
Supporting Ranking and Clustering as Generalized
Order-By and Group-By∗

Chengkai Li1
†

Min Wang2 Lipyeow Lim2 Haixun Wang2 Kevin Chen-Chuan Chang1

1Department of Computer Science, University of Illinois at Urbana-Champaign
cli@uiuc.edu, kcchang@cs.uiuc.edu

2IBM T.J. Watson Research Center
min@us.ibm.com, liplim@us.ibm.com, haixun@us.ibm.com

ABSTRACT
The Boolean semantics of SQL queries cannot adequately capture
the “fuzzy” preferences and “soft” criteria required in non-traditional
data retrieval applications. One way to solve this problem is to add
a flavor of “information retrieval” into database queries by allow-
ing fuzzy query conditions and flexibly supporting grouping and
ranking of the query results within the DBMS engine. While rank-
ing is already supported by all major commercial DBMSs natively,
support of flexibly grouping is still very limited (i.e., group-by).

In this paper, we propose to generalize group-by to enable flex-
ible grouping (clustering specifically) of the query results. Dif-
ferent from clustering in data mining applications, our focus is
on supporting efficient clustering of Boolean results generated at
query time. Moreover, we propose to integrate ranking and cluster-
ing with Boolean conditions, forming a new type of ClusterRank
query to allow structured data retrieval. Such an integration is non-
trivial in terms of both semantics and query processing. We in-
vestigate various semantics of this type of queries. To process such
queries, a straightforward approach is to simply glue the techniques
developed for ranking-only and clustering-only together. This ap-
proach is costly since both ranking and clustering are treated as
blocking post-processing tasks upon Boolean query results by ex-
isting techniques. We propose a summary-based evaluation method
that utilizes bitmap index to seamlessly integrate Boolean condi-
tions, clustering, and ranking. Experimental study shows that our
approach significantly outperforms the straightforward one and main-
tains high clustering quality.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query processing, Re-
lational databases; H.2.8 [Database Management]: Database Ap-
plications; H.2.3 [Database Management]: Languages—Query
languages
∗This material is based upon work partially supported by NSF
Grants IIS-0133199, IIS-0313260, the 2004 and 2005 IBM Faculty
Awards. Any opinions, findings, and conclusions or recommenda-
tions expressed in this publication are those of the author(s) and do
not necessarily reflect the views of the funding agencies.
†Work partially performed while the author was visiting IBM.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’07, June 12–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-686-8/07/0006 ...$5.00.

General Terms
Algorithms, Performance, Experimentation

Keywords
retrieval, data exploration, ranking, top-k, query processing, clus-
tering, grouping

1. INTRODUCTION
The ubiquitous usage of databases for managing structured data,

compounded with the expanded reach of the Internet to end users,
has brought forward new data “retrieval” scenarios: In new applica-
tions, such as E-commerce or multimedia, users want to find best-
matching tuples over a database, with only “fuzzy” preferences and
“soft” criteria– We refer to this demand of fuzzy relevance over
structured data as data retrieval, to parallel the well-established in-
formation retrieval over unstructured text. While successful in tra-
ditional business environments, SQL-based querying has become
increasingly inadequate for such new scenarios. As an important
first step, many recent works have focused on ranked (or top-k)
queries (e.g., [9, 3, 8, 6, 1, 15, 7, 20, 14]). Toward a systematic sup-
port, while ranking conceptually generalizes Order-By into fuzzy
ordering, this paper aims at generalizing Group-By into “fuzzy”
grouping– or clustering– to form a more complete suite of solu-
tions for data retrieval.

Example 1 (Motivating Scenario: House Search): Consider user
Amy looking for a house in Chicago, from a database House(id,
price, size, zipcode, longitude, latitude, rating). She will consider
houses priced below $300k, and is willing to pay a little more if the
size is large. She would like to consider different areas– She will
accept even more expensive choices if they are near the lakeshore;
but if there is no such choices, she would like to look for better
prices in the suburb. Notice the many “if”s in her preference, which
depend on what the database can offer. Will a SQL-based database,
such as realtor.com, support her “exploration” by querying effec-
tively?

As Example 1 illustrated, data retrieval essentially mandates re-
sult exploration, for users to explore what choices are available in
the database, and how they match the query criteria. We ask: What
functions shall we support for such exploration?

While we want to equip SQL-based querying with such explo-
ration, the answers seem to, interestingly, lie in the design of SQL
itself: With the test of time, SQL has proven to be a well-designed,
compact suite of constructs, balancing both functionality and sim-
plicity. Can we draw inspiration from SQL constructs to support
data retrieval, in particular, to explore query results? For this pur-

127

pose, order-by and group-by both stand out as the pillars for orga-
nizing results– e.g., for our example House relation, we may

group-by zipcode order-by min(price). (S1)

By ordering and grouping on attribute values, RDBMS can organize
results for tabular presentation and report generation.

To begin with, many recent works have attempted to generalize
order-by beyond “crispy” result ordering– For the same syntactic
construct, these efforts seek to generalize the semantics from order-
ing of attribute values to ranking of matching qualities. Therefore,
from ordering to ranking, the generalization boils down to 1) sup-
porting fuzzy scoring functions (instead of only attributes) and 2)
targeting at only top-k (partial) results (instead of total ordering).
For our House example, we may order by some preferred balance
of price, size, and realtor rating, and look for only the top 10 results:

order-by size
price

· rating limit 10 (S2)

Drawing these insights from SQL constructs, as order-by has
been generalized into ranking, as a parallel step toward result ex-
ploration, we propose to generalize group-by, which this paper fo-
cuses on. Just like from ordering to ranking, we believe current
grouping has two major limitations: First, the prerequisite of data
understanding: As a dilemma, while grouping should help users
to learn the data distribution of available choices in the database,
in its current semantics, users must know this “distribution” in or-
der to specify a good grouping scheme– For instance, is group-by
zipcode meaningful? (How if there are 1000 different zipcodes,
thus 1000 groups?) Second, the limitation of equality partition-
ing: Inherited from SQL’s “crispiness,” current grouping semantics
partitions the space only by “identical” values. For instance, is
group-by longitude, latitude meaningful? (As no houses will share
the same coordinates, we should instead group by their proximity.)

Our solution, much like from ordering to ranking, is to generalize
“crispy” grouping to “fuzzy” grouping– or clustering [16, 13]. As a
well-established technique for data exploration, in abstraction, with
input of attributes c1, . . ., cm and a result size of t, clustering will
output t groups, or clusters, that best partition the space according
to how objects are similar in c1, . . ., cm (instead of strict equality
of values). It thus ameliorates the two limitations simultaneously:
For the input specification, users simply specify the desired number
of t clusters, much like the desired result size k in top-k ranking,
and the system will automatically weigh in the data distribution to
generate t clusters. (So even if there are 1000 zipcodes, they will be
grouped into a small number of t clusters.) Further, as the grouping
criteria, clustering will form partitions by data distribution. Similar
objects that do not share strictly identical values in c1, . . ., cm will
still be grouped. (Thus grouping on longitude and latitude will put
together houses in similar locations.)

This clustering, or fuzzy grouping, maybe expressed1 as follows,
with an additional “into t” to indicate the target number of groups
that the fuzziness should achieve. For our example, a user may
want to cluster houses into 5 groups by their location proximity:

group-by longitude, latitude into 5 (S3)

This paper will examine this generalization from grouping to
clustering, for supporting data retrieval with SQL. What should be
the “fuzziness” of grouping– or, what clustering algorithms should
we assume? Ideally, in a comprehensive setting, the system shall
support a set of clustering schemes as operators to choose, and even
allow extensions by, say, external functions. However, as a first step
1We focus on the generalization of “functionality” and not syntax.
The same can be expressed with OLAP functions. See footnote 2.

to start with, and to focus on the essence of the problem, this pa-
per will study k-means as the clustering scheme, because it is the
most well-known and widely applicable partitioning-based cluster-
ing method [13] and is by far the most popularly used method in
scientific and industrial applications [2]. Our framework can apply
other distance-based clustering methods, as long as the distance or
similarity functions are based on the proximity of attribute values.
Section 4.2 will discuss such extensions. Thus, in a more general
setting, to specify our choice of clustering, we may express it as:

group-by k-means(longitude, latitude) into 5 (S′
3)

Putting together, in a SQL-like syntax, we may express the com-
plete suite of clustering and ranking in the following form.

select . . .
from T1, . . . , Ts

where B(b1, . . . , bh)
group by c1, . . . , cm into t
order by F(r1, . . . , rn) limit k

In this complete form, our generalization boils down to two chal-
lenges: First, for the context of SQL, as SQL has been well de-
veloped for managing structured data, our clustering must inte-
grate with the core Boolean constructs. What does such integration
mean? As group-by is meant to execute after the where clause
with Boolean selection or join, our clustering should similarly par-
tition with respect to the “dynamic” result σB(T1×. . .×Ts). That
is, the dynamic Boolean result, instead of the static tables, is the
“population” whose data distribution will define the clusters. How
can we execute clustering efficiently after such dynamic filtering?

Second, for our objective of data retrieval, as both pillars of re-
sult exploration, clustering and ranking must be seamlessly inte-
grated. What does such integration mean? In standard SQL the
combination of group-by and order-by will lead to ordering among
groups (thus S1 will return groups ordered by their minimal prices).
While such order-among-groups is a useful semantics, we believe
it is equally (if not more) important to support order-within-groups.
In data retrieval scenarios, as evident from similar functions for text
retrieval (e.g., Web search), when clustering and ranking are com-
bined (e.g., vivisimo.com), clustering will partition the results into
alternative groups, and ranking then orders answers within each
group. In fact, for crispy group-by, this order-within-groups se-
mantics can be realized in OLAP functions2 [30], which was in-
troduced in SQL-99 and supported by major RDBMSs. Thus, for
combining ranking and clustering, we consider different groups as
equal alternatives, and only those answers within the same group
are compared in ranking. For example, we may cluster houses by
areas (as in snippet S3) and only rank among those in the same area
by prices and sizes (as in S2). Can we support such integration of
ranking “within” clustering efficiently?

In this paper, we propose to support clustering and ranking to-
gether, with the order-within-groups semantics, as a generalization
of group-by and order-by to support fuzzy data retrieval applica-
tions. Our solutions are built upon summary-based clustering and
ranking using dynamically constructed data summary, incorporat-
ing Boolean conditions at query time. We have implemented this
framework by utilizing bitmap index to construct such summary
on-the-fly and to integrate Boolean filtering, clustering, and rank-
ing. Our results show that this approach significantly outperforms
a straightforward approach that is available in current database sys-
tems. In summary, this paper makes the following contributions:
• Concept: Generalizing Group-By for Fuzzy Grouping. We

propose to support clustering with SQL as a generalization for
2In DB2, rank() over (partition by attr1, . . ., attrm order by v)
groups tuples by attri and orders tuples in each group by v.

128

group-by, parallel ranking for order-by. Moreover, to the best
of our knowledge, ours is the first in the literature to propose the
integration of fuzzy grouping and ranking in relational databases.
• Framework: Summary-based Processing. We develop on-

the-fly summary construction and summary-based clustering and
ranking, for efficient query support.
The rest of the paper is organized as follows. We review the

related work in Section 2. In Section 3, we define a new type
of queries, explore its semantics in supporting fuzzy ranking and
grouping, and discuss the challenges in processing such queries.
We give an overview of our solutions in Section 4. We further
present the detailed data structure and algorithms in Section 5 and
optimization heuristics in Section 6. The experimental results are
discussed in Section 7. Section 8 concludes the paper.

2. RELATED WORK
Clustering has been extensively studied for years in many ar-

eas including machine learning, pattern recognition, and data min-
ing [16, 13]. However, in typical data mining setting, analytical
tasks such as clustering is more or less an infrequent or one-shot
operation, over a static dataset, and performed by a small number
of analysts. In contrast, the fuzzy clustering engaging us in this
paper is a day-to-day operation, upon dynamic results of Boolean
conditions, over different clustering attributes, and requested by a
large number of users. Therefore our focus is to efficiently support
such on-the-fly clustering and yet maintain high quality of cluster-
ing. Moreover, we integrate clustering with Boolean filtering and
ranking. The framework proposed in this paper is not aiming to re-
place the existing clustering algorithms. Instead, we simply adopt
existing algorithms and focus on how to cluster over data summary
dynamically constructed.

Various clustering algorithms exploited summary of data during
clustering, e.g., [31, 11]. In particular, there are grid-based cluster-
ing and data mining algorithms such as STING [27] and WaveClus-
ter [25]. They pre-compute and store the grids beforehand. Our
summary-based clustering shares the same insight of clustering by
the unit of bucket instead of individual tuple. However, we em-
phasize on the need in our target applications to construct the grid
on-the-fly for coping with dynamic Boolean conditions, clustering
attributes, and ranking attributes that are specified at query time,
and to integrate filtering, clustering, and ranking altogether.

Ranking (top-k) query has gained great interests in the database
field recently (e.g., [9, 3, 8, 6, 1, 15, 7, 20, 14]). Note that the top-
k processing techniques in the literature may not be applicable in
our scenarios. It is well known that top-k algorithms are optimized
for small k. As k increases, their performances degrade quickly and
become worse than straightforward materialize-then-sort approach.
In our case, we must get the top k tuples within each cluster, some
of them may be globally ranked low. For example, the houses of
one region in general may be more expensive and smaller than the
ones in other regions, therefore even the top houses in this region
are ranked quite low globally. That does not mean the houses in
the region are bad choices. In fact, the reality may be the opposite
since, say, that region is safe and scenaric. Using top-k algorithms
under this situation will not be beneficial.

Note that an idea of using candidate buckets for pruning was
applied in answering top-k queries [6]. However, they rely on static
pre-collected multi-dimensional histogram, while we utilize data
summary that is dynamically constructed using bitmap index.

An automatic method for categorizing query results (instead of
clustering) is proposed in [4]. They perform categorization as post-
processing after Boolean query results are obtained, with the focus

on minimizing users’ navigation overhead. They do not consider
integration with ranking either. The idea of categorizing database
query results is also exemplified by the products from Endeca.

The idea of combining clustering and ranking has been proposed
for organizing the results of Web search engines (e.g., vivisimo.com),
as well as for information retrieval systems [19]. To the best of our
knowledge, our work is the first to investigate the problem in the
setting of RDBMS, which has intrinsically different data and query
processing model and thus presents significant new challenges.

3. OUR PROPOSAL: CLUSTERING +
RANKING IN DATABASE QUERIES

3.1 The ClusterRank Query
In this paper, we introduce a new type of ClusterRank query.

The semantics of such a query is to conceptually perform the fol-
lowing three steps. Note that we ignore less important operations
in our context such as attribute projection.

• Filtering: Upon a base relation or the Cartesian product of base
relations, we apply Boolean function B, resulting in a relation of
qualifying tuples, σB;
• Clustering: The tuples in σB are partitioned into t clusters,

based on the clustering attributes c1, . . . , cm;
• Ranking: A scoring function F defined over a set of ranking

attributes R assigns a ranking score F(R)[t] to each tuple t.
Within each cluster, the top k tuples with the highest scores (or
all if there are less than k tuples in the cluster) are returned. 3

In relational database, currently no SQL syntax can support such
queries, nor can OLAP functions express our query. Still, since
OLAP functions support ranking within a group or a partition, the
closest way to express our semantics maybe the following:

select . . . , rank() over (partition by k-means(t, c1, . . . , cm)
order by F(r1, . . . , rn)
) as score rank

from T1, . . . , Ts

where B(b1, . . . , bh)
when score rank <= k

Besides the fact that OLAP does not support functions such as
k-means(t, c1, . . . , cm) in the partition by clause, there is a funda-
mental difference between the task achieved by the above query and
the goal we want to achieve. The query treats k-means(t, c1, . . . , cm)
as a black box, which prevents the system from optimizing the
query. Instead, we focus on integrating the ranking and the clus-
tering process in a tight manner, so that we can minimize the cost
of the ClusterRank query.

In essence, our semantics is based on the concept of fuzzy clus-
tering. We require that partitions have fuzzy boundaries, and we
specify the total number of clusters, as in K-means. Borrowing the
syntax of SQL we denote fuzzy clustering by “group by . . . into
. . .”, and our goal is to integrate it with the “order by . . . limit . . .”
clause. The sketch of such a query is shown below 4.

select . . .
from T1, . . . , Ts

where B(b1, . . . , bh)
group by c1, . . . , cm into t
order by F(r1, . . . , rn) limit k

3When there are ties in scores, an arbitrary deterministic “tie-
breaker” can determine an order, e.g., by unique tuple IDs.
4For simplicity, we assume order by asc|desc uses descending or-
der as default, although ascending is the default in some systems.

129

More formally, a ClusterRank query Q is a SPJ query aug-
mented with clustering and ranking conditions. The query consists
of the following tables, attributes, functions, and constants.
• T : a set of tables {T1, . . . , Ts};
• B: a Boolean function B over a set of attributes b1, . . . , bh. The

Boolean function B can be a complex Boolean condition such as
conjunctions and disjunctions of sub-conditions;
• c1, . . . , cm: a set of clustering attributes
• t: the number of clusters;
• F : a ranking function (a.k.a. scoring function) over the ranking

attributes r1, . . . , rn;
• k: the number of top tuples to retrieve within each cluster.

We want to point out that clustering, by nature, is a fuzzy and
unstable operation, as different algorithms and configurations on
the same data will generate different clusters. Therefore on the
one hand, in contrast to the deterministic semantics of conventional
database queries, a ClusterRank query may generate different an-
swers in each run. On the other hand, such non-determinism is
consistent with our goal of enabling fuzzy data retrieval and explo-
ration, and we believe sacrificing the crispness of queries is worthy.

Note that the above syntax is for illustrating our concept only, as
the use of SQL’s group by has many restrictions. The main reason
is that when group by is present, the columns in order by must
either appear in the columns of group by, or be some aggregate
functions. The meaning of such a query is to order the groups based
on some grouping attributes or aggregate values over the groups.
Moreover, we will not be able to specify the number of clusters
desired, and group by does not allow function either.

Up till this moment, we have assumed only one semantics for
ClusterRank queries, that is, returning top k tuples within each
cluster. (Call it global clustering/local ranking.) However, we may
extend our query model to embrace a richer set of semantics, tai-
lored for various application needs. One example is local cluster-
ing/global ranking, where the clustering is only performed over the
global top k tuples instead of σB. Another example is global clus-
tering/global ranking, where within each cluster, only those tuples
that belong to the global top k (instead of local top k) are returned.
Moreover, we may further allow ranking of the clusters by aggre-
gate functions. While it is very interesting to study these alternative
semantics and corresponding techniques for processing queries, we
focus on global clustering/local ranking in this paper.

3.2 Challenges: The Problems with
a Straightforward Approach

Literally following the semantics in Section 3.1, we obtain a
straightforward approach for evaluating ClusterRank queries. That
is to, (1) materialize intermediate Boolean results σB; (2) cluster
σB; (3) sort all the tuples within each cluster; and (4) return the top
k tuples in each cluster.

However, such materialize-cluster-rank approach is clearly an
overkill due to the fact that it clusters and ranks all Boolean re-
sults although we only need the top k in each cluster. It can thus
be very inefficient. Materializing σB itself can be expensive, espe-
cially with joins. The cardinality of σB can be large when Boolean
conditions are not selective. As a costly procedure, clustering such
a large σB is expensive and may take multiple iterations. Sorting
the tuples in each cluster further adds to the overhead. Moreover
the tuples may be dumped out and read in many times, between
materializing σB and clustering, during the iterations in clustering,
and for sorting them. All these result in significant disk I/O cost.

The high overhead of materialize-cluster-rank can seriously im-
pact the usefulness of ClusterRank queries. It may be acceptable

if the query was only one-shot, where the clustering and ranking
results, or at least σB, can be even materialized beforehand. This
is clearly not the case in our target applications (e.g., house search
in Example 1), where users on-the-fly specify all kinds of Boolean
conditions, form clusters upon different attributes, and apply dif-
ferent ranking criteria over different ranking attributes.

4. FRAMEWORK: OVERVIEW
In this section, we first give a high-level overview of our ap-

proach (Section 4.1), then specify the data and query model and
assumptions (Section 4.2), and finally briefly introduce the back-
ground on bitmap index (Section 4.3).

4.1 Our Approach: Summary-Based ClusterRank
The materialize-cluster-rank approach in Section 3.2 is very costly

since it involves a large amount of tuple-based operations. For
clustering, the approach goes through every tuple and assigns it
to its closest cluster, for iterations until the algorithm converges.
For ranking, it computes the score of each tuple and sorts all the
tuples in each cluster. Obviously, it obtains the clustering and rank-
ing results for each tuple. However, the query requests only a small
portion of the tuples processed, i.e., the top k within each cluster.
A natural question to ask is: To reduce the cost in processing each
tuple individually, can we process at a “coarser” level?

Using appropriate data summary instead of all tuples in both
clustering and ranking is our answer to this question. Below we
outline the summary-based ClusterRank approach. For cluster-
ing, with any distance-based method, if two tuples are close enough
to each other, it is natural to assign them to the same cluster. In our
approach, we use a grid-based data summary to put similar tuples
into the same “bucket” and then cluster at the bucket-level. To be
more specific, we perform partitioning (or binning) on each clus-
tering attribute. The intersection of the bins over the clustering at-
tributes gives us a summary grid with buckets. If two tuples fall into
the same bucket (i.e., the same bin along each clustering attribute),
we can consider them the “same” tuple, i.e., inseparable. Thus a
bucket is the smallest unit in our clustering. As long as the bucket
size is appropriate, the quality of clustering on the buckets is com-
parable to that on the original tuples. However, the bucket-level
clustering is much more efficient than the tuple-level one, since the
number of buckets is much smaller than the number of tuples.

For ranking, we can use a summary grid for efficient processing
as well. For each cluster, the grid for the tuples in the cluster is con-
structed over the ranking attributes. For the tuples in each bucket,
the upper-bound and lower-bound of their scores can be computed
based on the boundaries of the corresponding bins on individual at-
tributes. The bounds enable us to prune those buckets that do not
contain any of the top k tuples. The top k in the unpruned candidate
buckets are guaranteed to be the top k among all the tuples.

The clustering and ranking operate on two orthogonal summary
grids built over clustering and ranking attributes, respectively. Note
that the grids are query dependent since different queries may have
different clustering and ranking attributes. Thus how to efficiently
construct the grids on-the-fly at query time is one big challenge.
Also, the clustering and ranking are on the results of Boolean con-
ditions, thus we must integrate the Boolean filtering, clustering, and
ranking in an efficient way.

We use bitmap indexes to meet the challenge and the integration
goal. A bitmap index uses one vector of bits to indicate the mem-
bership of tuples for each value or each value range on an attribute.
By intersecting the bit vectors for the bins over the individual clus-
tering attributes, we construct the summary grid for clustering. The
grid for ranking is constructed similarly. In summary, the bit vec-

130

tors serve as the basic unit in unifying Boolean filtering, clustering,
and ranking through the following steps: (1) Bit vectors are used
to process the Boolean conditions, (2) The resulting bit vectors are
used in building the summary grid for clustering, (3) Clustering is
performed on the grid, (4) The resulting bit vectors corresponding
to each cluster are used in constructing the summary grid for rank-
ing, and (5) Ranking is performed within each cluster.

4.2 Data and Query Model
We assume the tables have a snowflake-schema, consisting of

one fact table and multiple dimension tables. There are multiple
dimensions, each of which is described by a hierarchy, with one
dimension table for each node on the hierarchy. The fact table is
connected to the dimensions by foreign keys. The tables on each
dimension are also connected by keys and foreign keys. As a spe-
cial case of snowflake-schema, star-schema has only one table on
every dimension, thus no hierarchy.

With respect to the ClusterRank queries in Section 3.1, we
make the following assumptions on the Boolean, clustering, and
ranking conditions.
• B(b1, . . . , bh): The Boolean condition consists of conjunctive

key and foreign-key joins and range selections, including two-
side range selection (e.g., 10≤a AND a<20, or 10≤a<20),
one-side range selection (e.g., a≤20), and equality selection (e.g.,
a=10). Both sides of the two-side selection condition can be ei-
ther open-end or closed-end. Note that one-side and equality
selections are extreme cases of two-side selection.
• c1, . . . , cm: The clustering attributes are all numerical attributes.

We assume a K-means clustering algorithm. Note that the summary-
based approach can be applied to other distance-based cluster-
ing algorithms, as long as the distance function is based on the
proximity of attribute values (thus the insight of considering the
tuples in the same bucket inseparable is applicable). The only
difference observed by the clustering algorithms is that the buck-
ets instead of real tuples are clustered. Therefore the number of
tuples in the buckets, or their weights, must be taken into consid-
eration. The algorithms can be simply adjusted to consider such
weights [31]. In general, applicable algorithms can be supported
as clustering operators to choose, or even registered as external
functions. The algorithms may require parameters such as stop-
ping criteria and distance functions (e.g., Euclidean or Manhat-
tan distances). These parameters can be specified through con-
figuration settings in database systems.
• F(r1, . . . , rn): The ranking function is monotonic over numer-

ical ranking attributes, as commonly assumed in ranking query
processing [9]. Without losing generality, in this paper we focus
on the weighted-sum, a typical monotonic function. Note that
our approach in fact is valid for any monotonic ranking function.

Under these assumptions, the sketch of the resulting simplified
query is shown below.

select *
from T1, . . . , Ts

where v1
1 ≤ b1 ≤ v2

1 and . . . and v1
p ≤ bp ≤ v2

p

and bp+1 = bp+2 and . . . and bh−1 = bh

cluster by c1, . . . , cm into t
order by w1×r1 + . . . + wn×rn limit k

4.3 A Review of Bitmap Index
Bitmap index [22, 24] is an efficient indexing structure in OLAP

and decision support applications. The usefulness of bitmap index
has been realized and it is implemented in commercial database

engines. The bitmap index over an attribute consists of a set of bit
vectors, one vector per unique value of the attribute. The length
of each bit vector equals the number of tuples, i.e., the cardinal-
ity of the indexed relation. Regarding the bit vector for a value v
on attribute a, its ith bit is set (i.e., 1) if the ith tuple of the rela-
tion has value v on attribute a, otherwise 0. Bit-wise operations
on bit vectors such as AND, OR, XOR, and NOT are very effi-
cient and can be even supported by architecture features. Therefore
complex selection queries can be answered efficiently by bitmap
indices. Moreover, typical aggregate values such as COUNT can
also be efficiently obtained.

Building one bit vector per attribute value makes the storage and
maintenance cost of bitmap index prohibitive when high-cardinality
attributes are indexed. To address this problem, various encoding
schemes for bitmap index are proposed in the literature, e.g., [5,
29]. For example, instead of using one bit vector for each unique
attribute value, a vector can be built for a value range, i.e., the par-
titioning or binning mentioned in Section 4.1.

5. REALIZATION: DATA STRUCTURE
AND ALGORITHMS

Building on the insights provided in the overview (Section 4.1),
we present the detailed algorithms in this section. In Section 5.1,
we first give a formal description of summary grid, and show how
to construct the grid using bitmap index. We then introduce the
summary-based algorithms for clustering (Section 5.2.1) and rank-
ing (Section 5.2.2). To simplify the discussion, our discussion first
focuses on single table queries without Boolean conditions. In Sec-
tion 5.2.3 we investigate how to extend our framework to incorpo-
rate selection and join conditions.

5.1 Data Structure: Building Summary Grids
Consider a relation T . A partitioning attribute a over T has a

set of disjoint ranges that partition the value domain of a. More
formally, a has y partitioning points {a1, . . . , ay} and two spe-
cial endpoints a0=mina and ay+1=maxa. The endpoints give the
domain of a. That is, [mina, maxa) subsumes the a values of
all the instances in T . The partitioning points and endpoints to-
gether define y+1 ranges over a, that are ranges={range0, . . .,
rangey}, where rangei=[ai, ai+1). Given a set of x partition-
ing attributes A={a1, . . . , ax}, their partitioning ranges determine
a grid G(T ,A,{ranges1, . . ., rangesx}). 5 The grid partitions the
multi-dimensional space over A into z=

Q

i
(yi+1) buckets B={B1 ,

. . ., Bz}
6, where each bucket is given by the ranges over A, one

range per attribute. More formally, the subscription of a bucket is
determined by the subscriptions of the corresponding ranges. That
is, Bid=<rangeid1

1 , . . ., rangeidx
x > = <[aid1

1 , aid1+1
1), . . ., [aidx

x ,
aidx+1

x)>, where id =
Px−1

i=1 (idi ×
Qx

j=i+1(yj + 1)) + idx. A
bucket in the grid thus represents the intersections of the corre-
sponding ranges. By partitioning the multi-dimensional space, the
grid also partitions the tuples of T into the z buckets. That is, Bid

= {t|t ∈ T
V

t.ai ∈ [aidi
i , aidi+1

i), ∀i}. A summary grid SG has
|Bid|, the cardinality (i.e., the number of tuples) of each Bid in G.

Example 2 (Summary Grid): Figure 1 shows a grid over 10 tu-
ples t1, . . . , t10 by partitioning attributes {a, b}. The ranges on a
and b are rangesa = {[0, 3), [3, 6), [6, 9)} and rangesb = {[0, 3),
[3, 6), [6, 9)}. There are 9 buckets, B0, . . . , B8. The ID of each tu-
5We will often use the simplified notation G(T, A) when there is
no need to emphasize the ranges in the context.
6For the ease of presentation, we abuse the notation B to denote
buckets, although B denotes Boolean conditions in Section 3 and 4.

131

vecb
2

vecb
0

vecb
1

veca
0 veca

2veca
1

7

2

4

6

9
3

1

5
810

0011001000 1100110011 0000000100

1000100101

0001001000

0110010010

0 3 6 9
0

3

6

9

b

a
B0 B3 B6

B1 B4 B7

B2 B5 B8

Figure 1: Summary Grid.

ple is shown inside its bucket. For instance, B5=<range1
a,range2

b>
= <[3, 6), [6, 9)>. It has 3 tuples (t1, t5, t10).

To construct a summary grid over a relation T by a set of parti-
tioning attributes A, we may simply go through all the tuples in T .
In other words, we fully scan T if T is a base table or fully material-
ize T if T is the (join) query result over base table(s). As motivated
in Section 3.2, our goal is to avoid such materialize-cluster-rank
approach. We thus propose a novel method to construct summary
grids by intersecting bitmap index. This method not only is effi-
cient in building the summary grids, but also benefits the clustering
and ranking operations based on the grids.

Given a set of partitioning attributes A=a1, . . . , ax, we require
the existence of a bitmap index Ii over each ai, which contains
yi+1 bit vectors {vec0

i , . . . , vecyi
i }, corresponding to the yi+1 ranges

over ai, rangesi. Each vector vecj
i is a sequence of |T | bits, where

the k-th bit is 1 if the value of attribute ai in the k-th tuple of rela-
tion T is within rangej

i , the (j+1)-th range of ai, otherwise 0.
As a bucket in the summary grid represents the intersections of

the corresponding ranges, we can obtain the members in a bucket
by intersection (bit-and operation, i.e., &) of the bit vectors for the
ranges. To be more specific, consider a bucket Bid = <rangeid1

1 ,
. . ., rangeidx

x >, we aim to construct a bit vector vecBid
that con-

tains |T | bits, where the k-th bit is 1 if the k-th tuple of T belongs
to the bucket Bid, otherwise 0. It is thus obvious vecBid

= vecid1

1

& . . . &vecidx
x . The set bits (i.e., 1 bits) in vecBid

give the IDs
of the tuples that fall in the bucket. Moreover, it is easy to obtain
the cardinality of the bucket Bid by counting the number of set bits
(bit-count operation, i.e., #) in the resulting vector vecBid

. That
is, #vecBid

=|Bid|.

Example 3 (Constructing Summary Grid): Continuing with Ex-
ample 2 and the grid in Figure 1, we obtain the members in each
bucket by intersecting the corresponding bit vectors over attributes
a and b. For instance, vecB5

= vec1
a & vec2

b = 1100110011 &
1000100101 = 1000100001. The 1st, 5th and 10th bits in vecB5

are set, indicating that B5={t1, t5, t10}.

5.2 Algorithms
5.2.1 Summary-Based Clustering

With the summary grid, we are able to cluster much more effi-
ciently. The key idea is to cluster the buckets in data summary and
assign the tuples in the same bucket to the same cluster.

Given a set of tuples T to be clustered and the clustering at-
tributes C={c1, . . . , cm}, we obtain the summary grid SG(T,C) us-
ing C as the partitioning attributes. Associated with each bucket
is a virtual point, located at the center of that bucket. We approxi-
mate the tuples in the bucket as a set of identical tuples at the virtual
point, with the number of identical tuples equaling the cardinality
of the bucket. Such approximation is based on the intuition that the

Procedure
1: choose k virtual tuples as the initial cluster centroids;
2: repeat
3: assign each virtual tuple to its closest cluster, with weight n,

as if n identical copies are assigned into the same cluster;
4: update the centroid of the clusters;
5: until the clusters converge;

Figure 2: Weighted K-means Algorithm.

tuples inside the same bucket are close enough to each other if the
grid is fine-grained enough, so that their differences can be ignored
without introducing significant impacts to the clustering results.

We apply clustering on the virtual points. The algorithms are
similar to the conventional clustering algorithms, except that the
algorithms must take into consideration the weights of the virtual
points, where the weight of a virtual point is the cardinality of the
corresponding bucket. For instance, in the weighted K-means al-
gorithm (Figure 2), when the virtual point of a bucket with n tuples
is inserted into a cluster, the centroid of the cluster is updated as
if n identical points are inserted. Note that such simple weighted
K-means extension has been used in various data mining and ma-
chine learning applications [17, 21], although the “weight” in their
situation has different meaning.

With such adaptation, the algorithm continues for multiple rounds,
as centroids are updated and virtual points are reassigned, until the
clusters converge. At the end, the virtual points (i.e., the buck-
ets and thus the corresponding original tuples) are grouped into t
clusters. The union (bit-or operation, i.e., |) of the vectors for the
buckets in the same cluster gives us the members in that cluster.

Example 4 (Weighted K-means): Continue our running example
in Figure 1. Consider the case when we partition the 10 tuples
into 2 clusters, using a and b as the clustering attributes. Suppose
at the beginning we choose <4.5, 7.5> (the virtual point of B5)
and <1.5, 1.5> (the virtual point of B0) as the initial centroids
of cluster1 and cluster2, respectively. Then the virtual points
of all the buckets are inserted into their closest clusters. Suppose
virtual point <4.5, 7.5> with weight 3 (since there are 3 tuples in
B5) is inserted into cluster1 first. Later <7.5, 7.5> with weight
1 (the virtual point of B8) is inserted into cluster1. The centroid
of cluster1 is changed to (5.25, 7.5), because 5.25 = (4.5 ∗ 3 +
7.5)/(3 + 1), 7.5 = (7.5 ∗ 3 + 7.5)/(3 + 1).

Suppose, when the clustering algorithm in Figure 2 ends, i.e.,
the clusters converge, the two clusters are cluster1={B5, B8} and
cluster2={B0, B1, B3}. The union of vecB5

and vecB8
thus gives

us the members of cluster1. That is , veccluster1
= vecB5

| vecB8

= 1000100001 | 0000000100 = 1000100101. Therefore cluster1

contains 4 tuples, t1, t5, t8, and t10. The members for cluster2

can be similarly obtained, as veccluster2
=0111011010.

Compared with clustering the original tuples, the summary-based
clustering has clear advantages, as only one virtual point is needed
for a large number of tuples in the same bucket. The number of vir-
tual points can be much smaller than the number of original tuples.
This reduction of data size saves not only the CPU cost in assigning
tuples to clusters, but also more importantly the I/O cost in scan-
ning the tuples from base tables or intermediate relations. More
importantly, such a summary-based method allows us to integrate
clustering and ranking seamlessly, as we shall see in Section 5.2.2.

5.2.2 Summary-Based Ranking
The structure of summary grid can be used in ranking as well.

The essence of the idea is that we can prune most of the tuples
that are bound to be outside of the top k tuples and zoom into the

132

vecd
2

vecd
0

vecd
1

vecc
0 vecc

2vecc
1

0000001000 0000010000 0100000010

0000001000

0101000000

0000010000

0 10 20 30
0

10

20

30

d

c
B0

B1

B2

40

40

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13

B14

B15

vecc
3

0011000000

vecd
3

0010000010

7

4

3

2

6

9

Figure 3: Summary-Based top-k Ranking.

candidate tuples, based on the upper-bound and lower-bound scores
of the tuples within each bucket. For a bucket, such bounds are
derived from the corresponding ranges of the partitioning attributes
on the bucket. The details are given below.

Given a set of tuples T to be ranked and the ranking function
F over the ranking attributes R={r1, . . . , rn}, we obtain the sum-
mary grid SG(T,R) using R as the partitioning attributes. The bit
vector for each bucket in the grid is given by intersecting the bit
vectors corresponding to the ranges on the ranking attributes. The
resulting vectors give us the tuple IDs in each bucket. Moreover,
by counting the set bits in a vector, we obtain the cardinality of the
corresponding bucket.

In addition to the cardinality, we can obtain the upper-bound
and lower-upper scores for tuples in each bucket. As mentioned
in Section 4.2, we focus on ranking functions that are monotonic
with respect to the ranking attributes. Therefore, given a bucket,
the highest (lowest) possible score of the tuples in that bucket is
reached when the values of ranking attributes are equal to the right
(left) endpoints of the corresponding ranges on these attributes.
More formally, given Bid=<rangeid1

1 ,. . .,rangeidn
n > =<[rid1

1 ,
rid1+1
1), . . ., [ridn

n , ridn+1
n)>, the upper-bound score for tuples

in Bid is upperBid
=F(rid1+1

1 , . . ., ridn+1
n) and the lower-bound

score is lowerBid
=F(rid1

1 , . . ., ridn
n). That is, F [t]=F(t.r1, . . .,

t.rn) ∈ [lowerBid
, upperBid

), ∀t ∈ Bid.

Example 5 (Upper- and Lower-Bounds for Buckets): Continuing
with our running example, suppose we rank the 6 tuples of cluster2

in Figure 1 and obtain the top 2 tuples, with the ranking function
c+d. Figure 3 illustrates a summary grid for the tuples in cluster2,
using the ranking attributes c and d as the partitioning attributes.
For the grid, rangesc={[0, 10), [10, 20), [20, 30), [30, 40)}, and
rangesd={[0, 10), [10, 20), [20, 30), [30, 40)}. Thus there are
16 buckets. For instance, B13=<range3

c, range1
d> = < [30, 40),

[10, 20)>. The scores of the tuples in B13 are bounded by [30 +
10, 40 + 20). That is, lowerB13

=40 and upperB13
=60. Similarly

we can obtain the bounds for other buckets.

Based on the upper-bounds and lower-bounds of the buckets, we
can derive a set of candidate buckets that are guaranteed to con-
tain all the top k tuples in the grid. Correspondingly the rest of the
buckets can be safely pruned as the tuples in these buckets are guar-
anteed to be ranked lower than top k. By performing union (|) of
the vectors for the candidate buckets, we can thus retrieve tuples in
the candidate buckets to obtain their exact scores. The top k tuples
in these candidate buckets form the top k tuples in the grid as well.
The intuition is demonstrated in the following example.

Example 6 (Pruning Based on Bounds): The upper-bounds for the
buckets in the non-shaded region of Figure 3 are at most 50. Note
that the lower-bounds for buckets B11 and B15 are at least 50 and

Procedure
/* table: T ; ranking attributes: R; ranking function: F(R);
summary grid: SG(T,R); candidate buckets: B′ */

begin
1: B′ ← φ
2: for each bucket Bi ∈ SG(T,R) do
3: total← 0
4: for each bucket Bj ∈ SG(T,R) do
5: if lowerBj

≥ upperBi
then

6: total← total + #vecBj

7: if total < k then
8: B′ ← B′ ∪ {Bi} /* candidate buckets */
9: vecB′ ← |Bi∈B′vecBi

/* union of the vectors */
10: TB′ ← retrieve tuples whose bits are set in vecB′ /* candidate

tuples */
11: sort TB′ based on F(R)
12: return the top k tuples in TB′

end
Figure 4: Summary-Based top-k Algorithm.

there are already 2 tuples in these buckets. Therefore we conclude
that the tuples in the non-shaded region have no chance to be top 2.
On the other hand, we are not able to obtain the same conclusion
for any of the buckets in the shaded region, which thus constitute
the candidate buckets. Therefore we union the vectors of those
non-empty candidate buckets, resulting in veccandidate=vecB11

|
vecB13

| vecB15
= 0011000010. Thus the candidate tuples are t3,

t4, and t9. We retrieve these tuples by random I/O access and iden-
tify t3 and t9 as the top 2 answers in cluster2.

The detailed algorithm for ranking is shown in Figure 4. For-
mally, we prove both the correctness and the optimality of the algo-
rithm, i.e., we prune all and only those buckets that can be pruned.

Property 1: With respect to a relation T , a ranking functionF(R),
and k, suppose the top k tuples are Tk. The set of candidate buck-
ets B′ obtained by the algorithm in Figure 4 is both correct: B′

contains all the top k tuples, i.e., Tk ⊆ TB′ ; and optimal: B′ is the
smallest set of buckets that contain Tk, i.e., ∀B′′ s.t. ∃Bi ∈ B

′ and
Bi /∈ B′′, there exists an instance of T s.t. Tk * TB′′ .

Proof: ∀t ∈ T , we use B(t) to denote the bucket which t falls into
in G(T, R). With respect to a bucket Bi, we use T+

Bi
to denote the

set of tuples that belong to the buckets whose lower-bound scores
are higher than or equal to the upper-bound score of Bi, and T−

Bi

to denote the remaining tuples (T−T +
Bi

), i.e., T+
Bi

={t|t ∈ T and
lowerB(t)≥upperBi

} and T−
Bi

={t|t ∈ T and lowerB(t)<upperBi
}.

Correctness: We prove the correctness by proving ∀t∈Tk, B(t) ∈
B′, by contradiction. If B(t) /∈ B′, then |T+

B(t)| > k and ∀t′ ∈
T+

B(t), F(R)[t′]≥lowerB(t′)≥upperB(t)>F(R)[t] 7 (step 4-8 in
Figure 4). This means there exists at least k tuples whose scores
are higher than that of t, thus t /∈ Tk, contradicting t ∈ Tk.

Optimality: Consider any B′′ s.t. Bi∈B
′ and Bi /∈B

′′. Since
Bi∈B

′, we have |T+
Bi
|<k and |T−

Bi
|>|T |−k. Use max(T−

Bi
) to

denote the maximal score among the tuples in T−
Bi

. We prove the
optimality by proving there exists an instance of T s.t. ∃t, t ∈Tk

and B(t)=Bi. One such instance is: ∀t′∈T−
Bi

,F(R)[t′]=lowerB(t′),
and ∃t, B(t)=Bi and F(R)[t]= 1

2
× (max(T−

Bi
) + upperBi

), thus
F(R)[t]>F(R)[t′], ∀t′∈T−

Bi
. According to |T−

Bi
|> |T |−k, t∈Tk.

Since B(t)=Bi and Bi /∈B
′′, therefore Tk*TB′′ .

7Note that upperB(t)>F(R)[t] since the ranges are defined as left-
end closed and right-end open, cf. Section 5.2.2.

133

So far we have assumed that we are given the set of tuples to be
ranked. Intersecting the bit vectors for the ranking attributes results
in a grid over all the tuples, by using the ranking attributes as the
partitioning attributes. However, in our queries, we are required to
obtain the top k results in each cluster. In other words, a grid must
be constructed for the tuples in each cluster. We realize this easily
by intersecting the vectors for the buckets in the aforementioned
grid with the bit vector for each cluster, as obtained in Section 5.2.1.
An example is shown below.

Example 7 (Integrating Ranking with Clustering): Continue Ex-
ample 5 and Figure 3. The summary grid in Figure 3 was obtained
by assuming that the bitmap indices on ranking attributes c and d
are built for the tuples in cluster2 only. While in reality, we can
only build bitmap indices for the whole table T , without knowing
what will be the clusters for users’ dynamic queries. Below is how
we can obtain the summary grid in Figure 3 in reality.

According to Example 4, veccluster2
=0111011010, which gives

the 6 tuples in cluster2. For T , the bitmap index on c has vectors
real vec0

c , real vec1
c , real vec2

c , real vec3
c . Suppose real vec1

c

=1000010000. We intersect real vec1
c with veccluster2

to obtain
the tuples in cluster2 that fall in range1

c. Thus we have real vec1
c

& veccluster2
=1000010000 & 0111011010 = 0000010000, which

is the vec1
c in Figure 3. We can similarly obtain all the vectors, thus

obtain the summary grid in Figure 3.

5.2.3 Dealing with Boolean Conditions
We have assumed that we cluster the original relation T without

considering Boolean conditions. However, the tuples to be clus-
tered are actually the result of Boolean conditions, i.e., σB(T) 8.
Therefore before constructing the summary grid in Figure 1, the
vectors over the clustering attributes must take into consideration
the filtering effect of the Boolean conditions. If a tuple does not
belong to σB(T), the corresponding bits in the vectors must be set
to 0. Bit vector operations smoothly allow such processing of clus-
tering together with Boolean conditions, as explained below.

Selections: Suppose our query has a set of conjunctive range se-
lection conditions v1

1≤b1≤v2
1 , . . . , v1

p≤bp≤ v2
p. We first obtain a

vector vecB, which contains the tuples that satisfy all the selection
conditions 9. Then given the grid on T over the clustering attributes
C, G(T, C), we intersect vecB with each vector for the individual
range on every attribute (the vec0

a, vec1
a, vec2

a, vec0
b , vec1

b , vec2
b in

Figure 1), to obtain the grid on σB(T), before generating virtual
data points and applying the weighted clustering algorithm.

There is a vast literature on using bitmap index to answer Boolean
queries, which contains the details about how to obtain vecB. Briefly,
for each condition v1

i≤bi≤v2
i , given a bitmap index over bi, we can

use bitmap operations to obtain a vector vecv1

i
≤bi≤v2

i
(in simplified

form vecbi
) that contains the tuples satisfying the condition. By in-

tersecting the vectors for all the individual conditions, we obtain
vecB. The bitmap index may need to be encoded in some way
so that a very small number of bitmap operations can allow us to
obtain such vecbi

. There are many encoding schemes in the liter-
ature(e.g., [5, 29, 28]). For instance, some scheme requires only
one bitmap operation for any one-side range selection condition
and some requires two for any two-side condition.

Note that even without using bitmap index to handle the selection
conditions, we can construct the bit vector vecB upon σB(T) that
is obtained using any conventional query processing techniques.
8Here B denotes Boolean conditions, not the buckets in Sec-
tion 5.1- 5.2.2.
9More strictly speaking, the corresponding bits for the satisfying
tuples in T are all set in the vector.

Join Queries: Under the assumption of snowflake-schema made
in Section 4.2, our technique can be easily extended to handle join
queries. Such join queries are so-called “star-joins” under star-
schema, a special case of snowflake-schema. Consider a simple
case with only two tables, where S is the fact table and R is the di-
mension table, j1 is a key of R and j2 is the corresponding foreign
key in S. Due to the foreign key constraint, there exists one and
only one tuple in R joining with each and every tuple s ∈ S. There-
fore for a join condition R.j1=S.j2, virtually all the join results are
in S, with some attributes in S and some other in R. Therefore, for
each attribute a in the schema of R except j1 (since R.j1=S.j2
and we already have j2 in S), we can construct a bitmap index on
a for the tuples in S, even though a is not an attribute of S. In
general, we can follow this way to construct bitmap index for the
tuples in the single fact table, on all relevant attributes in the dimen-
sion tables. Thus the Boolean selection conditions involving these
attributes can be viewed as being applied on the fact table only. A
join query can then be processed like a single table query. More
details about such bitmap join index are in [23].

Example 8 (Handling Boolean Conditions): Continue Example 3
and Figure 1. Suppose our query has a condition 10≤e≤20. By op-
erations on the bitmap index over e, suppose we obtain the vector
vece=1100101000, indicating tuples t1, t2, t5, and t7 satisfy the
condition. After intersecting with the vectors on the ranges, we get
(vec1

a)′=vec1
a & vece=1100110011 & 1100101000=1100100000,

(vec2
b)

′=vec2
b & vece=1000100101 & 1100101000=1000100000.

Thus (vecB5
)′ = (vec1

a)′ & (vec2
b)

′ = 1100100000 & 1000100000
= 1000100000, indicating the new bucket B′

5={t1, t5}.

6. OPTIMIZATION HEURISTICS
In this section, we present the optimization heuristics in summary-

based clustering (Heuristic 1 and 2) and ranking (Heuristic 3).

Heuristic 1– Pruning Underpopulated Buckets in Grid Con-
struction for Clustering:
For clustering on high dimensions, there are potentially huge num-
ber of buckets in the summary grid even if the number of ranges per
attribute is small. However, likely many of the buckets are empty
(if there exist clusters at all). During construction of the grid, we
get rid of the empty intermediate buckets before the vectors from all
the attributes are intersected. More generally, we prune the buckets
whose cardinality is under certain threshold, i.e., the underpopu-
lated buckets that likely will result in many empty buckets if they
further intersect with the remaining attributes. The pruned buck-
ets do not participate in clustering. After clustering the non-pruned
buckets in the grid, we need to use random access to retrieve the
tuples belonging to the pruned buckets. (The IDs of these pruned
tuples are obtained by bit-negation (i.e., ∼) of the union of vec-
tors for all the clusters.) The pruned tuples are then assigned to
their closest clusters, whose vectors are modified by setting the bits
corresponding to the pruned tuples.

Heuristic 2– Dynamically Selecting Partitioning Ranges:
To construct the summary grid in Section 5, the bitmap index on
each partitioning attribute must have a set of bit vectors, one per
range of the attribute values. However, we may not know in prior
what is the appropriate number of ranges, i.e., the number of vec-
tors to build. On the one hand, too many ranges result in too many
buckets in the grid, thus large number of bitmap intersections. On
the other hand, insufficient number of buckets due to too few ranges
result in poor clustering quality or pruning power, for summary-
based clustering or ranking, respectively.

134

We address this problem by starting with large buckets (i.e., small
number of buckets) and splitting buckets dynamically. At the be-
ginning, we start with 2 ranges on each attribute, resulting in 2n

buckets after intersecting the vectors from all the n attributes, among
them x2 buckets are nonempty, thus x2 bucket vectors. If more
ranges are necessary, we split each range into 2 ranges. For each
of the x2 bucket vectors, on each attribute, we intersect the bucket
vector with the 2 vectors for the smaller ranges within the original
range corresponding to the bucket. We stop splitting an individual
bucket if its cardinality is under certain threshold. After this step,
totally we obtain x4 vectors for the smaller nonempty buckets. We
stop the whole splitting procedure when the number of nonempty
buckets is over another threshold.

Such binary splitting of ranges (vectors) can be easily supported
by bitmap encoding scheme such as bit-sliced index (BSI) [24].
A BSI on an attribute a consists of m+1 vectors vec0, . . . , vecm,
where the ith bit of vecj is set if the jth bit is set in the binary rep-
resentation of ti.a. Thus these vectors together form the binary rep-
resentation of the attribute values in all the tuples. Therefore vecm

and∼vecm provide the 2 vectors for the initial 2 ranges on a. Simi-
larly vecm&vecm−1, vecm&(∼vecm−1), (∼vecm)&vecm−1, and
(∼vecm)&(∼vecm−1) give the 4 vectors when the ranges are split,
and so on. We can easily adopt BSI for ranges. The idea is to
partition the value domain of an attribute into a sufficiently large
number (2m+1) of “minimal” ranges, and number the ranges with
0, . . ., 2m+1-1, ordered from the range with the lowest value to the
highest. We then use BSI to capture the binary representation of the
numbers corresponding to the minimal ranges, thus allow various
sizes of the dynamic ranges during splitting.

According to our experiments (discussed in Section 7), empiri-
cally a small number of ranges such as 10 is sufficient for 2 or 3
clustering attributes, 5 is sufficient for 4 to 6 attributes, and even
only 3 ranges is sufficient for 8 or more attributes. Intuitively, with
large number of clustering attributes, two tuples are unlikely to be
in the same range on many attributes, therefore large range is suf-
ficient to differentiate the tuples for the clustering. The grid has 38

buckets when there are 3 ranges on each of the 8 attributes, which
can be sufficient.
Heuristic 3– Incrementally Constructing Grid for Ranking:
Directly following Section 5.2.2, we would have to fully construct
the summary grid for ranking. However, there is no need for such
full grid, since most of the buckets can be pruned even before they
are actually constructed. Following this intuition, we construct the
summary grid for ranking in lock-step fashion, similar to the NRA
top-k algorithm [9]. Detailed algorithm is omitted due to space
limitation. Instead, we explain the algorithm using an example.
For simplicity, suppose there are 2 ranking attributes a and b, each
of which has 4 ranges, rangesa = {range0

a, range1
a, range2

a,
range3

a} = {[a0, a1), [a1, a2), [a2, a3), [a3, a4)} and rangesb =
{range0

b , range1
b , range2

b , range3
b} = {[b0, b1), [b1, b2), [b2, b3),

[b3, b4)}.
At step–1, we start by intersecting the first range from each rank-

ing attribute, i.e., range3
a and range3

b , resulting in the single bucket
with the highest upper-bound score in the whole grid, i.e., B15 = <
range3

a, range3
b >. Then at each following step–i, we use the next

range on every attribute (in our example range4−i
a and range4−i

b)
and intersect them with previous ranges. The seen ranges classify
the buckets in the full grid into three types: (1) completely seen
buckets or csb, whose corresponding ranges are seen on every at-
tribute in previous steps; (2) partially seen buckets or psb, whose
ranges are seen on some attributes; and (3) unseen buckets or usb,
whose ranges are unseen on every attribute. The upper-bound and
lower-bound scores for csb are computed from the corresponding

parameter meaning values
s # tuples 80K,400K,800K,

4M, 8M
t # clusters 2,4,6,8,10,20,50,100
c # clustering attributes [2, 8]

p # ranges per clustering attribute 5, 10, 20, 30, 40
k retrieval size per cluster 1, 5, 10, 50, 100

r # ranking attributes [2, 5]

p′ # ranges per ranking attribute 10, 20

Table 1: Configuration Parameters.

ranges. For one psb B, on attribute a, if the corresponding range
is rangej

a, where j < 4 − i (i.e., rangej
a is unseen yet), we use

[a4−i−1, a4−i) as the range of B on a, otherwise we use the cor-
responding seen range if j ≥ 4 − i. We thus obtain the bounds for
psb. Similarly we obtain the bounds for usb, as it is a special case
of psb. At some step, if there is a subset of csb containing at least k
tuples in total such that their lower-bounds are higher than or equal
to the upper-bounds of all the psb and usb, then the top k tuples in
the csb are the top k answers and our algorithm terminates.

7. EXPERIMENTS
The framework and algorithms are implemented in C++. More-

over, the bitmap index implementation is based on [26], which
builds multiple bitmap indices at different domain resolutions and
compresses them using the WAH compression method [28]. The
weighted K-means is built upon an publicly available implementa-
tion of K-means algorithm from [10]. For the straightforward ap-
proach of materialize-cluster-rank, we apply this K-means imple-
mentation on real tuples instead of the virtual tuples from summary,
and use an implementation of external merge-sort for ranking.

To verify its effectiveness, we conducted experiments to com-
pare the proposed framework (denoted as ClusterRank) with the
straightforward approach (denoted as StraightFwd), on both effi-
ciency and quality. Moreover, we investigated how they are af-
fected by important factors under various configurations. The de-
tailed experimental results are presented below. Section 7.1 de-
scribes the settings of experiments. Regarding efficiency, the exper-
imental results show that ClusterRank is orders of magnitude more
efficient than StraightFwd (Section 7.2). Regarding quality, the re-
sults indicate that clustering based on the summary gird achieves
close to the same quality of results as clustering on the full data
does (Section 7.3).

7.1 Experimental Settings
Our experiments were conducted over a synthetic table with a set

of 4-byte integer clustering attributes, a set of 4-byte floating num-
ber ranking attributes, and other attributes to pad the clustering and
ranking attributes to form 100-byte per tuple. The tuple values of
these two sets of attributes are independently created. The values of
the ranking attributes are independently generated by various distri-
butions, including uniform, Gaussian, and cosine distributions. The
values of the clustering attributes are produced by a data generator
for clustering algorithms from [10]. The generator creates values
based on underlying data models, one model per cluster. A model
specifies, for the corresponding cluster, the mean and standard de-
viation of each attribute individually. The values on an attribute are
generated by following the Gaussian distribution with the specified
mean and standard deviation.

Each query used in our experiments clusters the tuples by all the
clustering attributes and uses the sum of the ranking attributes as
the ranking function. Note that we do not experiment with Boolean

135

0.0001
0.001
0.01
0.1

1
10

100
1000

5 10 20 30 40

p

Ex
ec

ut
io

n
Ti

m
e

(s
ec

.)
CR-build CR-cluster SF-scan SF-cluster

0.0001
0.001
0.01
0.1

1
10

100

2 3 4 5 6 7 8

c

Ex
ec

ut
io

n
Ti

m
e

(s
ec

.)

CR-build CR-cluster SF-scan SF-cluster

0.0001
0.001

0.01
0.1

1
10

100
1000

10000

2 4 6 8 10 20 50 100

t

Ex
ec

ut
io

n
Ti

m
e

(s
ec

.)

CR-build CR-cluster SF-scan SF-cluster

0.001
0.01

0.1
1

10
100

1000

80K 400K 800K 4M 8M

s

Ex
ec

ut
io

n
Ti

m
e

(s
ec

.)

CR-build CR-cluster SF-scan SF-cluster

(a) s=4M, t=10, c=3 (b) s=4M, t=10, p=5 (c) s=4M, c=8, p=5 (d) t=10, c=3, p=10

Figure 5: Clustering Efficiency.

1

10

100

1000

10000

100000

5 10 20 30 40

p

#bitop #nonempty

10

100

1000

10000

2 3 4 5 6 7 8

c

#bitop #nonempty

10

100

1000

10000

100000

2 4 6 8 10 20 50 100

t

#bitop #nonempty

100

1000

80K 400K 800K 4M 8M

s

#bitop #nonempty

(a) s=4M, t=10, c=3 (b) s=4M, t=10, p=5 (c) s=4M, c=8, p=5 (d) t=10, c=3, p=10

Figure 6: Number of Bitmap Operations and Nonempty Buckets.

0
0.2
0.4
0.6
0.8

1

5 10 20 30 40

p

cl
os

en
es

s

close(res_SF,res_CR) close(res_SF,res_SF)

0
0.2
0.4
0.6
0.8

1

2 3 4 5 6 7 8

c

cl
os

en
es

s

close(res_SF,res_CR) close(res_SF,res_SF)

0
0.2
0.4
0.6
0.8

1
1.2

2 4 6 8 10 20 50 100

t

cl
os

en
es

s
close(res_SF,res_CR) close(res_SF,res_SF)

0
0.2
0.4
0.6
0.8

1

80K 400K 800K 4M 8M

s

cl
os

en
es

s

close(res_SF,res_CR) close(res_SF,res_SF)

(a) s=4M, t=10, c=3 (b) s=4M, t=10, p=5 (c) s=4M, c=8, p=5 (d) t=10, c=3, p=10

Figure 7: Clustering Quality.

selection and join conditions. The synthetic table can be viewed as
the results after such conditions are applied. To obtain the results,
the approach of using bitmap index has been well-studied and is
shown to be very efficient for range selections and star-joins [22,
23, 24, 5, 29]. In Section 5.2.3 we have discussed how to integrate
with such techniques. Therefore, to focus on the performance study
of the new clustering and ranking methods proposed, we do not mix
with the performance measurements on Boolean conditions, whose
results are well-known in the literature.

The experiments were run on a PC with 2.8GHz Intel Xeon SMP
(dual hyperthreaded CPUs each with 1MB cache), 2GB RAM, and
a RAID5 array of 3 146GB SCSI disks, running Linux 2.6.15.

7.2 Efficiency
We evaluated the performances of ClusterRank and StraightFwd

and studied how they are affected by several important configura-
tion parameters, which are summarized in Table 1.

The Efficiency of Clustering:
To evaluate the performance of clustering, we conducted experi-
ments under groups of configurations by the value combinations of
the four relevant parameters, s, t, c, and p. In each group of exper-
iments, we varied the value of one parameter and fixed the values
of the remaining three. We then run ClusterRank and StraightFwd,
and studied how their performances are affected as the value of the
varying parameter changed. The results on wall-clock execution
time under four sample groups of experiments are shown in Fig-
ure 5. In the figure, for ClusterRank, we use CR-build to represent

the time for building summary grid and CR-cluster for clustering
using the summary. For StraightFwd, we use SF-scan to denote the
time for scanning the table and SF-cluster for directly clustering
the original tuples instead of using the summary.

Overall, the values of these four time measurements are in gen-
eral in the order of CR-cluster<CR-build<SF-scan<SF-cluster.
Due to the small number of virtual tuples in the summary grid, CR-
cluster is several orders of magnitude smaller than others, therefore
is almost negligible. While on the other hand, SF-cluster is orders
of magnitude larger than others. SF-scan is normally larger than
CR-build, with the differences often being an order of magnitude.
In summary, Figure 5 shows that with respect to the efficiency in
clustering, our approach (CR-build + CR-cluster) is much more ef-
ficient than the straightforward one (SF-scan + SF-cluster).

To understand how the parameters affect the performance, below
we further analyze the individual graphs in Figure 5.
(a) s=4M, t=10, c=3: Varying the number of ranges per attribute
in constructing the grid, 4 million tuples are partitioned into 10
clusters by 3 clustering attributes. As the number of ranges (p)
increases, the less efficient grid construction (CR-build) is due to
more bitmap operations for intersecting the ranges. Moreover, as
p increases, there are also more nonempty buckets (thus more vir-
tual tuples) in the summary grid when it is constructed, therefore
CR-cluster takes longer. This is further verified by Figure 6, which
shows the number of bitmap operations and the number of nonempty
buckets in the grid. Figure 6(a)-(d) illustrate the results under four
groups of configurations, individually corresponding to the config-
urations in Figure 5(a)-(d). Although the cost of ClusterRank in-

136

1

10

100

1 5 10 50 100

k

Ex
ec

ut
io

n
Ti

m
e

(s
ec

.)
CR-rank SF-sort

1

10

100

2 3 4 5

r

Ex
ec

ut
io

n
Ti

m
e

(s
ec

.)

CR-rank SF-sort

1

10

100

2 4 6 8 10 20 50 100

t

Ex
ec

ut
io

n
Ti

m
e

(s
ec

.)

CR-rank SF-sort

0.1

1

10

100

1000

80K 400K 800K 4M 8M

s

Ex
ec

ut
io

n
Ti

m
e

(s
ec

.)

CR-rank SF-sort

(a) s=4M, t=10, r=3 (b) s=4M, t=10, k=5 (c) s=4M, r=3, k=5 (d) t=10, r=3, k=5

Figure 8: Ranking Efficiency.
creases as p increases, usually a small value of p such as 10 or 5 is
sufficient for good quality of clustering results.
(b) s=4M, t=10, p=5: In this configuration c is changing and other
parameters are fixed. We can see that the effect of c is similar to
that of p, as its increasing results in more bitmap intersections and
more nonempty buckets (cf. Figure 6(b)), thus more expensive CR-
build and CR-cluster. ClusterRank enjoys clear advantages over
StraightFwd until the number of clustering attributes goes beyond
8, which we believe is sufficiently large in our target applications.
(c) s=4M, c=8, p=5: As expected, the more clusters to produce,
the less efficient the clustering is, thus resulting in longer execution
times for both CR-cluster and SF-cluster.
(d) t=10, c=3, p=10: As expected, increasing the number of tuples
increases the cost of everything.

The Efficiency of Ranking:
We conducted experiments under configurations of the four rele-
vant parameters, s, t, r, and k. Similar to the experiments in clus-
tering efficiency, in each group of experiments, we changed the
value of one parameter and fixed the remaining ones. Note that the
number of ranges per ranking attribute (p′) with value 20 works
quite well in general in all the configurations. Therefore we do not
present the results with respect to various p′ values. The wall-clock
execution time under four sample groups of experiments is shown
in Figure 8, where we use CR-rank to denote the time for grid-based
ranking in ClusterRank and SF-sort for the sorting in StraightFwd.

Overall, SF-sort is one order of magnitude more expensive than
CR-rank. We further analyze the individual graphs. Figure 8(a)
shows that CR-rank only increases slowly as k increases, thus Clus-
terRank is effective for sufficiently large retrieval size within each
cluster; Figure 8(b) shows that CR-rank increases as the number
of ranking attributes (r) increases, and becomes close to SF-sort
when r=5. However, as commonly acknowledged in the literature
of ranking queries (e.g., [9, 3, 8, 6, 1, 15, 7, 20, 14]), in many
cases a very small number of ranking attributes suffice. We believe
this is especially true in our motivating applications, where users
are not expected to articulate too complicated ranking criteria in-
volving more than 5 attributes; Figure 8(c) indicates that CR-rank
increases as the number of clusters (t) increases. This is because
ClusterRank constructs a grid for each cluster and performs rank-
ing within each grid. Although SF-sort is not affected by t, it may
be smaller than CR-rank only when there are a very large number
of clusters. We argue the number of clusters t is small in our target
applications, because clustering is used to organize large query re-
sults for users and such large t is not helpful and thus unnecessary.
Finally, Figure 8(d) shows that both CR-rank and SF-sort increase
as the number of tuples increases, as expected.

The Overall Efficiency:
We compared StraightFwd and ClusterRank with the execution time
for clustering and ranking combined. Consider both Figure 5 and 8,
we see that SF-sort in general is close to SF-cluster. Thus these two

1

10

100

1000

10000

2 4 6 8 10 20 50 100

t

Ex
ec

ut
io

n
Ti

m
e

(s
ec

.)

ClusterRank StraightFwd

0.1

1

10

100

1000

80K 400K 800K 4M 8M

s

Ex
ec

ut
io

n
Ti

m
e

(s
ec

.)

ClusterRank StraightFwd

(a) s=4M, c=5, p=5, r=3, k=5 (b) t=10, c=5, p=5, r=3, k=5

Figure 9: Total Execution Time.
costs together dominate the execution time of StraightFwd, which
is orders of magnitude more than the time of ClusterRank. In Fig-
ure 9 we show such comparisons under two sample configurations.
In Figure 9(a) we vary the number of clusters and fixed the values
of others, while in Figure 9(b) we vary the number of tuples.

7.3 Quality
We compared resCR, the clustering results from the weighted K-

means on the summary grid (ClusterRank), with resSF , the results
from the conventional K-means on the original tuples (Straight-
Fwd). We measured how close resCR is to the ground truth resSF ,
i.e., close(resSF , resCR). This metric is defined below.

Suppose two methods generate two different sets of clusters res=
{c1, . . . , ct} and res′={c′1, . . . , c′t}, respectively, where each ci

and c′j is a set of tuples. The closeness of res′ to the ground-truth
res is

close(res, res′) =

P

i
(|ci| ×maxj(sim(ci, c

′
j)))

P

i
|ci|

,

where
sim(ci, c

′
j) = 2

|ci ∩ c′j |

|ci| + |c′j |
.

This metric is asymmetric. Since close(res, res′) measures how
well the clusters in res are captured by the clusters in res′, it should
be used when res instead of res′ is the ground-truth. Its value
range is [0, 1], as 1 indicates identical results and 0 indicates to-
tally different results. The metric sim has been used in comparing
clustering results, e.g., in [18] and [12]. It is equivalent to the F-
measure for precision/recall in IR literature.

K-means algorithm is known to be unstable and its behavior de-
pends on the initial centroids chosen [16]. Even running K-means
twice on the same data may not give us very high closeness be-
tween the two results. Therefore instead of interpreting the value of
close(resSF , resCR) directly, we compare it with close(resSF ,
resSF), which is the average closeness among the results from
multiple runs of StraightFwd. If close(resSF , resCR) is close to
close(resSF , resSF), we are confident that the quality of the re-
sults from ClusterRank is comparable to that from StraightFwd.

Figure 7(a)-(d) show close(resSF , resCR) and close(resSF ,
resSF) under four groups of configurations, corresponding to the
configurations in Figure 5(a)-(d) and Figure 6(a)-(d). The figures
show that the quality of clustering results from ClusterRank is of-

137

ten close to the quality from StraightFwd. The quality increases
as the number of ranges per clustering attribute (p) increases (Fig-
ure 7(a)), because the summary grid becomes more and more fine-
grained. However, we observe that a relatively small p such as 5
and 10 usually is sufficient. As Figure 7(b) shows, for the same p,
the more attributes, the higher quality. This is simply because it is
easier to partition data when they have more dimensions to com-
pare with each other. Therefore with 8 clustering attributes, p=5 is
sufficient under various number of clusters requested (Figure 7(c)),
and with 3 clustering attributes, p=10 is pretty good (Figure 7(d)).
Moreover, Figure 7(c) verifies that it is more difficult to perform
clustering when more clusters are quested.

8. CONCLUSION
This paper proposes to generalize group-by to enable fuzzy group-

ing (clustering in particular) of database query results, and to in-
tegrate grouping with ranking and further with Boolean filtering,
for supporting structured data retrieval applications. We define a
new type of ClusterRank queries for this purpose. We design a
summary-based framework to meet the challenges in supporting
such integration. We realize the framework by utilizing bitmap in-
dex to construct the summary on-the-fly, and to efficiently integrate
Boolean filtering, clustering, and ranking altogether. Experimental
study with our implementation shows that the framework achieves
orders of magnitude better efficiency than the straightforward ap-
proach available in current databases, and at the same time it main-
tains high clustering quality.

To the best of our knowledge, this work is the first to propose
such generalization of fuzzy grouping and integration with ranking
within RDBMSs. We believe, as an important first step in this di-
rection, the concept and framework in this paper will inspire us to
conduct future work on many interesting topics. For instance, how
will the approach perform differently under various datasets and
query workloads? How to support categorical attributes in cluster-
ing and even ranking? How to efficiently process more interesting
semantics other than global clustering/local ranking? How to de-
sign a cost model and incorporate the framework into relational
query optimizer? How to design a useful user interface upon Clus-
terRank to fully support structured data retrieval? We thus plan to
investigate these issues.
Acknowledgements: We thank Rishi Rakesh Sinha for providing
the source code of bitmap index.

9. REFERENCES
[1] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis. Automated

ranking of database query results. In CIDR, 2003.
[2] P. Berkhin. Survey of clustering data mining techniques.

Technical report, Accrue Software, San Jose, CA, 2002.
[3] M. J. Carey and D. Kossmann. On saying ”enough already!”

in SQL. In SIGMOD, pages 219–230, 1997.
[4] K. Chakrabarti, S. Chaudhuri, and S. Hwang. Automatic

categorization of query results. In SIGMOD, pages 755–766,
2004.

[5] C. Y. Chan and Y. E. Ioannidis. An efficient bitmap encoding
scheme for selection queries. In SIGMOD, 1999.

[6] S. Chaudhuri and L. Gravano. Evaluating top-k selection
queries. In VLDB, pages 397–410, 1999.

[7] S. Chaudhuri, R. Ramakrishnan, and G. Weikum. Integrating
DB and IR technologies: What is the sound of one hand
clapping? In CIDR, pages 1–12, 2005.

[8] D. Donjerkovic and R. Ramakrishnan. Probabilistic
optimization of top n queries. In VLDB, 1999.

[9] R. Fagin, A. Lote, and M. Naor. Optimal aggregation
algorithms for middleware. In PODS, 2001.

[10] F. Farnstrom, J. Lewis, and C. Elkan. Scalability for
clustering algorithms revisited. 2(1):51–57, August 2000.

[11] V. Ganti, J. Gehrke, and R. Ramakrishnan. CACTUS -
clustering categorical data using summaries. In KDD, pages
73–83, 1999.

[12] M. Gavrilov, D. Anguelov, P. Indyk, and R. Motwani.
Mining the stock market (extended abstract): which measure
is best? In SIGKDD, pages 487–496, 2000.

[13] J. Han and M. Kamber. Data Mining: Concepts and
Techniques. Morgan Kaufmann, New York, 2000.

[14] V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER:
A system for the efficient execution of multi-parametric
ranked queries. SIGMOD, 2001.

[15] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting
top-k join queries in relational databases. In VLDB, pages
754–765, 2003.

[16] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a
review. ACM Computing Surveys, 31(3):264–323, 1999.

[17] K. Kerdprasop, N. Kerdprasop, and P. Sattayatham.
Weighted k-means for density-biased clustering. In DaWaK,
pages 488–497, 2005.

[18] B. Larsen and C. Aone. Fast and effective text mining using
linear-time document clustering. In SIGKDD, pages 16–22,
1999.

[19] A. Leuski and J. Allan. Improving interactive retrieval by
combining ranked lists and clustering. In RIAO, pages
665–681, 2000.

[20] C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song. RankSQL:
Query algebra and optimization for relational top-k queries.
In SIGMOD, pages 131–142, 2005.

[21] F. Morii. A generalized k-means algorithm with
semi-supervised weight coefficients. In ICPR, pages
198–201, 2006.

[22] P. E. O’Neil. Model 204 architecture and performance. In
Proceedings of the 2nd International Workshop on High
Performance Transaction Systems, pages 40–59, 1987.

[23] P. E. O’Neil and G. Graefe. Multi-table joins through
bitmapped join indices. SIGMOD Record, 24(3):8–11, 1995.

[24] P. E. O’Neil and D. Quass. Improved query performance
with variant indexes. In SIGMOD, pages 38–49, 1997.

[25] G. Sheikholeslami, S. Chatterjee, and A. Zhang.
WaveCluster: A multi-resolution clustering approach for
very large spatial databases. In VLDB, pages 428–439, 1998.

[26] R. R. Sinha, S. Mitra, and M. Winslett. Bitmap indexes for
large scientific data sets: A case study. In IPDPS, 2006.

[27] W. Wang, J. Yang, and R. R. Muntz. STING: A statistical
information grid approach to spatial data mining. In VLDB,
pages 186–195, 1997.

[28] K. Wu, E. Otoo, and A. Shoshani. Optimizing bitmap indices
with efficient compression. ACM TODS, 31(1):1–38, 2006.

[29] M.-C. Wu and A. P. Buchmann. Encoded bitmap indexing
for data warehouses. In ICDE, pages 220–230, 1998.

[30] F. Zemke, K. Kulkarni, A. Witkowski, and B. Lyle.
Introduction to OLAP function. Change proposal.
ANS-NCTS H2-99-14 (April), 1999.

[31] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An
efficient data clustering method for very large databases. In
SIGMOD, pages 103–114, 1996.

138

