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Abstract— While models for data provenance have been ex-
tensively studied in the literature, the efficient evaluation of
the resulting provenance queries remains an open problem.
Traditional query optimization techniques, like the use of general-
purpose indexes, or the materialization of provenance data, fail
on different fronts to address the problem. Provenance-specific
optimization techniques, like the use of customized indexes,
similarly prove inadequate since the techniques are bound to
specific provenance models. Therefore, the need to develop
generic provenance-aware techniques quickly becomes apparent.

In this paper, we argue for such a generic technique in
the form of a provenance index structure that can be used to
efficiently evaluate provenance queries in a variety of contexts.
By highlighting the limitations of existing techniques, we identify
the set of key properties of the generic index, including a novel
property called duality which guarantees that the single index
can evaluate both backward provenance queries (which data items
from a set I are associated with an item from set O) and forward
provenance queries (which items from O are associated with an
item from I).

I. INTRODUCTION

Provenance [1] (a.k.a. lineage [2], or pedigree) attempts
to capture the processing history of a data item along with
the inter-dependencies that arise during the processing be-
tween different data items. As a research topic, provenance
is currently receiving considerable attention in the literature
(see [3][4] for surveys of recent works). To a certain extent,
this attention is motivated by a trend in many emerging real-
life applications (e.g., in domains like healthcare [5], bank-
ing/finance, the life sciences [6]) which dictates that the data
processing and analytics needs of these applications require
(or even demand) provenance information. As an example
of such an application, at the IBM Century [5] project, we
are building a framework for healthcare online analytics of
sensor-based medical data, in which provenance plays a central
role [7]. In more detail, a typical scenario in Century considers
a patient, say “John Doe”, whose medical data (e.g., blood-
pressure, heart-rate, SpO2, electrocardiogram readings) are
streamed into and analyzed by the Century analytics in real-
time (see Figure 1). Potential outputs of these analytics might
include (among other things) a medical alert for John, which
is forwarded to John’s doctor and might include a medical
recommendation (e.g., reduction of medication dosage). Since
it is imperative for the doctor to accurately evaluate the validity
and severity of this alert, Century is required to provide a
pair of (complementary) query services to compute the alert’s
workflow [3] and data provenance [3]. Specifically, for a given
output (e.g. an alert), the workflow provenance query service
returns the analytics workflow that results in this output. So,

Alert(t):-BP<((t, t-180, 180), 1)((2, 3, -), 2)(bp, (135, -, -), 3)>
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Fig. 1. Sample analytics graph

for example, given an “Angina Pectoris” alert, the workflow
provenance query should return the analytics sub-graph of
Figure 1 that results in the alert, i.e., the whole analytics graph
minus the “WB” and “PH” nodes. The data provenance query
service returns the specific input (and intermediate result) med-
ical data that were analyzed in this workflow and contributed to
the output generation. So, for the “Angina Pectoris” alert, the
data provenance query should return not only the input ECG,
weight and blood pressure readings, but also the intermediate
data that result from the analysis of these readings (e.g., the
outputs of analytics nodes like the “EP”, “QRS”, “WT”, “BP”,
etc.). Clearly, workflow and data provenance are not specific
to Century or healthcare. Workflow provenance has also been
investigated in the context of scientific workflows [8][9], while
a large body of works has considered various types [10] and
models [11][12][13] to capture data provenance.

Irrespectively of the application domains and of the types
and models of provenance considered in each one, provenance-
related information (both for workflow and data provenance) is
stored in a database alongside the base application data. There-
fore, to determine the provenance of a particular data item ul-
timately one has to evaluate one, or more, provenance queries.
Since provenance usually captures intricate inter-relationships
between data items, the corresponding provenance queries that
need to be evaluated are often quite complex [11][13]. Tradi-
tional optimization techniques that rely on the optimizer, or on
generic indexes, usually prove inadequate in this context, and
often the development of customized optimization techniques
proves necessary [11][13][14]. Yet, these techniques are not
generic enough to be used across different provenance models
and as a result the efficient evaluation of provenance queries
remains an open problem [15].

To this end, in this paper we argue for a generic technique
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in the form of a provenance index structure that can be
used to efficiently evaluate provenance queries in a variety
of contexts. We consider an index structure which is partic-
ularly suited for data provenance queries but, as it becomes
clear later on, it can also be used for workflow provenance
queries. Our motivation for focusing on the former type of
provenance queries is that data provenance is characterized as
fine-grained [3], when compared to workflow provenance, and
the data required/accessed while answering data provenance
queries are expected to be orders of magnitude more than
those for workflow provenance queries. Therefore, efficiency
is more imperative for the former queries.

II. MOTIVATING EXAMPLE

In the following paragraphs, we use an example from the
Century system to illustrate some of the challenges in evalu-
ating (data) provenance queries and some of the limitations
of the standard evaluation and optimization techniques. In
Figures 2(a) and (b) we show sample relations used in Century
to store blood-pressure (BP) readings and “Prehypertension”
alerts. Using as input the blood-pressure readings, Century
analytics (see shaded area in Figure 1) can generate a “Pre-
hypertension” alert using the following procedure: With 4
readings in every 3-hour epoch (readings and alerts in the
same epoch are colored alike), an alert is generated at the
end of an epoch when any of the readings in the middle of
an epoch (the 2nd and 3rd reading) has a systolic pressure
larger than 135mmHg. Intuitively, assuming some medication
is administered to a patient at the beginning of each 3-hour
epoch, these analytics check whether the medication affects a
patient’s blood pressure (assuming any such effects should be
visible in the middle of the epoch, where medication might
be more active). Given these analytics, how can we model the
provenance of a generated alert, i.e., its inter-dependencies
with the input readings? In Century, the TVC [16] provenance
model is used to establish the inter-relastionships between the
inputs and outputs of the Century analytics and we briefly
describe the model next.

A. The TVC provenance model
The TVC model [16] is used to represent provenance asso-

ciations in a wide spectrum of real-life applications. Although
a number of similar models can be found in the literature, the
TVC model is just used for convenience here. As we show in
the following paragraphs, our conclusions are not specific to
the TVC model and similar conclusions can be drawn by using
any other provenance model.

In a number of applications, special analytics process input
data from a set I (e.g., medical readings, stock quotes) and
produce a new set of output data O (e.g., medical alerts, stock
buying/selling recommendations). Although the precise nature
of these analytics is application dependent, a key observation
is that the provenance relationship between the inputs and
outputs of the analytics can be described in terms of some
invariant primitives [16]. In what follows we describe three
such basic primitives:

Time (T): This primitive is used when a data item from O
is associated with data items from I that are bounded by
a time window. This is the case in our motivating example
where a medical alert is associated with the blood-pressure
readings of the last epoch. The primitive format is O(t) :-
I〈((t − tb, t − te, sf), or)〉, where t specifies the timestamp
of the data item of O, (t − tb) and (t − te) the time window
enclosing the items from I, sf the shift of the time win-
dow between consecutive items in O, and or the primitive
order, when multiple primitives for the same item in O are
given (more on this later). To illustrate, rule Alert(t) :-
BP 〈((t, t − 180min, 180min), 1)〉 indicates that an alert at
time t is associated with all the blood pressure readings in a
3-hour epoch, with consecutive epochs having no time overlap.

Sequence (S): The primitive expresses dependencies in terms
of a data item in O and sequences of data items in I. Its
format is O(t) :- I〈((sb, se, sf), or)〉, where se and se specify
the start and end sequence numbers of data items in I, sf the
shift of the sequence window between consecutive items in
O, and or the primitive order. For example, rule AV GBP (t)
:- BP 〈((1, 10, 5), 1)〉 indicates that a blood-pressure reading
average at time t is calculated by the last 10 blood-pressure
readings (irrespectively of their timestamps). Here, the se-
quence window is shifted by 5 readings and therefore, the
same reading in I might contribute to the generation of two
different averages in O.

Value (V): The primitive expresses dependencies in terms of
a data item in O and a set of items in I whose attribute
attr has a value in a predefined range. The format is O(t) :-
I〈(attr, (vb, ve, sf), or)〉, where vb and ve specify the range of
values the attribute attr must satisfy, sf the shift of the value
window, and or the primitive order. For example, rule Alert(t)
:- BP 〈(systolic, (135, 140, 10), 1)〉 indicates that an alert at
time t depends on all the blood-pressure readings between
135 and 140mmHg. Between consecutive alerts the ten oldest
readings are dropped from consideration.

For significantly enhanced expressiveness, a combination of
primitives can be used and the unique ‘order’ field defines an
evaluation order of the primitives, with the output of a lower
order primitive acting as the input for a higher order primitive.
For example, the rule:

Alert(t):-BP 〈((t, t − 180, 180), 1)((2, 3,−), 2)(bp, (135,−,−), 3)〉

expresses the complex association of alerts and blood pressure
readings from our motivating example where a “Prehyperten-
sion” alert is generated from 4 readings in every 3-hour epoch,
if the 2nd or 3rd reading in the epoch have a systolic pressure
larger than 135mmHg. In Century, a TVC formula like the
one shown above is associated with each node in the analytics
workflow (as shown in Figure 1 for node “PH” – due to lack
of space, the formulas for the remaining nodes are omitted).

B. Provenance Queries

In Century, given a “Prehypertension” alert for patient
John, his doctor must be able to issue a provenance query to
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bpID tm systolic diastolic
101 13:10 130 79
102 14:00 136 81
103 14:36 137 82
104 15:40 138 82
105 16:12 137 81
106 17:23 134 81
107 18:07 134 82
108 18:46 131 79
109 19:16 131 80
110 19:58 136 82
111 20:49 134 81
112 21:43 135 79
113 22:26 135 80
114 22:51 137 82
115 23:17 136 81
116 23:49 135 79

(a) The BP relation

alID tm alert
201 16:00 “Prehypertension”
202 22:00 “Prehypertension”
203 00:00 “Prehypertension”

(b) The Alert relation

bpID bptm alID altm
102 14:00 201 16:00
103 14:36 201 16:00
111 20:49 202 22:00
114 22:51 203 00:00
115 23:17 203 00:00

(c) The BP2Alert relation

Fig. 2. Blood pressure readings and alerts

retrieve the blood-pressure readings that resulted the alert. We
call this a backward provenance query which given an output
data item (e.g. medical alert) of some analysis, the query
retrieves all the inputs (and intermediate results) contributing
to its generation. Furthermore, John’s doctor and the medical
researchers studying John’s condition also find forward prove-
nance queries to be equally useful. In a forward provenance
query, given a (possibly abnormal) blood-pressure reading, the
query should return the alerts (if any) that might have been
generated partially due to this reading.

Clearly, in healthcare (but also in domains like bank-
ing/finance) timely reaction to events (e.g., alerts) is paramount
and provenance information plays a big role in deciding the
type of this reaction. Therefore, the efficiency of provenance
queries quickly becomes an issue. Currently, there are two
alternative strategies used to address efficiency issues:

Alternative 1: An obvious alternative is to materialize a
relation like BP2Alert (shown in Figure 2(c)) to encode the
provenance relationship (expressed by the corresponding TVC
rule) between readings and alerts. Then, efficient evaluation
of backward/forward provenance queries essentially amounts
to evaluating simple SQL queries like QM

B and QM
F (shown

in Figure 3 with the generic template to generate such queries
shown in Figure 4(a)) over the BP2Alert relation. Obvi-
ously, such an approach requires (a) to persist a relation like
BP2Alert, and (b) to create and maintain a separate index for
each of the attribute columns (e.g., B+-trees, hash indexes), to
efficiently evaluate backward/forward provenance queries. In
the literature, models for data provenance that use annotations
(e.g., the initial version of Mondrian [11], DBNotes [17]),
employ this alternative and rely essentially on materialization
and general-purpose indexes to answer provenance queries.

Alternative 2: The second alternative avoids provenance data
materialization and instead relies on encoding the provenance
relationship between readings and alerts directly into the back-
ward/forward provenance queries (see QE

B and QE
F in Figure 3)

which are evaluated over the base BP and Alert relations. In
more detail, Figure 4(b) shows the SQL provenance queries
corresponding to each of the TVC primitives of the previous

QM
B : SELECT * FROM BP WHERE BP.bpID IN

(SELECT bpID FROM BP2Alert WHERE BP2Alert.altm = 〈al tm〉)

QM
B : SELECT * FROM Alert WHERE Alert.alID IN

(SELECT alID FROM BP2Alert WHERE BP2Alert.bptm = 〈bp tm〉)

QE
B : SELECT * FROM

(SELECT * FROM
(SELECT * FROM

(SELECT * FROM BP
WHERE BP.tm ≤ t AND BP.tm ≥ t− 180) AS T1

ORDER BY T1.tm DESC FETCH FIRST 3 ROWS ONLY) AS T2
ORDER BY T2.tm ASC FETCH FIRST 2 ROWS ONLY) AS T3

WHERE T3.systolic ≥ 135

QE
F : SELECT * FROM

(SELECT * FROM
(SELECT * FROM Alert AL
WHERE AL.tm ≥ t AND AL.tm ≤ t + 180) AS T1

WHERE T1.tm ≥ t AND bp IN QB ) AS T2
WHERE bp.systolic ≥ 135 AND T2.tm ≥ t

Fig. 3. Provenance queries

Backward Provenance Forward Provenance
SELECT * FROM I WHERE id IN

(SELECT in.id FROM M
WHERE out.tm = 〈O.tm〉)

SELECT * FROM O WHERE id IN
(SELECT out.id FROM M
WHERE in.tm = 〈I.tm〉)

(a) Query templates for Alternative 1

Backward Provenance Forward Provenance

T
SELECT * FROM I
WHERE I.tm ≤ (〈O.tm〉 - 〈tb〉)

AND I.tm ≥ (〈O.tm〉 - 〈te〉)

SELECT * FROM O WHERE
O.tm ≥ (〈I.tm〉 + 〈tb〉)
AND O.tm ≤ (〈I.tm〉 + 〈te〉)

S

SELECT * FROM
(SELECT * FROM I
WHERE I.tm ≤ 〈O.tm〉
ORDER BY I.tm DESC
FETCH FIRST 〈se〉 ROWS ONLY) AS T

ORDER BY T.tm ASC
FETCH FIRST (〈se〉 − 〈sb〉+ 1)

ROWS ONLY

SELECT * FROM O WHERE
O.tm ≥ 〈I.tm〉
AND 〈I〉 IN QB

S (O)

V
SELECT * FROM I
WHERE I.tm ≤ 〈O.tm〉 AND
〈I.attr〉 ≥ 〈vb〉 AND 〈I.attr〉 ≤ 〈ve〉

SELECT * FROM O WHERE
〈I.attr〉 ≥ 〈vb〉 AND
〈I.attr〉 ≤ 〈ve〉 AND
O.tm ≥ 〈I.tm〉

(b) Query templates for Alternative 2

Fig. 4. Provenance query templates

section, both for the case of forward and that of backward
provenance. As an example, in the second row of Figure 4(b),
the left query implements the TVC sequence rule of the
previous section, while the right query implements the inverse
rule (not shown) that given an input item it returns all the
output items whose sequence rule includes this input item. In
terms of the complex queries in Figure 3, these result in by
composing the SQL queries of the corresponding primitives.
So, query QE

B results in by composing the backward prove-
nance queries for all three primitives, since all the primitives
are involved in the corresponding “Prehypertension” alert rule.
Although complex queries can result in easily, even while
expressing simple provenance relationships between data items
through the TVC provenance model, this complexity is not
an artifact of the specific model. Indeed complex provenance
queries are common in other provenance models found in the
literature [11][13].

Both alternatives have their shortcomings. Alternative 1
imposes the seemingly innocent requirement to persist prove-
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nance data. Yet, this requirement has severe implications in
terms of storage as recent studies have shown that provenance
data are often orders of magnitude larger than base data [18].
Even worse, multiple types of inter-relationships between two
data sets might exist, each requiring each own provenance data
relation. Therefore, any solution that reduces, or eliminates,
provenance data materialization is desirable. The alternative
also requires that separate indexes are maintained to efficiently
evaluate the different types of provenance queries. This latter
requirement is a consequence of the inherent directional nature
of general-purpose indexes: Given a medical alert, an index
can retrieve all the blood pressure readings that are associated
with the alert. However, starting from a reading we cannot
use the same index to retrieve its generated alert. Such a
functionality assumes that the index is somehow bi-directional.
Using a single bi-directional index, without compromising
query performance, has obvious advantages both in terms of
maintenance costs and space overhead.

The shortcomings of Alternative 2 are equally profound.
In real life applications, data inter-relationships are inherently
complex. In turn, the provenance queries encoding these inter-
relationships are quite involved in nature. Provenance queries
(often with deep nesting) are usually hard to optimize, even
by the most sophisticated optimizers. Therefore, the queries
often suffer from poor performance. Customized indexes, like
the one introduced in MMS [13] or later in Mondrian [14],
can improve the efficiency of the queries. However, their use
is often limited to particular provenance models.

III. A GENERIC PROVENANCE INDEX STRUCTURE

To address the shortcomings of the existing alternatives, we
argue for a generic index structure for the efficient evaluation
of provenance queries. To our knowledge this is the first work
to address the open problem of efficient provenance query
evaluation. In what follows, we highlight some of the key
(desirable) characteristics of the proposed index structure.

Model Independence: Ultimately, the generality of the
index is determined by its ability to be used in a variety
of provenance models. Since provenance can abstractly be
modeled as a binary relation between data items and process-
ing nodes of an analytics workflow (in the case of workflow
provenance), and between different data items (in the case of
data provenance), we argue here for a structure that can be
used to index arbitrary binary relations. As such, our index is
independent of both the specific of the provenance model and
the complexity of its corresponding provenance queries.

Index Duality: As further evidence of its generality, it
would be desirable if the same index can be used to evaluate
provenance queries of different types. That is, we argue here
for a single index structure that exhibits a duality property in
that it can be used to evaluate both forward and backward
provenance queries. Notice that no existing general-purpose
index (e.g., B+-trees, hash index) or provenance-aware index
(e.g., Q-index [13]) exhibits this property.

Index performance: Finally, the performance of the index
should be such that it outperforms conventional indexes, like

B+-trees, both in terms of time and space. As such, we
argue for an index that relies on state-of-the-art data structures
that (a) have provable performance (b) can be compressed
to reduce the memory/disk requirements; and (c) can take
advantage of the latest trends in hardware (e.g., multi-core
CPUs) to improve efficiency.

An index with these characteristics is currently under de-
velopment and part of the provenance infrastructure we are
building for the IBM Century project and beyond. Yet, due to
its generality, we note that our index is directly applicable and
can be used in other existing provenance-enabled systems like
Trio [2], GridDB [19] and Zoom [20].
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