The DB2 XML optimizer descends

directly from Starburst
27–29

and thus shares the

following key aspects of its QEP generation

architecture:

� A set of QEP building blocks called operators—

Each operator corresponds to a query processing

primitive implemented by the runtime engine. All

QEP operators consume and produce a common

object: a table. The QEP produced by the

optimizer is essentially a nested sequence of

operators. The operator-oriented nature of the

QEP makes it easy to model extensions to the

runtime engine.
� A set of plan generation rules—These rules define

how operators may be combined into QEPs. They

determine how each logical representation of the

query is mapped to its various alternative imple-

mentations. The optimizer’s repertoire of alter-

natives can be extended simply by adding new

rules for composing operators into QEPs. More-

over, the alternatives considered for a given query

can be expanded or contracted by enabling or

disabling these rules.
� A configurable enumeration engine—The enu-

meration engine drives the QEP generation proc-

ess by progressively invoking the plan generation

rules. The most important task of the enumeration

engine is to determine which logical sequences of

binary joins to evaluate. Configuration parameters

allow the user to control the topology of binary

join trees considered and other aspects of the

process.
32

The enumeration engine drives the plan generation

process in a ‘‘bottom-up’’ fashion, one query block

at a time. Alternative QEPs for accessing the tables

and subqueries referenced in the query block are

generated first, the former by invoking the rules

responsible for constructing alternative table access

implementations, and the latter by calling the

enumeration engine recursively. Logical join se-

quences are then progressively enumerated starting

with joins of size two, size three, and so on. Partial

QEPs generated in previous steps are reused in the

construction of alternatives for the current step. In

addition to driving the table access and join rules,

the enumeration engine invokes rules that build

plans for other query clauses, such as GROUP BY,

ORDER BY, DISTINCT, UNION, and so forth.

As each QEP is constructed, the optimizer computes

the properties and cost of each operator in that QEP.

These properties characterize key aspects of the

partial query result produced by the operator, such

as its estimated result size, its order, the predicates

applied, and so on. At each step of the enumeration

process, the optimizer prunes alternatives that are

inferior to another alternative in terms of estimated

execution cost and other properties, as described

next.

We were able to make a straightforward extension

to the existing QEP generation architecture in

support of XQuery by using familiar table metaphors

to represent XPath evaluation and sequences. The

internal representation of the query was extended so

that XPath navigation, as expressed in XQuery’s

FOR or LET clauses, is represented to the optimizer

as an invocation of a special table function.
4

A table

function is a QGM entity that represents any generic

computation and produces a stream of rows. This

new table function essentially takes an XML column

and an XPath expression as input and produces a

table in which each result row contains a sequence

of XML items satisfying the XPath expression. Using

table references to represent XPath navigation

allowed us to use the existing enumeration engine

‘‘as is’’ to generate alternative sequences for

evaluating XPath and relational expressions. We

added new QEP operators to model runtime

primitives for XPath navigation and XML indexes to

gain direct access to documents satisfying XPath

predicates. We also added rules for combining the

new operators into alternative QEPs for evaluating

XPath expressions. Because we represent the results

of these new operators as tables, we can use existing

relational operators to join, combine, and perform
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other types of manipulations on their output. The

details of these extensions are described in the

section ‘‘Plan generation.’’

Modeling cost and cardinality

Each QEP operator maintains a running total of the

projected I/O, CPU, and (in distributed environ-

ments) communications resources required to pro-

duce its result. How these components of cost are

combined into a total cost figure is operator-

independent and depends upon whether the system

is optimizing to maximize throughput or to mini-

mize response time. An operator estimates its

contribution to each of these cost components by

using a detailed model of its execution behavior.

The model must take into account detailed aspects

of execution, such as the algorithmic behavior of the

operator, its memory requirements, its interaction

with the I/O subsystem, and so on.

The most critical input to an operator’s cost model is

the number of records that it processes, which is

first estimated by the cardinality model. Starting

with statistics about the database, such as the

number of rows in each table and the number of

distinct values in each column, the cardinality

model estimates the filtering effect of operations

such as predicate application or aggregation. DB20s

cardinality model is largely based on the probabi-

listic model proposed in System R.
26

Each filtering operation is assigned a selectivity,

which represents the probability that a given row

qualifies for the filtering operation. Selectivity

estimates are derived from statistics that character-

ize the value distribution of the columns referenced

in the filtering operation. Uniform distributions

might be characterized simply by using the number

of distinct column values and the range of values.

Nonuniform column distributions require more

detailed statistics, such as frequent values or histo-

grams.
33

Cardinality estimation occurs incremen-

tally, by progressively multiplying the cardinality of

base tables by the selectivity of each filtering

operation applied as a QEP is constructed. Adjust-

ments to these cardinality estimates are applied if

statistics exist indicating the extent to which the

columns referenced in multiple filtering operations

are not independent.

Building an accurate cost and cardinality estimation

model is a complex and tedious process. Even

algorithmically straightforward operations such as

accessing a B-tree index (a type of index using a

balanced tree structure) must take into account

details such as the physical layout of the index, how

the index keys are clustered relative to the data

pages, the amount of memory available for buffering

disk pages, and so on. The new XML operators are

inherently more complex due to the heterogeneous

and hierarchical nature of XML document collec-

tions. Consequently, building an accurate cost

model for operators that manipulate XML data is far

more difficult. (Details on estimating the cost for the

new XML operators can be found in the section

‘‘Cost estimation.’’)

Moreover, the heterogeneous and hierarchical na-

ture of XML complicates the process of cardinality

estimation. For example, determining the number of

items satisfying an XPath expression such as

/customer[name¼‘‘Acme’’]/order[lineitem/price .

1,000] must not only take into account the

selectivities of the individual predicates

/customer[name¼‘‘Acme’’] and /customer/

order[lineitem/price . 1,000], but also the

structural relationship between nodes that might

satisfy those predicates; that is, nodes satisfying the

individual predicates must descend from the same

customer node.

If one were to make an analogy to relational

cardinality estimation, estimating the number of

items that satisfy an XPath expression involves

many of the same complexities as estimating

cardinality after a series of join operations. In fact,

determining the number of nodes reached by the

XPath expression /customer[name¼‘‘Acme’’]/
order[lineitem/price . 1,000] is equivalent to

estimating the cardinality of the TPC-H query in

Example 3.

The extensions made to the cardinality estimation

model in support of XPath are discussed in the

section ‘‘Cardinality and cost estimation.’’ We

introduce a new metric called fanout, which is used

to determine the number of items that can be

reached by XPath navigation. Fanout is used in

conjunction with the traditional notion of selectivity

in determining the cardinality of XPath navigation.

The section ‘‘Statistics collection’’ describes the set

of statistics used to make XML cost and cardinality

estimates and discusses some of the challenges
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involved in making the XML statistics collection

process efficient.

PLAN GENERATION
The addition of new runtime operations for pro-

cessing XML documents required corresponding

extensions to generate new plans that would invoke

these operations in the DB2 optimizer. First, we

needed to define three new optimizer operators to

represent each of the corresponding runtime oper-

ations. Second, we added new plan generation rules

to assemble these operators into valid plans whose

cost would then be estimated. The heterogeneity of

XML documents and schemas, as well as the

anticipated volume of XML repositories, signifi-

cantly increased the need for highly effective

indexing schemes; thus, significantly more sophis-

ticated exploitation of the XML indexes was re-

quired. Finally, we considered whether extensions

were needed to the plan properties required for

distinguishing one plan from another for pruning

purposes, or to the enumeration of alternative plans.

Fortunately, the approach we took for representing

XPath expressions as table functions limited the

changes needed to properties and enumeration. This

section describes each of these changes in more

detail.

New operators for XML

In DB2 XML, new runtime algorithms were devised

to process path expressions operating on the native

XML store and on XML indexes. Correspondingly,

we introduced three new operators in the optimizer:

XSCAN, XISCAN, and XANDOR. Each is described

in more detail next. The encapsulation in DB2 of

each runtime function as a QEP operator allows

these new operators to be added quite easily in the

optimizer and to be interleaved with existing

operators to form new plans.

The XSCAN operator

The new XSCAN operator enables scanning and

navigating through XML data to evaluate a single

XPath expression. It takes references to XML nodes

as input, and these are used as starting points for

navigation; it returns references to XML items that

satisfy the path expression. The runtime operation

that XSCAN invokes utilizes an adaptation of the

stream-based TurboXPath algorithm
13

on preparsed

XML documents stored as paged trees. The XSCAN

runtime algorithm is described in Reference 4. The

algorithm processes the path query by traversing the

document tree and is able to skip portions of the

document that are not relevant to the query

evaluation. The path expressions supported by the

XSCAN runtime are quite powerful; the expressions

contain various axes (i.e., direction-setting query

components) and wild cards, including ‘//’ (de-

scendant and self), ‘..’ (parent), ‘*’ (any node), and

value predicates.

The XISCAN operator

The new XISCAN operator enables direct access to a

subset of documents of interest through an XML

index that is limited by an index expression and is

analogous to a relational index scan. It takes as

input an index expression that consists of a linear

XPath, a comparison operator, and a value (e.g.,

//price , 100), and returns the row identifiers

(RIDs) of documents that contain matching nodes.

Before plan generation is begun, it is decided

whether an XML index can be used to process a

query by a sophisticated index-matching process
34

that tries to find subexpressions of the original query

which match the XPath expression in the definition

for each XML index. If there is a match, it produces

an index expression that associates the matched

portion of the path expression with the matching

index. See Reference 4 for a detailed description of

XML indexes and how they are used for processing

queries.

The XANDOR operator

XANDOR (XML index ANDing and ORing) is a new

n-ary operator that simultaneously combines AND-

ing and ORing of multiple XML index accesses,

effectively performing an n-way merge of its inputs,

which are scans on individual indexes. The

XANDOR operator invokes an algorithm similar to

holistic twig joins.
35

Having the n-way context

permits the XANDOR, when opening parallel scans

on multiple indexes, to use the node identifiers it

reads from one index to skip forward in the scan of

other indexes past regions where results are

impossible. This not only improves performance but

also effectively makes the ordering of its inputs

dynamic. As a result, the XANDOR is far more

robust to any estimation errors in the optimizer’s

compile-time decisions (concerning which inputs to

include and how to order them) than traditional

index ANDing and ORing.
36

The initial implemen-

tation of the XANDOR only supports ANDing and is
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limited to equality predicates. We expect to relax

these restrictions in the future.

Extensions for generating plans

In the main algorithm for generating plans in DB2,

access plans are first generated for accessing each

table individually; these are then combined in

different sequences by the join enumeration algo-

rithm. Internally, the individual access plans are

first generated by the invocation of generic access

rules for each base table. Join plans are then

generated by a separate set of generic join rules for

each set of two or more tables that is generated by

the join enumerator, in successively larger sets. In

the following, we describe the changes to the access

rules which are needed to construct appropriate

plans using the new XML operators just described.

Rather than detailing the exact rules, we show

instead the plans that those rules produce.

Extensions to access rules

The extensions to the access rules were fairly

straightforward for XSCANs, as illustrated by

Example 4 and its resulting XSCAN plan, which is

shown in Figure 2.

Example 4

for $i in

db2-fn:xmlcolumn(’PRODUCT.DESCRIPTION’)

//product[.//price , 100]

return $i;

For this query, a straightforward plan is to access

the DESCRIPTION documents one at a time from the

PRODUCT table, and then evaluate the path expres-

sion //product[.//price , 100] for each docu-

ment. This is analogous to applying a predicate in a

table scan in a relational system, but the path

expression can be significantly more complex. This

plan is shown in Figure 2. The XSCAN operator

evaluates the path expression and returns references

to qualifying product nodes.

Generation of XML index plans

Plans for XML index scans are quite a bit more

complicated to generate than plans for XSCANs. We

illustrate this with the following example.

Example 5

for $i in

db2-fn:xmlcolumn(’PRODUCT.DESCRIPTION’)

//product[.//price , 100]/@id

return $i;

Figure 3 shows a possible plan with an XISCAN

operator that exploits the XML index on

PRODUCT.I_PRICE to evaluate the index expression

//product//price , 100, thereby quickly identify-

ing only those documents having products with

prices less than 100. For each node in the XML index

that satisfies the index expression, XISCAN returns

the RID of the document containing that node. Since

each document may contain many such nodes,

duplicate RIDs may qualify. The SORT (distinct)

operator then eliminates these duplicates, and the

FETCH operator retrieves the DESCRIPTION docu-

ments on which XSCAN does its evaluation. The

XSCAN operator then applies the path expression

//product[.//price , 100]/@id on each of the

documents found by the index. We represent this

with a nested-loop join (NLJN) operator, in which

each RID is passed from the outer (left) stream to the

XSCAN on the inner (right) stream.

Currently, an XSCAN is always necessary after an

index access to eliminate any false positives due to

Figure 2
Simple XSCAN on PRODUCT

PRODUCT

SCAN XSCAN
//product[.//price < 100]

NLJN

Figure 3
Simple XISCAN on index I.PRICE

PRODUCT.I PID

XISCAN (//product//price < 100)

SORT (distinct)

FETCH XSCAN
//product[price < 100]/@id

NLJN
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type casting and value rounding or truncation done

by the index. It also extracts the final results, which

are often different from the nodes filtered by the index

expression; for example, in the plan of Figure 3,

XISCAN finds qualifying price elements, and the

XSCAN operator produces the resulting @id nodes.

In Examples 4 and 5, the XSCANs operate on

DESCRIPTION documents from the base table

PRODUCT. In general, XSCANs can operate on any

XML data instances, including intermediate results.

For complex queries containing multiple path

expressions, it is common to have a query execution

plan containing several XSCAN operators, with the

output of one XSCAN operator being the input of

another; however, for compatibility with existing

infrastructure, these are represented in plans as a

sequence of nested-loop joins, each having a differ-

ent XSCAN operator as the inner table (right branch)

of the join.

Generation of index ANDing plans

In addition to the XML index plans described in the

section ‘‘The XISCAN operator,’’ DB2 XML generates

three types of access plans that use multiple indexes

in concert: index ANDing, index ORing, and

XANDOR (XML index ANDing and ORing). Index

ANDing is a technique enabling the use of multiple

indexes to answer conjunctive predicates and is

described for relational database systems in Refer-

ence 36, as shown in Example 6.

Example 6

SELECT P.*

FROM PRODUCT P

WHERE P.PRICE . 100 AND

P.CATEGORY ¼ ’Tools’

If the Product table had indexes for the price and

category columns, an index ANDing plan would be

generated that intersects the RIDs which qualify

from the index access on price with those resulting

from the index access on category. The ANDing plan

may be superior in both I/O and CPU cost to a plan

that uses only a single index.
36

Analogously, we

extended the access rules to construct index ANDing

plans for conjunctive XML predicates that match

indexes. The comparable XQuery is given in

Example 7. If indexes are defined for

//product//price and //product/category, the

DB2 XML optimizer constructs an XML index

ANDing plan that intersects the results of the XML

index scan (XISCAN) on the price index with those

of the XISCAN on the category index.

Example 7

for $i in

db2-fn:xmlcolumn(’PRODUCT.DESCRIPTION’)

/inventory/product[.//price , 100 and

./category ¼ 0 0Tools0 0]

return $i;

Relational index ANDing intersects the RIDs of each

of the input index scans by using a Bloom filter

scheme that hashes the RIDs. We have extended this

mechanism in DB2 XML to compute the intersec-

tions of results at the lowest common ancestor of the

nodes returned by the index. In Example 7, a node-

based intersection is performed at the product node

level, assuring that an inventory/product node

(i.e., a product node under a root inventory node)

qualifies only if both its price and category

descendants meet the criteria.

Generation of index ORing plans

Index ORing is a technique enabling the use of

multiple indexes to answer disjunctive predicates

and is described for relational database systems in

Reference 36. Traditionally, when all disjunctive

predicates of an expression can be evaluated by

using indexes, DB2 constructs an index ORing plan

that unions the resulting RIDs from multiple index

scans with an OR operator. DB2 XML does not alter

the basic behavior of index ORing, but the con-

ditions under which an ORing plan is considered

must be relaxed.

Due to the expected high cost of evaluating XML

expressions within XSCAN, we aggressively produce

plans that use indexes to filter documents. In DB2

XML, eligibility for ORing is extended to include sets

of indexes that are ensured to produce a superset of

the required results. (An index is eligible for a query

if it contains a superset of the results required for the

query and all information required to execute the

index scan is available.) This can be done correctly

due to the mandatory reapplication of index

expressions with XSCAN, described in the section

‘‘The XISCAN operator.’’ These types of index

combinations are likely to be quite useful in XML

query processing.

XPath expressions often have a mix of predicates

and next steps. The impact of such expressions on
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the eligibility of an ORing plan is illustrated by the

following example:

Example 8

for $i in

db2-fn:xmlcolumn(’PRODUCT.DESCRIPTION’)

/inventory/product[.//price , 100 or

./available[@validated¼"true"]/starting
¼ ’2009–10–04’]
return $i;

In this example, suppose that indexes are defined on

//product//price (index 1), //product/

available/@validate (index 2), and //starting

(index 3). Although it appears that an index ORing

plan could be considered for this example, the path

expression from the child node ./available poses

some complications. This step can be thought of as

an implicit conjunction between the predicate on

validated and the next step, starting. The nodes

returned should be only those that are available

and have both a proper validated attribute and a

starting child matching the predicate.

Traditional index ORing would not consider this

expression eligible, because a union of all results

from our three indexes would yield a superset of the

correct answers (e.g., some ./available[@

validated¼0 0true0 0] nodes that lack a starting child).

In the case of Example 8, the DB2 XML optimizer

would generate two alternative plans that constitute

the union of the results of index 1 with either index 2

or index 3, but not both. Including all three indexes

in the union would produce no additional correct

results and could produce further incorrect results.

Generation of XANDOR plans

Although index ANDing and ORing provide power-

ful ways to combine indexes, they are inherently

limited in how they interact with each other when

represented separately. By combining all the index

ANDing and ORing steps into a single operator, the

DB2 XML runtime for the XANDOR operator is able

to dynamically skip the processing of some of its

inputs, based upon the node identifier with the

highest ID value from any input. Although the plans

with a single XANDOR operator look simpler and

are easier to construct than the corresponding

nesting of index ANDing and ORing operators, it is

nevertheless necessary to extend the plan generation

rules to produce XANDOR plans in addition to the

ANDing and ORing plans. Which of these alternative

plans is actually used at runtime is decided by their

estimated costs. As with other XML index plans, it is

still necessary to add a SORT to remove duplicate

documents and a FETCH to retrieve the needed

columns from the table and then perform an NLJN

with an XSCAN that reapplies the XPath expression

and extracts the nodes. For example, the query of

Example 9 could exploit the XML indexes on

I_CATEGORY and I_PRICE in an XANDOR plan such

as that shown in Figure 4.

Example 9

for $i in

db2-fn:xmlcolumn(0PRODUCT.DESCRIPTION0)

//product[category¼"Tools"orcategory¼"Appliances"]
./description/price

where $i¼ 9.99
return $i/../../@id;

Each XISCAN operator evaluates one of three index

expressions: //product/category¼"Tools",

//product/category¼"Appliances", and

//product/description/price¼9.99, returning

RIDs of DESCRIPTION documents containing such

expressions. The single XANDOR operator unions

the RIDs returned by the first two XISCANs and then

intersects them with the RIDs returned by the third

XISCAN. As described earlier for plans using only a

single XML index, the SORT operator is required after

the XANDOR to remove duplicate RIDs, followed by

Figure 4
XANDOR using indexes I.CATEGORY and I.PRICE

XISCAN
//product/category
= "Tools" XISCAN

//product/category
= "Appliances"

XANDOR

SORT

XISCAN
//product/description/price
= 9.99

XSCAN
../../@id

NLJN

FETCH XSCAN
//product[...]/description/price

NLJN
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the FETCH operator to retrieve the documents that

survive the filtering by the three index expressions,

and finally, followed by the XSCAN to reevaluate the

expression //product[. . .]/@id on the filtered

documents and extract the required nodes.

Properties, pruning, and enumeration of plans
DB2 associates properties with each subplan to track

the cumulative work that the subplan has accom-

plished. Examples of relational properties include

the tables accessed and predicates applied. A plan

having properties identical to another plan but

greater estimated cost may be pruned to limit the

number of candidate plans.

Similarly, in DB2 XML we needed to track the work

done by XPath expressions in various operators of a

plan. Internally representing XPath expressions as a

table function enabled the reuse of existing proper-

ties that track which relational tables have been

accessed thus far. No additional property was

required for tracking XPath expressions. Another

even bigger benefit of this representation was that

DB2’s mechanism for enumerating different orders

for joins would generate various orders for inter-

mingling XPath expressions and table accesses,

without major changes to the fundamental join

enumeration algorithm or the conditions upon

semantically legal orders (e.g., any expression,

whether relational or XPath, clearly cannot refer-

ence a column, including an XML column, until the

table containing that column has been referenced).

Our decision to represent XPath expressions as a

table function abstraction therefore saved a signifi-

cant amount of implementation effort.

CARDINALITY AND COST ESTIMATION

A relational optimizer uses cost estimation to choose

the least expensive of all the alternative QEPs

produced by the plan generation algorithm. The

operator costs are estimated based on cardinality,

configuration parameters, and machine configura-

tions, in addition to sophisticated modeling of the

environment and execution-time processing algo-

rithms. The cardinality of each operator in the QEP

is an estimate of the number of results the operator

will produce during plan execution. Cardinality

greatly affects operator cost and is notoriously hard

to estimate accurately. Precise data distribution

statistics and sophisticated algorithms for processing

these statistics are needed to produce accurate

cardinality estimates. In DB2 XML, cardinality and

cost estimation are implemented by extending and

adapting the current DB2-optimizer cardinality and

cost-estimation infrastructure. This allows us to take

advantage of the current infrastructure to support

relational, XML, and mixed workloads.

The modularized architecture of the DB2 UDB

optimizer allows us to localize the changes to three

general areas. First, we generalize predicate selec-

tivity estimation to support XPath predicates and

navigation expressions. In addition to selectivity, we

compute fanout, the number of outputs produced

for a single input. Second, cardinality estimation is

extended to handle the new XML operators XSCAN,

XISCAN, and XANDOR. Finally, new costing algo-

rithms have been designed for the new operators,

and some of the existing costing modules have been

modified in order to deal with the new XML data

type flowing through the system. In the remainder of

this section, we describe each of these steps. We

discuss the challenges and solutions involved in

their adoption in DB2 XML.

Selectivity and fanout of XPath expressions

In traditional relational optimizers, the cardinality of

predicate-applying operators such as SCAN is

computed based on predicate selectivity. The selec-

tivities are computed before the construction of

alternative plans, using data distribution statistics,

because the selectivity depends only on the predi-

cate semantics and not on the operator in which the

predicate is applied. XPath expressions in a query

may act as predicates because they filter out input

rows for which no results are produced. However,

these expressions do more than simple predicates

because they produce new result rows. To estimate

the cardinality of XSCANs, which apply XPath

expressions, we introduce the concept of XPath

expression fanout. The fanout of an XPath expres-

sion is defined as the average number of result XML

items produced per input (context) XML item.

The XPath expression

/customer[name¼0 0Acme0 0]/order in a TPC-H schema

would be roughly equivalent to the following SQL

query:

SELECT *

FROM ORDERS O, CUSTOMER C

WHERE C.CUSTKEY ¼ O.CUSTKEY AND

C.NAME ¼ ’Acme’
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The cardinality of this SQL query can be computed

as a product of the customer table cardinality, the

selectivity of the ‘‘Acme’’ local predicate, and a

certain expansion factor, which captures the number

of orders of a single customer. This expansion factor

can be thought of as the join predicate selectivity,

with two notable exceptions:

1. Its value may (or may not) be greater than one

(e.g., there may be more orders than customers.)

2. Join predicates extract new values (e.g., orders of

a customer), instead of selecting values from the

set, as done by local predicates.

In XPath expressions, the line between local and join

predicates is blurred because navigations and

predicates can be arbitrarily nested within each

other. Thus, we combine the selectivity and the

expansion factor into a single variable, the fanout.

The following query finds the names of products

with a price of less than 10 American dollars. (The

example assumes that a product can have different

names and prices in different markets.)

Example 10

for $i in db2-fn:xmlcolumn(0PRODUCT.DESCRIPTION0)

//product[10 . .//price[@currency¼"USD"]]
let $j¼ $i//name

return ,result. f$i/@idg f$jg ,/result.;

The same XPath expression //product[10 . .//

price[@currency¼"USD"]] can both increase and

decrease the cardinality. A single document may

contain many product elements, which will increase

the XSCAN cardinality. But it also contains predi-

cates and the expression [@currency¼"USD"] that

reduce the XSCAN cardinality.

Suppose that data distribution statistics tell us that

this collection contains a total of 1000 documents,

which contain 200 product elements with a qual-

ifying ‘‘price’’ descendant. These 200 products have

among them 500 ‘‘name’’ descendants, and each

product has an id attribute. The fanouts of the three

XPath expressions in the query are shown in

Table 1.

Note that very elaborate statistics are required to

find the exact fanout of the XPath expression. In the

above example, ideally we need the count of name

descendants of product elements that satisfy some

predicate. We may also need information on

statistical correlation for any combination of any

number of arbitrary XPath predicates. Collecting,

storing, and accessing such large amounts of

statistical information is not practical. DB2 XML

collects only the most essential statistics, as dis-

cussed in the section ‘‘Statistics collection.’’ In order

to estimate the fanout, we make the following two

uniformity assumptions about the data distribution:

1. Fanout uniformity—For any two XPath steps, A

and B, where A is an ancestor of B in the XPath

expression tree, XML data items that bind to B are

uniformly distributed among XML fragments

rooted at elements that bind to A. For example,

for an XPath expression //X/Y, any two X results

will have the same number of Y children.

2. Predicate uniformity—For any XPath step with a

predicate (i.e., /axisX::testX[Y]), XML data

items that bind to X and satisfy Y are uniformly

distributed among all items that bind to X.

Selectivity and fanout of index expressions

The selectivity of an index expression (IE) is the

fraction of documents in the collection that will be

returned by an XISCAN with this IE. An XISCAN

operator returns both XML nodes and the docu-

ments in which they occur. Currently, DB2 XML

only uses XML indexes to prefilter the documents on

which the XSCAN is applied. Thus, each XISCAN is

followed by the SORT operator, which eliminates

duplicate document IDs, as shown in Figure 3.

For indexable XML predicates, we compute both the

selectivity and the fanout. IE fanout is used to

estimate the number of XML items returned by the

index access, which, in turn, is used to estimate the

cost of the XISCAN operator and the subsequent

SORT. The IE selectivity is needed to estimate the

cardinality of the subsequent SORT. To facilitate

accurate estimation of IE selectivity and fanout, DB2

XML maintains both document-count and node-

count statistics for frequent path-value pairs and all

paths in an XML column, as detailed in the section

‘‘Statistics collection.’’ The document counts are

Table 1 Fanouts of XPath expressions

XPath expression Fanout computation

//product[. . .] 200/1000 ¼ 0.2

$i//name 500/200 ¼ 2.5

$i/@id 1
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used to compute the IE selectivity, and the node

counts are used to estimate IE fanout.

Cardinality estimation
For each QEP operator, DB2 XML needs to track the

expected number of produced rows, as well as the

number of XML items in each sequence that the row

contains. Because the sequences may need to be

sorted or filtered, their size is also important in cost

estimation. To address this challenge, we estimate

and record internally the average sequence size for

each column in the query, including derived results.

The sequence size of an XML column in a query plan

is defined as the average number of XML items per

XML sequence flowing through this column. The

sequence size of a column produced by a FOR

extraction is equal to 1. The sequence size of a

column produced by a LET extraction can be any

value greater than or equal to zero.

For example, in the XQuery of Example 10, every

sequence size is 1, except for the column that

corresponds to $j. Its sequence size is 2.5, according

to the fanout estimation of Table 1. The cardinality

of each operator is computed by a ‘‘bottom-up’’

traversal of each plan tree and depends on the

operator and its input. Note that the cardinality of

the inner row of the join is always estimated per

outer row.

As with relational index scans, the cardinality of the

XSCAN operator is estimated to be a product of the

fanout of its XPath expression, the selectivity of all

predicates applied by XSCAN, and the sequence size

of the input (context) column. The sequence size

term is needed in this computation in case the input

to XSCAN is a sequence of XML items created by an

earlier LET extraction. The cardinality of the

XISCAN operator is the product of the base table’s

cardinality and the selectivity of the index expres-

sion. Each XISCAN operator has to be followed by a

join with an XSCAN operator that finishes the XPath

expression computation (see the section ‘‘Genera-

tion of XML index plans’’). A plan that joins an

XISCAN operator and the corresponding XSCAN

operator computes the same expression as a plan

that performs an NLJN of a table scan and the same

XSCAN operator. The cardinalities of these two

plans have to be identical because they compute the

same result.

Figure 5 shows two possible plans for the query in

Example 10. Plan A uses an index on price elements

to find only those documents having a product price

less than 100, and plan B scans all documents. The

estimated cardinality of each operator is shown in

boldface, next to the operators. If all 200 resulting

‘‘product’’ elements are found in 50 documents, the

Figure 5
XISCAN and SCAN plan alternatives: (A) plan using an index to find specific documents; (B) plan scanning
all documents
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200
NLJN
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index expression selectivity is 50/1000 ¼ 0.05. Note

that in plan B, the cardinality of the first XSCAN

operator is 0.2, which is the fanout of the XPath

expression to which this XSCAN operator applies, as

computed in Table 1. This means that, for each

document that the XSCAN operator takes as an

input, it will produce, on average, 0.2 output rows.

However, in plan A, the cardinality of the same

XSCAN operator is different, because the input

documents to the XSCAN operator have been

prefiltered by XISCAN. For each document output

by XISCAN, XSCAN will produce an average of four

result rows because 50 documents returned by

XISCAN contain 200 product elements that XSCAN

is looking for.

To ensure consistent cardinality estimates, we

adjust the cardinality of each XSCAN operator that

applies XPath expressions associated with index

expressions applied earlier in the plan. The cardi-

nality of such an XSCAN operator is divided by the

combined selectivity of all these IEs, to compensate

for the prefiltering already done by the index

accesses. Without this adjustment, an XISCAN

operator and a SCAN plan having the same result

would have different cardinality estimates.

XANDOR cardinality

When estimating the cardinality of index ANDing

and ORing operators, we have to take special care to

account for statistical correlations between expres-

sion tree nodes that may be implicit in the tree

structure. We estimate the combined selectivity of

multiple index expressions by dividing the product

of all IE selectivities by the selectivity of all lowest

common ancestor (LCA) steps in the XPath expres-

sion tree. Because the existence of a node implies

the existence of its parent, selectivities of two

branching paths are not independent; both of them

include the selectivity of the LCA.

Example 11

Consider the query db2-fn:xmlcolumn(0T.DOC0)

/a[b]/c where /a occurs in 100 of 1000 documents

of table T, /a/b occurs in 50, and /a/c occurs in 10.

Given two index expressions on /a/b and /a/c, with

selectivities S(/a/b)¼ 50/1000¼ 0.05 and S(/a/c)¼
10/1000¼ 0.01, the combined selectivity of the two

IEs is S(/a[b]/c) ¼ S(/a/b) * S(/a/c) / S(/a). The

last term avoids double-counting the selectivity of

S(/a), which is implicitly included in both S(/a/b)

and S(/a/c). In this case, the index ANDing

cardinality is: Card(T) * S(/a[b]/c) ¼ 5.

Cost estimation
The DB2 UDB cost estimation infrastructure is

modularized by operators. For DB2 XML, we added

cost estimation for the three new operators and

modified the cost models of any existing operators,

such as SORT and FILTER, that were extended to

support the XML datatype.

Cost modeling for SQL/XML and XQuery on XML

data is much more complex than for relational data,

due to the semantic differences and the complexity

of the operators, as well as the versatility and

complexity of XML data; for example, the hierar-

chical data model, its schema flexibility, predicates

on a mix of structure and values, and documents

with heterogeneous structure and characteristics.

DB2 XML was specifically designed to address the

schema evolution scenario, in which multiple,

possibly conflicting schemas coexist in a document

collection. This schema heterogeneity complicates

the use of schema information for cost estimation.

We also support querying documents that do not

have schemas, while exploiting schema information

when it is available.

To illustrate the difficulty of cost estimation,

consider an XSCAN operator that evaluates the path

expression /*/product[.//price , 100]/@id on a

collection of XML documents without a fixed

schema. The XSCAN algorithm will need to find the

IDs of all second-level product elements in all XML

documents, such that there exists a descendant price

element whose value is less than 100. The XSCAN

navigation algorithm will read once through each

document, skipping all second-level elements that

are not named ‘‘product.’’ For each product element,

the scan of its descendants will be terminated as

soon as the first qualifying price element is found.

The XSCAN algorithm makes its navigation deci-

sions based on the data that it is processing. Thus

the navigation pattern is different from one XML

document in the collection to the next, and even

within fragments of the same document. To

accurately model the cost of the navigation, we need

to know how many product elements each docu-

ment contains in its second level, how many of them

contain a price descendant with a value less than

100, and how many pages of other descendants will

be read before the first such price is found. It is

unreasonable to expect all these values to be

available from some auxiliary data structure, such

as data distribution statistics. The size of such a
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structure would be comparable to the size of the

database itself, and the estimation would probably

take longer than the query execution. Thus we have

to trade accuracy of the estimation for its

performance.

The problem of modeling XML operators is further

compounded by the need for integration with the

existing cost-based optimization for SQL queries.

The power of the DB2 XML system lies in its ability

to mix relational and XML predicates in a single

query. Thus, the same query could, for example, be

executed by using an XML index access (XISCAN) or

a relational one (ISCAN). The cost models of the two

operators have to be consistent in their level of

detail and in the factors being considered in order to

avoid any bias toward either of the operators in the

model.

STATISTICS COLLECTION

In this section, we describe the type of XML statistics

that DB2 XML collects and the challenges involved

in the collection procedure.

Statistics collection in DB2 is performed by a utility

called runstats, which collects two types of

statistics for relational data: table statistics and

index statistics, which are collected by scanning

each row of each table and each index. After

runstats scans the table and its indexes, the

statistics are summarized and written to the system

catalog tables. For DB2 XML, we extend the

runstats utility to collect XML statistics when it

encounters columns of type XML during the table

scan. In the following, we focus our discussion on

table statistics for XML columns.

XML column statistics

For relational data, the default column statistics

consist of aggregate information that roughly char-

acterizes the distribution of the values that occur in

that column. These statistics are used for computing

selectivities of predicates. For XML columns, car-

dinality estimation must include computing fanout,

which requires occurrence counts for each linear

rooted path in that column. A linear rooted path is

one that has no predicates and starts at the root of

the document.

We distinguish two types of linear paths, each

having distinct statistics: simple paths are paths that

end in element nodes only, whereas path-value pairs

could end either in an attribute value or a text value.

We also distinguish between two types of occur-

rence counts: node counts and document counts.

For each XML column, we collect node-count and

document-count statistics for each distinct path and

path-value pair. For the XML column in the table

shown in Figure 6, the node counts and document

counts of all the paths and path-value pairs in the

column are shown in Table 2.

Because XML documents with different structural

characteristics could be stored in different rows of

the same XML column, it is possible that the number

of distinct paths in an XML column could be very

large and infeasible to store. We therefore adopt the

same strategy used in relational distribution statis-

tics: keep counts for a specified number of the most

frequently occurring values and one ‘‘bucket’’ that

aggregates counts for all the values for computing

averages and interpolation. For each of the most

frequent values, we collect the (simple) path node

counts, path document counts, path-value node

counts, and path-value document counts.

We also collect several aggregates for each XML

column, to capture statistics on paths that do not

occur sufficiently frequently; namely, the number of

distinct simple paths, the sum of node counts over

each distinct simple path, and the sum of document

counts over each distinct simple path. For path-

value pairs, we have one path-value-bucket data

structure for each distinct path that leads to an

attribute or text value within a column, with

Figure 6
Example of table with one XML column

A

B

3

C

D

Bill 33

E

A

B

4

C

E

33 Ann Tom

F F

A

B

7 5

B C

@G

inch 50

E

ID Doc

1

2

3
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statistics such as the number of distinct values.

Table 3 summarizes all the statistics associated with

an XML column for an example with the number of

paths and the number of path-value pairs, namely,

k
p
¼ k

pv
¼ 2 and the table shown in Figure 6.

Conceptually, these statistics are an aggregation and

summarization of the counts in Table 2.

Implementation

Even though the XML statistics that we collect are

quite basic, extending the relational runstats

infrastructure to collect XML statistics in a single

scan of the table significantly complicates the

estimation of its memory requirements. For rela-

tional data, it is easy to estimate the memory

required because the number of columns in the table

are known beforehand from catalog information,

and each column on which statistics are to be

collected is of an atomic type. For an XML column,

however, each row is an XML document with many

nodes, many distinct paths, and many distinct path-

value pairs.

For example, in order to allocate enough path-value

buckets when collecting path-value-bucket statis-

tics, we need to know the number of distinct paths

that lead to a specific attribute or text value. The

problem is that the number of such paths is not

maintained anywhere, nor is it easily computable

without an additional scan of the table. Our solution

is to perform an index scan on the column path

index to count the number of paths that lead to

Table 2 Node and document counts for paths and

path-value pairs

Path
Node
count

Document
count

/A 3 3

/A/B 4 3

/A/C 3 3

/A/C/D 1 1

/A/C/E 3 3

/A/C/F 2 1

/A/C/@G 1 1

/A/B¼3 1 1

/A/B¼4 1 1

/A/B¼5 1 1

/A/B¼7 1 1

/A/C/D¼Bill 1 1

/A/C/E¼33 2 2

/A/C/E¼50 1 1

/A/C/@G¼inch 1 1

/A/C/F¼Ann 1 1

/A/C/F¼Tom 1 1

Table 3 XML statistics

Frequent values

Path node count (/A/B, 4), (/A, 3)

Path document count (/A/B, 3), (/A, 3)

Path-value node count (/A/C/E¼33,2)

Path-value document count (/A/C/E¼33,2)

Path bucket

Distinct paths 7

Sum of node counts 17

Sum of document counts 15

Path value bucket for /A/B

Distinct paths 4

2
nd

highest value 5

2
nd

lowest value 4

Sum of node counts 4

Sum of document counts 4

Path value bucket for /A/C/D

. . .

Path value bucket for /A/C/E

. . .

Path value bucket for /A/C/F

. . .

Path value bucket for /A/C/@G

. . .
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attribute or text values. In DB2 XML, a column path

index is automatically created and maintained for

each XML column. This index stores all the paths

that occur in the XML column and their corre-

sponding numeric path identifiers. Collecting docu-

ment-count statistics requires remembering what

paths have been seen before in that XML document;

we use a fixed-size Bloom filter
37

to remember the

distinct paths in a document, an approximate

solution that allows us to cap memory utilization.

The space required for frequent value statistics

similarly requires memory that grows with the

number of distinct simple (or path-value pair) paths,

which is neither known beforehand nor scalable.

Reservoir sampling
38

provides a solution that yields

good estimates in a fixed amount of memory and a

single access of the data. Logically, reservoir

sampling is equivalent to sampling using a uniform

distribution, but algorithmically, reservoir sampling

is a one-pass algorithm that does not require

knowledge beforehand of the size of the data.

FUTURE WORK
Query processing on XML data is still in its infancy.

This paper describes the first wave of extensions to

the DB2 optimizer in support of XQuery and SQL/

XML. This section outlines some anticipated future

work.

XML index exploitation

A scan of an XML index returns references to

individual nodes that satisfy an index expression,

but today, DB2 XML does not fully exploit this

granularity. We currently use the result of an XML

index scan to qualify entire documents that satisfy

an XML index expression. Subsequent navigation

from the root of each qualifying document deter-

mines the exact set of nodes that satisfies the full

XPath expression. This strategy of filtering docu-

ments works well when a few small documents are

qualified by the predicate, as navigation of a few

small documents is fairly efficient. If our presump-

tion about the size of documents fails to hold in

practice, we will need to add evaluation strategies

that navigate from each of the individual nodes

qualified by the index. Such strategies would allow

us to use XML indexes to pinpoint relevant sections

of large documents.

Deferred XPath evaluation

One possible enhancement of our current join

enumeration algorithm would be to consider addi-

tional plans that would defer the XSCANs used to

evaluate a full XPath expression following an XML

index access. Currently, the XSCAN is always

(nested-loop) joined immediately with each XISCAN

plan, as shown in Figure 3. Deferring the XSCAN

until after performing other joins might reduce the

number of documents that have to be navigated, but

would significantly increase the number of alter-

native plans.

Index ANDing heuristics
There can be many alternative index ANDing plans.

Heuristics are often employed to reduce the number

of alternatives considered. For example, an alter-

native that orders the inputs by decreasing selec-

tivity so that more filtering is done early might be

considered along with another that orders the inputs

by decreasing cost so that cheap accesses are done

early. It is possible, however, that the simple

heuristics typically used today would fail to yield the

most efficient XML index ANDing plan, as they do

not take into account the effect of intersecting two

indexes whose lowest common ancestor is high in

the XML hierarchy. One of our future investigations

will be to extend the current index ANDing

heuristics to take this XML-specific dimension of the

problem into account.

Cardinality estimation and statistics
We anticipate the need to extend our statistics and

cardinality estimation model to take into account

structural relationships between predicates. For

example, our linear path statistics suffice to estimate

the number of matches for each path expression

/product/price and /product/@id, but give no

information on how many of the matches are related

through a common /product node for the path

expression /product[price]/@id. Moreover, in

order to accurately estimate the cardinalities of path

expressions involving numeric or timestamp values

such as /product[price , 100.00], we will need to

collect statistics that are data type specific. Cur-

rently, our XML statistics collection routines treat all

values as strings, in the absence of schema

information, because we do not know how a value

should be treated until it is referenced in a query.

Cost estimation
The cost models for our new XML operators were

developed using the static modeling approach

typically used in the development of cost models for

relational operators. This approach involves having

an optimizer cost-model expert perform extensive
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analysis to determine a set of formulas that

accurately models the algorithmic behavior of an

operator, given any possible input or system

configuration.

This human-intensive process must be repeated

whenever the implementation of the operator is

changed or extended. The behavior of XML oper-

ators is inherently more complex than relational

operators due to the hierarchical nature of the XML

data on which they operate; consequently, using a

static modeling approach to develop and maintain a

cost model for these operators is a daunting task. In

the future, we hope to use more automated

techniques to develop operator cost models. For

example, the COMET prototype
39

proposes the use

of statistical learning techniques to automatically

build a cost model for the equivalent of the XSCAN

operator.

Order optimization

In XQuery, the fundamental construct is an ordered

sequence. The semantics of XQuery usually require

the output to preserve both the ‘‘bind order,’’ which

is essentially the order in which FORs and LETs are

nested, as well as the original ‘‘document order,’’

which is the order of nodes within documents, and

even between documents. We plan to extend the

optimizer’s order optimization architecture
40

so that

it can effectively deal with these implicit order

requirements in addition to the usual value-based

orderings that it currently supports.

CONCLUSION

Overall, reusing the relational infrastructure of DB2

UDB has facilitated robust and scalable support for

XQuery and SQL/XML far faster than starting fresh,

even though the heterogeneous and semi-procedural

aspects of XQuery required some challenging

extensions to the plan generation, cardinality and

costing, and statistics components. The reuse was

made possible by (1) the introduction of an XML

column type that can hold variable-length sequences

of XML items, (2) uniform internal modeling of SQL,

XQuery, and SQL/XML queries, and (3) representing

XPath expressions as table functions. The plan

generation extensions included new QEP operators

and plan enumeration rules. We extended the

cardinality and selectivity concepts to support

heterogeneous XML sequences and XPath expres-

sions that combine predicates and navigation.

Furthermore, new data distribution statistics were

collected to capture the hierarchical nature of the

XML data.

We are convinced that XQuery opens a new and

very challenging chapter in query optimization for

declarative database languages, one that—like

SQL—will mature over the years to come.
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