
Expressing and Optimizing Similarity-Based Queries
in SQL

(Extended Abstract)�

Like Gao1, Min Wang2, X. Sean Wang1, and Sriram Padmanabhan2

1 CS Dept., University of Vermont, VT
{lgao,xywang}@emba.uvm.edu

2 IBM T.J. Watson Research Center, NY
{min,srp}@us.ibm.com

Abstract. Searching for similar objects (in terms of near and nearest neighbors)
of a given query object from a large set is an essential task in many applica-
tions. Recent years have seen great progress towards efficient algorithms for this
task. This paper takes a query language perspective, equipping SQL with the near
and nearest search capability by adding a user-defined-predicate, called NN-UDP.
The predicate indicates, among a set of objects, if an object is a near or nearest-
neighbor of a given query object. The use of the NN-UDP makes the queries
involving similarity searches intuitive to express. Unfortunately, traditional cost-
based optimization methods that deal with traditional UDPs do not work well for
such SQL queries. Better execution plans are possible with the introduction of a
new operator, called NN-OP, which finds the near or nearest neighbors from a set
of objects for a given query object. An optimization algorithm proposed in this
paper can produce these plans that take advantage of the efficient search algo-
rithms developed in recent years. To assess the proposed optimization algorithm,
this paper focuses on applications that deal with streaming time series. Experi-
mental results show that the optimization strategy is effective.

1 Introduction

In many applications, searching for similar objects of a given query object from a large
given set is important. Similarity measure is best intuited as some distance and simi-
larity is then usually expressed in terms of near and nearest neighbors. When complex
objects such as time series are involved and object sets are large, the task of finding
near and nearest neighbors becomes rather costly. A large body of research has been
devoted to reducing this cost and efficient algorithms and indexing structures have been
developed (see, e.g., [13, 12, 1, 5, 11, 10]).

To the best of our knowledge, however, there has not been any systematic study on
how to incorporate near and nearest neighbor searches into the popular query language
SQL and, more important, how to optimize the resulting queries. The purpose of this
paper is to initiate such a study, considering the two aspects of the query language,
namely expression and optimization, when it needs to deal with similarity searches.

� This is an abbreviated version of the technical report [6].

P. Atzeni et al. (Eds.): ER 2004, LNCS 3288, pp. 464–478, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Expressing and Optimizing Similarity-Based Queries in SQL 465

As an example application, consider the problem of monitoring different sources
of time series data to detect certain events (e.g., onset of a flu season). Assume we
have collected many patterns (in the form of time series) from historical data on school
attendance and flu-related medicine sales at pharmacies. Using data analysis tools, we
may have learned the strong correlation between the presence of certain events and
the appearance of certain patterns in school and pharmacy data. For example, a sharp
decrease in school attendance accompanied by a sharp increase in pharmacy sales three
days in a row is a strong indication of the beginning of a flu season. Based on such
learned “rules” and the time series data reported everyday regarding current school
attendance and pharmacy sales, we may detect the appearance of certain events.

To be more specific, suppose we have two sets of historical patterns, S for school
attendance and P for pharmacy sales. For simplicity, let us assume S = {s1, s2, s3}
and P = {p1, p2, p3}, respectively. We can store the rules learned from historical data
in a relation called Events shown in Figure 1. Each row in the relation represents a
rule learned from the historical data. For example, the first row says that when school
attendance data matches pattern s1 and pharmacy data matches pattern p1, it usually
indicates the peak of a flu season.

EID eName School Pharmacy

e1 Flu peak s1 p1
e2 Flu start s2 p2
e3 Flu end s3 p3

Fig. 1. Events table with the rules learned from historical data

The meaning of “match” in the above example can be in terms of near and near-
est neighbor based on a similarity (or distance) measure. Near neighbors are defined in
terms of the distance between a pair of objects (e.g., time series) irrespective of the ex-
istence of other objects, while nearest neighbor is a relative notion, defined with respect
to a set. Both notions are best used together. Thus, that the current school data matches
pattern s1 may indicate that among all the school patterns, s1 is closest to the current
school data (nearest neighbor notion), and at the same time, they are not too far away
from each other (near neighbor notion).

Clearly, algorithms and data structures that can provide efficient evaluation of near
and nearest neighbors can be very helpful in the above example application. However,
it is also very important that the users should have an intuitive language to express
these types of queries. At the same time, the system should figure out how to efficiently
answer these queries, invoking efficient algorithms and indexing structures. For this
purpose, we propose to add a user-defined-predicate (UDP) to SQL for users to express
the notion of near and nearest neighbors in their queries. The UDP, called NN-UDP,
indicates, among a set of objects, if an object is a near/nearest-neighbor of a query one.

The use of the NN-UDP makes the queries involving near/nearest neighbors easy to
express, since the user can intuitively treat it as a selection condition. However, when

466 Like Gao et al.

the query is evaluated, we probably do not always want the predicate as a selection con-
dition. Indeed, we would like to take advantage of the algorithms and data structures for
finding near and nearest neighbors. For example, in our detection application, we may
want to report the corresponding event name by performing the following three steps:

1. In pattern set S, find the nearest neighbor (call it si) of the current school series.
2. In pattern set P , find the nearest neighbor (call it pj) of the current pharmacy series.
3. Issue an SQL to select the eName of table Events with School = si and Pharmacy

= pj as the conditions.

Here, we use the direct method to find the near/nearest neighbors from sets of ob-
jects instead of using the NN-UDP as selection conditions. Obviously, various strategies
can apply to each of the above steps.

However, the above strategy may not always be the best. For example, once the
school pattern si is found from Step 1, the number of tuples in the Events relation that
satisfy the condition School = si may be so small that, in fact, a near/nearest neighbor-
hood test of (in contrast to search for) the corresponding patterns from the Pharmacy
column will be more beneficial.

In order to make the correct decision on selecting the appropriate evaluation strat-
egy, we introduce a heuristic optimization method which is based on a new operator
NN-OP and the derived algebraic equivalence rules involving NN-UDP and NN-OP.
Our experiments have confirmed the superiority of this systematic cost-based approach.

By treating each NN-UDP in the query either as a traditional UDP or as the output of
NN-OP, our proposed optimization method can find better execution plans than those
appearing in previous work on UDP query optimization [4, 9, 3, 2], In [4], Chimenti
et al. propose an algorithm for LDL system to optimize the queries with UDPs. In
LDL, each UDP is treated as a relation during the query optimization process. However,
since it uniformly treats each UDP as a relation, it may fail to consider some efficient
plans. Hellerstein and Stonebraker propose Predicate Migration algorithm [9, 8] that
improves the LDL approach by pushing down selections on both operands of a join.
Later, Chaudhuri and Shim present several efficient algorithms that are able to guarantee
the optimal plan over the desired execution space and show these proposed algorithms
can either find the optimal plan or efficiently find a plan that is very close to the optimal
one [3]. However, all these algorithms uniformly treat UDPs as selection conditions.

Our work is also related to [2] by Chaudhuri and Gravano, which deals with query
optimization when external searches are involved. They study the optimization of
queries over multimedia repositories, and assume that query predicates are indepen-
dent. However, in this paper, the similarity searches on different sources are less likely
to be independent since they are involved in the detection of the same event.

The contribution of this paper can thus be summarized as follows. Firstly, we take a
query language perspective to deal with similarity searches. The novelty of our language
is on the incorporation of the nearest neighbor searches. This makes similarity-based
queries easy to write and provides a powerful tool for various related tasks. Secondly,
we provide a heuristic optimization algorithm to derive efficient evaluation plans for
these queries, fully taking advantage of the efficient algorithms and index structures for
near/nearest neighbor for evaluation. Thirdly, we use experiments to demonstrate the
effectiveness of our optimization algorithm for the (streaming) time series case.

Expressing and Optimizing Similarity-Based Queries in SQL 467

The remainder of the paper is organized as follows. In Section 2, we define our
extension of SQL, called SQL/sim, to incorporate the similarity search capability into
SQL. In Section 3, we discuss our optimization algorithm, including algebraic equiva-
lence rules, and our heuristic method for deriving optimized evaluation plans. We report
experimental results in the (streaming) time series case in Section 4, and in Section 5,
we conclude our paper with some future research directions.

2 SQL/sim

In this section, we provide a simple extension of SQL, called SQL/sim, that offers the
capability of expressing similarity searches in RDBMSs. We start with defining the
similarity between pairs of objects.

Definition Given two objects p and q, the similarity measure, denoted sim(p, q), is a
non-negative real number.

The similarity metrics might have a positive or inverse relationship with respect to
the similarity of two objects. For example, Correlation Coefficient is positive, i.e., the
large the metric value, the more similar the objects are. On the other hand, Euclidean
Distance is inversely related to the similarity of objects, i.e., the smaller the metric
value, the more similar the objects are. Without loss of generality, in this paper, we
assume that if two objects are more similar, then the similarity metric is smaller. In this
case, similarity measure is more like a distance measure.

Definition Let α be a non-negative real number. Given a query object q, an object p is
said to be its α-near neighbor if sim(p, q) ≤ α.

In the above definition, the number α is called the nearness threshold. This near-neigh-
bor definition relates similar objects independently of the existence of other objects.
In some situations, it is meaningful to obtain similarity between the query object and
an object relative to a set of objects. We call this relative measure as the k-nearest
neighbors defined as follows:

Definition Let k ≥ 1 be an integer, P = {p1, p2, . . . , pm} a set of objects, and q a query
object. An object pi in P is said to be one of the k-nearest neighbors of q in P if there
are at most k − 1 objects pj (j �= i, 1 ≤ j ≤ m) such that sim(pj , q) < sim(pi, q).

Integer k above is called the rank of similarity1. For k = 1, the 1-nearest neighbor
of q is normally abbreviated as the nearest neighbor of q.

2.1 Required Relations

In order to model the notions of objects and object sets for the purpose of near/nearest-
neighbor searches in a RDBMS, an application needs to set up at least two relations.
One corresponds to the set of all (pattern) objects (abstractly called Patterns), and the
other to the collection of (pattern) object sets (called PatternSets). Each pattern set must
be a subset of the Patterns.

1 For simplicity, we assume no two pairs of objects will have exactly the same similarity mea-
sure. In real applications, we remark it’s easy to lift this restriction.

468 Like Gao et al.

For our running example, the Patterns are all the historical patterns and the Pat-
ternSets are those collections of historical patterns related to specific types of events
(e.g., all the patterns related to school attendance are collected into schoolSet).

In terms of relation schemas, the relation for Patterns should have an ID attribute
(PID) that is the primary key of the relation; and the relation for PatternSets should
have two attributes that are for the ID of the sets (SID) and the ID of the Pattern (PID).
The primary key must be these two attributes together, and the PID must reference to
the ID of the Patterns relation. These two relations only need to use the identifiers of
the objects and the object sets, while the objects themselves may be stored elsewhere
inside or outside of the relational database. For example, the objects themselves may be
stored as BLOBS in a RDBMS.

The relations corresponding to our running example are shown in Figure 2. Here, the
two required relations are given by Patterns and PatternSets, respectively. We assume
that all patterns in the Event relation (under the attributes School and Pharmacy) in
Figure 1 all refer to attribute PID in the Patterns relation.

Patterns (P)

PID pName

s1 Fast Up

s2 Up Down

s3 Slow Up

p1 Slow Down

p2 Quick Change

p3 Fast Down

PatternSets (PS)

SID PID

schoolSet s1

schoolSet s2
schoolSet s3

pharmacySet p1

pharmacySet p2
pharmacySet p3

Fig. 2. For our running example, the required Patterns and PatternSets relations

Query objects need not belong to relation P. They can be stored in relations or can
be constant IDs that are understood by SQL/sim. In this paper, we will use constant IDs.

2.2 NN-UDP

To equip SQL with the near/nearest-neighbor search capability, we introduce a user-
defined-predicate (UDP) as follows.

Definition NN is a 5-ary predicate such that for each given query object QID, pattern
set SID (from relation PS), pattern PID (from relation P and in the set SID), integer
RK ≥ 1, and real number TH ≥ 0,

NN(QID, SID, PID, RK, TH) =True
if and only if PID is one of the RK-nearest neighbors of QID in the pattern set SID, and
the similarity measure between them is no greater than TH. NN is called the NN-UDP.

For example, NN(‘s’, ‘schoolSet ’, ‘s1’, 1, 0.2)=True if and only if s1 is the nearest
neighbor of s in schoolSet , and the similarity measure of s1 and s is no greater than 0.2.
Unlike most other proposals, NN-UDP incorporates both near and nearest neighbor
tests.

Expressing and Optimizing Similarity-Based Queries in SQL 469

In the above definition, the input relation takes five parameters. Among them, QID
and PID are specific values, while SID, RK and TH can take NULL values. The seman-
tics of these three attributes with NULL values are:

1. If SID=NULL, the pattern set is all patterns in P.
2. If RK=NULL, the similarity rank is infinity.
3. If TH=NULL, the similarity threshold is infinity.

Therefore, SID=NULL is a special case to take all the patterns as a “global” set
for the purpose of nearest neighbor test. Furthermore, by allowing NULL either for
RK or TH, we can use NN-UDP for either near or nearest neighbor tests, respectively.
In the cases where both RK and TH are NULL, NN(QID, SID, PID, RK, TH) =True
means that PID is in the set SID. On the other hand, if neither RK nor TH is NULL,
then NN(QID, SID, PID, RK, TH) =True means that PID is both a near and nearest
neighbor of QID.

2.3 SQL/sim Examples

With SQL/sim, users can write similarity-based queries in an intuitive manner. Here we
give two example queries. The first corresponds to the flu detection scenario mentioned
in the introduction.

Example 1. Report the event name based on the observed school time series s and
pharmacy time series p. More specifically, the event name is decided by: (1) the near-
est neighbor of school attendance time series in schoolSet with similarity measure no
greater than 0.2; (2) the nearest neighbor of pharmacy time series in pharmacySet ; and
(3) the rules in the Events table, as described in Figure 2. The query in SQL/sim is:

SELECT E.eName
FROM Events E
WHERE NN(‘s’, ‘schoolSet ’, E.School, 1, 0.2)
AND NN(‘p’, ‘pharmacySet ’, E.Pharmacy, 1, NULL)

The result is a list of event names.

Example 2. As another example, we want to find the PIDs of the nearest neighbor of
the school attendance time series s in schoolSet if this nearest neighbor satisfies the
following two conditions: (1) the similarity measure is no greater than 0.2; and (2) ac-
cording to the rules in table Events, this nearest neighbor pattern is correlated to the
event named Flu peak, i.e., this nearest neighbor appears in a row of Events table with
eName=‘Flu peak’. The query is as follows, and the result is a list of school IDs.

SELECT E.School
FROM Events E
WHERE E.eName= ‘Flu peak’
AND NN(‘s’, ‘schoolSet ’, E.School, 1, 0.2)

3 Optimizing SQL/sim

In this section, we develop a strategy to optimize queries in SQL/sim. We start with an
example to show various options for evaluating queries in SQL/sim. We then describe

470 Like Gao et al.

a heuristic method that can, in many cases, automatically take the best option when
evaluating a query.

Consider the query in Example 1. Using traditional optimization methods for UDPs,
two execution plans are possible:

(1) One may consider the order of applying the two NN-UDPs in the query. Cost and
selectivity should both be considered for this ordering as in [3, 9].

(2) Another method is to consider each NN-UDP as a relation as in [4]. In this case,
both occurrences of NN will be evaluated on the entire relation and the results are
joined together (with Events relation again). The join order needs to be carefully
considered as in [4].

Each of the above strategies has its advantages in particular situations as explained
below. This is due to the fact that, in most situations, algorithms that test if an ob-
ject is a near/nearest neighbor are faster than those that search for near/nearest neigh-
bors2. More specifically, in our example, if the number of patterns in Events under the
School attribute is large, then it is beneficial to find the nearest neighbor (with RK=1
and TH=0.2) of the query object s by using some indexing method. Since at most one
school attendance pattern will be found by this process, once this is done, we can select
the tuples in the Events relation that contain that particular school attendance pattern,
and project out the patterns under the Pharmacy attribute in these tuples. If the number
of the resulting patterns is small, we can then use the NN-UDP to test each one. If the
number is still large, we can use an index-based algorithm to find the nearest neigh-
bor of p, and join back to the relation Events to obtain the final result. (This last case,
where index-based algorithms are used twice, corresponds to the strategy found in [4]).
Of course, this whole process can be done starting with the second occurrence of the
NN-UDP.

Another possibility is that there are only a few tuples in Events. Then testing each
one of them using the two NN predicates will probably be the best strategy. Here, the
strategy of [3, 9] should be considered.

The above example shows that each of the traditional methods mentioned previously
may be best in certain situations. However, a combination of these methods may be
called for in certain other situations. The choice must be made by considering the cost,
selectivity and sizes of the involved operations and intermediate results.

3.1 Near/Nearest-Neighbor Operator

From the above example, we can see that we cannot simply treat NN-UDPs as selection
conditions or their output as relations. Rather, we need to choose different plans for
different query instances. Sometimes we need to use index-based algorithms to directly
find near/nearest-neighbors, and sometimes we may use the NN-UDP directly.

2 For example, we used a scan method for both testing and searching in our experiments. In
our scan method, search needs to look through the entire pattern set, while test can stop much
earlier when a nearer object is found and hence is faster in general. If multidimensional index
is used for multidimensional objects, a test is only to ask whether there is any object that is
within a range and hence is generally faster than searching for the exact objects that are the
near/nearest neighbors.

Expressing and Optimizing Similarity-Based Queries in SQL 471

R =

QID SID RK TH

s schoolSet 1 0.4
p pharmacySet 1 0.5

D(R) =

QID SID PID RK TH

s schoolSet s1 1 0.4
p pharmacySet p3 1 0.5

Fig. 3. Example of NN-OP, assuming s1 is the near/nearest neighbor of s in schoolSet (with
RK = 1 and TH = 0.4), and p3 is the near/nearest neighbor of p in pharmacySet (with
RK = 1 and TH = 0.5)

In order to derive such optimized evaluation plans, we need to define an operator
that encodes the use of an indexing algorithm for finding near/nearest-neighbors.

Definition Let S = {QID, SID, RK, TH}. The relational operator D is defined as fol-
lows: For each relation R whose schema contains all the attributes in S, D(R) is the
relation with the schema S ∪{PID} such that a tuple t is in D(R) if and only if (1) t[S]
is in πS(R), and (2) NN(t[QID], t[SID], t[PID], t[RK], t[TH]) = True. Operator D is
called the NN-OP.

Intuitively, for each tuple t in R, D finds the near/nearest neighbors for the query ob-
ject t[QID] among the patterns in the set t[SID] with rank and threshold RK and TH,
respectively. Figure 3 shows an example of the D operator.

The above definition of D is extended to relations that have some of the attributes
in S missing. More specifically, R may not contain any of the attributes SID, RK, TH.
In these cases, the output of D will not have these attributes either, and the condition
(2) in the above definition will take NULL value in place of t[SID], t[RK], t[TH].

It should be noted that the output size of NN-OP may be even bigger than that of
the input relation. For example, if RK = k, then for each tuple in R, D(R) may contain
k tuples derived from it.

3.2 Equivalence Rules

As explained in the beginning of this section, our goal is to use the NN-OP in place of
some NN-UDPs in evaluating a query. In this section, we give a set of transformation
rules for this purpose.

Our transformation rules work on the relational algebra expression derived from
SQL/sim. In a relational algebra expression, in a natural way, we treat NN-UDP as
a selection condition on a relation R containing attributes QID, SID, PID, RK, and
TH, written as σNN (R). If R does not have any of the attribute SID, RK, TH, the
corresponding value is treated as NULL.

As an example, let R1 be a relation with schema {QID, SID, RK, TH} that con-
tains only one tuple (‘s’, ‘schoolSet ’, 1, 0.2) and R2 be a relation with schema {QID,
SID, RK} that contains only one tuple (‘p’, ‘pharmacySet ’, 1). The SQL/sim query in
Example 1 can be written in relational algebra form as πeName(R′′

1 �� R′′
2), where

R′′
1 = πEID,eName(σNN (R′

1)) with R′
1 = ρSchool→PID(R1 × Events), and

R′′
2 = πEID,eName(σNN (R′

2)) with R′
2 = ρPharmacy→PID(R2 × Events).

Note that ρ is the renaming operator.

472 Like Gao et al.

In the following, R can be any relation with the implied attributes. For notational
convenience, in these rules and the later plans, we will indicate the ordering of the
operators by nested algebraic expressions.

Figure 4 shows the equivalence rules. Rule 1 gives the equivalence transformation
between σNN and D. Rule 2 shows how to move a selection operator σ inside the NN-
OP D. Likewise, we can exchange the order of join and NN-UDP as in Rule 3. Rules 4-7
are useful to prune some operators and the associated relations from the plan. Note that
Rule 4 and 5 are different since in Rule 4, relation PS refers to the PatternSets relation
which contains attribute PID, while in Rule 5, the schema of R does not contain PID.

Rule 1 σNN (R) ≡ R�D(R)

Rule 2 σc(D(R)) ≡ D(σc(R)), if c only refers to attribute(s) in {QID, SID, RK, TH}.
Rule 3 R1�D(R2) ≡ R1�D(R1�R2)

Rule 4 PS�D(R�PS) ≡ D(R�PS)

Rule 5 R�D(R�PS) ≡ D(R�PS) if R’s schema is a subset of {QID, SID, RK, TH}.
Rule 6 πp(D(R)) ≡ πp(R) if p is a set of attribute that does not contain PID.
Rule 7 D(πp(R)) ≡ D(R) if p is the subset of {QID, SID, RK, TH} appearing in R’s schema.

Fig. 4. Equivalence rules (PS is PatternSets)

With the set of equivalence rules shown in Figure 4, we can transform a query plan
involving NN-UDPs into equivalent ones with NN-OPs only or a combination of NN-
UDPs and NN-OPs. We use the query in Example 1 to illustrate how to use these rules
to obtain different query plans.

At the beginning of this subsection, we represent the query as πeName(R′′
1 �� R′′

2).
This expression corresponds to the straightforward way of executing the query by test-
ing the two NN-UDPs independently, joining the two testing results on attribute EID ,
and projecting out the interested attribute.

Alternatively, we can use the equivalence rules to generate another query plan:
πeName(R

′′
1 �� R′′

2)

≡ πeName(πEID,eName(σNN (R′
1)) �� πEID,eName(σNN (R′

2)))

≡ πeName(πEID,eName(σNN (R′
1)) �� σNN (R′

2)) //standard equivalence
≡ πeName(πEID,eName(R

′
1 �� D(R′

1)) �� σNN (R′
2)) // Rule 1

≡ πeName(πEID,eName(R
′
1 �� D(R1)) �� σNN (R′

2))

//since D(πQID,SID,RK,TH(R′
1)) = D(R′

1) by Rule 7, and πQID,SID,RK,TH(R′
1) = R1

≡ πeName(σNN (πEID,eName(R
′
1 �� D(R1)) �� R′

2)) //standard equivalence

The resulting expression corresponds to the following query plan: We first use an index-
based algorithm to discover the nearest neighbor of s in the pattern set schoolSet (this
corresponds to D(R1)). We then find the events that use that particular school pattern
(i.e., the first join R′

1 �� D(R1)). We then join the result with R′
2, the input relation

of the second NN-UDP, on attribute EID and eName . Finally, we test the second NN-
UDP on the join output and project out the interested attribute eName .

Naturally, we can get another plan in a symmetrical way:
πeName(σNN (πEID,eName(R′

2 �� D(R2)) �� R′
1)).

Expressing and Optimizing Similarity-Based Queries in SQL 473

As another possibility, we may continue the above transformation as follows (pick-
ing up from the second to the last step):
πeName(R

′′
1 �� R′′

2)

≡ πeName(πEID,eName(R
′
1 �� D(R1)) �� σNN (R′

2))

≡ πeName(πEID,eName(R
′
1 �� D(R1)) �� πEID,eName(R

′
2 �� D(R2)))

//same as done to σNN (R′
1)

The resulting expression corresponds to the following query plan: We first use an index-
based algorithm to discover the nearest neighbor of s in the pattern set schoolSet , as
well as the nearest neighbor of p in the pattern set pharmacySet . We then join the re-
sults with R′

1 and R′
2, respectively, to find the corresponding events, and finally obtain

the common events by a join.
In the above plans, we have only used Rules 1 and 7. For other queries, e.g., pattern

sets IDs are from a relation instead of being a constant, other rules will be useful.

3.3 Optimization Procedure

From the example given in the beginning of the section, we can see that a good execu-
tion plan is more likely to combine the use of both NN-UDPs and NN-OPs. Even though
the equivalence rules of the previous subsection, together with the standard equivalence
rules from the relational algebra, can be used to search through all the execution plans,
it is obviously a very large space for an exhaustive search.

Instead of using exhaustive search, we give an optimization algorithm, called the
UdpOp algorithm. The major steps of the UdpOp algorithm are outlined in Figure 5.

Step 1: For each subset of NN-UDPs, do the following:

- convert NN-UDPs in the subset to NN-OPs;
- push NN-OPs as close to leaves as possible;
- optimize with a traditional method by treating the output of NN-OPs as static relations.

Step 2: For each plan found in Step 1, push join and selection into the NN-OPs, and re-evaluate
the costs. Find the least costly plan from all the resulting plans.

Step 3: Find the execution plan for the NN-OPs in the plan obtained in Step 2.

Fig. 5. Major steps of the UdpOp algorithm

Step 1 of UdpOp is to select a subset of the NN-UDPs to be converted to NN-OPs.
In this step, we enumerate all subsets of the NN-UDPs in a query. We argue this is not
too much overhead since in real applications with similarity-based queries, the numbers
of UDPs should not be too large. In special cases where there are many UDPs, heuristics
may need to be adopted to reduce the search space.

For each possible choice of converting NN-UDP to NN-OP, we push NN-OPs as
much down to the leaves as possible. This is done for two reasons. The first is to give
more flexibility for the traditional optimization algorithms (that deal with UDPs, i.e.,
all the remaining NN-UDPs). The second is that in an evaluation plan, the cost of an
NN-OP does not usually depend where it is performed (there are exception, see below).
We then treat each NN-OP as a static relation and hand over the query to an optimizer.
This optimizer will treat NN-UDP as traditional UDPs.

474 Like Gao et al.

In this paper, we assume the optimization algorithm of [3] is used. Since [3] only
deals with selection-projection-join (SPJ) queries, we will restrict our queries to SPJ
queries as well. The algorithm of [3] treats UDPs as selections and assumes the selec-
tivity and the per-tuple-cost for each UDP, including NN-UDP, are known. For specific
applications, we need to develop corresponding methods to provide such estimates.

In addition to the selectivity and per-tuple-cost of each UDP, we also need to know
the size of each NN-OP since we treat it as a static relation. Furthermore, in the overall
cost of a plan, the cost of deriving the result of the NN-OP should also be known.

Once the plan is obtained from Step 1, we try to push selections and joins into the
NN-OP. The reason to do this is that sometimes, selection and join may reduce the
number of query objects or even the pattern sets to be considered by the NN-OP. In
some cases, the rank and threshold may also be reduced. For each plan obtained, we
need to evaluate the overall cost. Step 2 will select the plan with the least cost.

After Step 2, we are “committed” to the evaluation plan. However, there is still
some chance to refine the overall plan. Since we are dealing with SPJ queries, if the
output of an NN-OP is empty, then the overall query will be empty and we can stop
processing any other NN-OPs and the rest of the evaluation plan. Step 3 is mainly for
this purpose. We assume we have an estimate of how likely an NN-OP will yield empty
result, in addition to its cost. This is of course related to the size of the NN-OP (i.e.,
empty means 0 tuples) but a more specific statistic.

To conclude this section, we summarize the statistics that we need for the UdpOp al-
gorithm: (1) cost per tuple of each NN-UDP, (2) selectivity of each NN-UDP, (3) cost of
each NN-OP, (4) size of the output relation of each NN-OP, and (5) probability of having
empty output of each NN-OP. For different applications, we need to develop different
methods to obtain these statistics. In [7], we provided a method for some streaming time
series cases. Also note, since similarity-based searches are typically very time consum-
ing, we omit the cost of obtaining the statistics and running the optimization procedure
when performance of query evaluation is assessed.

4 Experimental Results

To assess the effectiveness of our optimization algorithm, we implemented the algo-
rithm proposed in this paper in C/C++. In addition, for similarity-based search with
streaming time series, we developed a method to estimate the statistics used by the
optimization algorithm (see [7] for detail). In this section, we present the results of
performance evaluation with our UdpOp algorithm through three experiments. More
detailed experimental results can be found in [6].

All experiments are performed on a desktop box with PIII 1.2GHz CPU and 512M
memory, running Windows XP Professional. Since we use the relative costs to evaluate
the performance, the hardware environment does not make much difference. Because
similarity-based queries are mostly CPU bound in all experiments, we load the data into
the memory in advance and thus only the computational costs are measured.

NN-UDP on streaming time series. A streaming time series is an infinite sequence of
real numbers that continuously arrive at a query system. At each time position T , the
streaming time series takes the form of a finite sequence, assuming the last real number
is the one that arrived at the time position T .

Expressing and Optimizing Similarity-Based Queries in SQL 475

0

0.2

0.4

0.6

0.8

1

1.2

10 20 30 40 50 60 70 80 90 100

Relative Input Size (% of pattern set)

No
rm

al
iz

ed
 C

os
t

Best Pan UdpOp NN-UDP NN-OP

Fig. 6. Optimization comparison for Exp. 1

An NN-UDP (see Section 2.2) may use a streaming time series s as its query object
(i.e., QID). In this case, we assume an implicit positive integer parameter w, and the
NN-UDP is evaluated at each time position T by using the w-suffix of s up to (and
including) time T . Hence, we assume each query containing this kind of NN-UDP need
to be evaluated at each time position T when a new value of s arrives.

For our running example, the streaming time series are school attendance stream
and pharmacy data stream whose data are continuously collected and sent to a query
system3. Queries like those in Examples 1 and 2 will be evaluated each time when new
school attendance and pharmacy data arrive.

Data generation. We use synthetic time series data sets in the experiments. We generate
two types of data: the pattern time series and the streaming time series.

We first use a random-walking function to generate each pattern time series indepen-
dently. The length of each pattern time series is between 50 and 300. Next, we construct
each pattern set by randomly choosing 105 patterns. Finally, we construct the streaming
time series. To form a streaming time series, we choose some patterns from one pattern
set and then concatenate them into one sequence by interpolating a curve between two
successive patterns. In choosing patterns from a pattern set, we follow some predefined
probability distribution so that some patterns appear in the streaming time series more
often than the others. To simulate the real world cases, we also add some white noise
into each constructed streaming time series.

In the following experiments, we run each query multiple times and use the average
cost to measure the performance of each optimization method. In each evaluation, we
first build the estimation models for the statistics that will be used by UdpOp algorithm,
by running the query for 1000 time positions [7]. We then implement different methods
and run the queries for another 500 time positions (called one run).

Experiment 1. In the first experiment, we use the query in Example 2. As discussed
earlier, there are three possible ways to generate the query plan for this query: (1) NN-
UDP: treating UDP as NN-UDP; (2) NN-OP: treating UDP as NN-OP; and (3) UdpOp:

3 We assume these two streaming time series are synchronized.

476 Like Gao et al.

obtaining the plan using UdpOp optimization algorithm. Note that UDP may be treated
as NN-UDP or NN-OP in (3), depending on the statistics.

In the experiment, we vary the size of relation Events so that the number of tuples
that are fed into the UDP varies from 10% to 100% of the size of pattern set schoolSet .
For each case, we execute the query using each of the three plans and measure the cost.
We also measure the cost of the “best plan”, which is obtained by trying all possible
plans and choosing the least-costly one.

The results are shown in Figure 6, which are normalized by the maximum cost for
the respective input sizes, ranging from 5ms (for the “10% of pattern set” case) to 120
ms (the “whole pattern set” case). We can see that both (1) and (2) may result in very
costly plans in some cases while our UdpOp algorithm always achieves good plans.

Experiment 2. In the second experiment, we change the schema of relation Events
to represent more complicated rules. The new schema is (EID, eName, A1, A2, ..., An),
where attribute Ai (1 ≤ i ≤ n) refers to patterns in pattern set seti. We then populate the
Events table and consider the following query for streaming time series d1, d2, ..., dn.

SELECT E.eName
FROM Events E
WHERE NN(‘d1’, ‘set1’, E.A1, K1, TH1)
AND NN(‘d2’, ‘set2’, E.A2, K2, TH2)

...
AND NN(‘dn’, ‘setn’, E.An, Kn, THn)

We consider two independent pairs of stream and pattern set, and hence two UDPs.
We set up the data so that, dependent on the data in the Events table, the near/nearest-
neighbor patterns discovered for one of the two streams may or may not help to narrow
down the scope of the patterns to be considered for the other stream. More specifically,
we generate multiple Events relations by using random subsets of the Cartesian Product
of two sets (each having 105 patterns), one for each of the two Ai columns. The ranks
in both UDPs are NULL and the thresholds are both set to 0.07. Two streaming time
series are randomly chosen from a set of streams.

There are three possible optimization methods for comparison with the UdpOp al-
gorithm, which are, (1) 2-NN-UDP Method: both UDPs are NN-UDPs, (2) 2-NN-OPs
Method: both UDPs are converted into NN-OPs, and (3) 1-UDP/1-NN-OP Method, that
is, we always convert one UDP into NN-OP and keep the other as NN-UDP.

We run this experiment 300 times. For each run, we use one of the randomly gener-
ated Events relations and the randomly chosen streaming time series and continuously
evaluate the query for all 500 time positions. We take the average cost of these 300 runs
as the performance measure for each optimization method. In addition, we also get the
performance of the best plan, the least cost plan obtained by trying all possibilities. The
result is in Figure 7, with all costs normalized by the maximum cost of 15 milliseconds.
From this graph, it is clear that the performance of the UdpOp algorithm is very close
to the best one.

Experiment 3. In this experiment, we use the same setup as for Experiment 2, i.e.,
we use the same schema of relation Events and the same SQL query. In contrast to
Experiment 2, we test the scalability of our algorithm when the number of UDPs goes up
in the following situation. All UDPs deal with the same pattern set but with a different

Expressing and Optimizing Similarity-Based Queries in SQL 477

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Best Plan UdpOp 2-NN-UDP 1-NN-UDP/1-
NN-OP

2-NN-OP

N
o
rm

a
liz

e
d
 C

o
s
t

Fig. 7. Optimization comparison for Exp. 2

2 3 4 5 6
0.2

0.4

0.6

0.8

1

Number of UDPs

N
om

al
iz

ed
 C

os
t

Optimization Method 1 (all as NN−UDPs)
Optimization Method 2 (only 1−NN−OP)
UdpOp Optimization (NN−OP/UDPs)
Best Plan (testing all possible plans)

Fig. 8. Optimization comparison for Exp. 3

stream, and all thresholds are 0.07 and the rank of similarity is 1. Hence, we look for the
pattern in the pattern set that is similar to all the streams. We vary the number of UDPs
from 2 to 6, and set the size of the Events as 20% of the pattern set. We generate the
Events relation such that no value appears twice in the same column. This guarantees
that if we find a nearest neighbor with the evaluation of one UDP (under one column),
then there is only one tuple in relation Events which needs to be fed into other UDPs.
Clearly, in the optimized plan, other UDPs should remain NN-UDPs since only one
tuple needs to be verified, and the ordering of UDPs and which UDP being converted
into NN-OP will determine the performance.

Given the number of UDPs, we randomly pick up the same number of streams. Two
other optimization methods are used for comparison. The first one is to treat all UDPs
as selections, i.e., none of the UDPs are converted to NN-OP. Then we use the algorithm
proposed in paper [3] to obtain a plan. More specifically, we use the estimation models
to find the rank, as defined in [3], for each UDP and then get the ordering among them.
The second optimization method will always convert only one NN-UDP into NN-OP,
which is the one estimated to have the least cost among all possibly converted NN-OPs.

The performance comparison is shown in Figure 8, as the average cost of 210 runs
for each number of UDPs. Again, we normalized all costs by a maximum value that is
roughly 15 milliseconds. We can see that the performance of the plans obtained by the
UdpOp algorithm is close to the best one.

5 Conclusion

In this paper, we introduced a user-defined predicate (UDP) for expressing queries in-
volving similarity searches. We provided an optimization algorithm to derive efficient
evaluation plans. In the (streaming) time series cases, our experiments demonstrated the
good performance of our optimization algorithm.

We mainly focused on the situation where there are only a few query objects (e.g.,
time series and streaming time series). In our examples, we mostly used constants to
represent them. We believe in real applications, this is mostly the case. However, for
applications where the query series are massive, there are opportunities to further opti-

478 Like Gao et al.

mize the queries. For example, when NN-OP is applied to many combinations of query
series and pattern sets, many combinations may not find any pattern within the required
threshold. This finding can be useful to optimize other NN-OPs in the same query. Same
observation applies to the number of pattern sets.

References

1. R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient similarity search in sequence
databases. In FODO, pages 69–84, 1993.

2. Surajit Chaudhuri and Luis Gravano. Optimizing queries over multimedia repositories. In
SIGMOD Conference, pages 91–102, 1996.

3. Surajit Chaudhuri and Kyuseok Shim. Optimization of queries with user-defined predicates.
ACM Transactions on Database Systems, 24(2):177–228, 1999.

4. D. Chimenti, R. Gamboa, and R. Krishnamurthy. Towards an open architecture for LDL. In
VLDB Conference, 1989.

5. C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching in time-
series databases. In SIGMOD Conference, pages 419–429, 1994.

6. L. Gao, M. Wang, X. S. Wang, and S. Padmanabhan. Expressing and optimizing
similarity-based queries in SQL. Technical Report CS-04-06, University of Vermont,
http://www.cs.uvm.edu/csdb/techreport.shtml, March, 2004.

7. L. Gao, X. S. Wang, M. Wang, and S. Padmanabhan. A learning-based approach to estimate
statistics of operators in continuous queries: a case study. In Workshop on Research Issues in
Data Mining and Knowledge Discovery (DMKD), 2003.

8. Joseph M. Hellerstein. Practical predicate placement. In SIGMOD Conference, pages 325–
335, 1994.

9. Joseph M. Hellerstein and Michael Stonebraker. Predicate migration: optimizing queries
with expensive predicates. In SIGMOD Conference, pages 267–276, 1993.

10. Eamonn J. Keogh, Kaushik Chakrabarti, Sharad Mehrotra, and Michael J. Pazzani. Locally
adaptive dimensionality reduction for indexing large time series databases. In SIGMOD Con-
ference, 2001.

11. D. Rafiei and A. Mendelzon. Similarity-based queries for time series data. In SIGMOD Con-
ference, pages 13–25, 1997.

12. N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In SIGMOD Confer-
ence, pages 71–79, 1995.

13. T. Seidl and H.-P. Kriegel. Optimal multi-step k-nearest neighbor search. In SIGMOD Con-
ference, pages 154–165, 1998.

	1 Introduction
	2 SQL/sim
	2.1 Required Relations
	2.2 NN-UDP
	2.3 SQL/sim Examples

	3 Optimizing SQL/sim
	3.1 Near/Nearest-Neighbor Operator
	3.2 Equivalence Rules
	3.3 Optimization Procedure

	4 Experimental Results
	5 Conclusion
	References

