
A Time-and-Value Centric Provenance Model
and Architecture for Medical Event Streams

Marion Blount, John Davis, Archan Misra, Daby Sow, Min Wang1

IBM T. J. Watson Research Center
19 Skyline Drive, Hawthorne, NY 10532, USA

{mlblount ,davisjs,archan,sowdaby,min}@us.ibm.com

ABSTRACT
Provenance becomes a critical requirement for healthcare IT
infrastructures, especially when pervasive biomedical sensors act
as a source of raw medical streams for large-scale, automated
clinical decision support systems. Medical and legal requirements
will make it obligatory for such systems to answer queries
regarding the underlying data samples from which output alerts
are derived, the IDs of the processing components used and the
privileges of the individuals and software components accessing
the medical data. Unfortunately, existing models of either
annotation or process based provenance are designed for
transaction-oriented systems and do not satisfy the unique
requirements for systems processing high-volume, continuous
medical streams. This paper proposes a simple, but useful, hybrid
provenance model called Time-Value Centric (TVC) provenance.
In this model, each entry in the output data stream (e.g., an output
alert) is linked to some specific time windows of incoming data
samples that contribute to the generation of the particular output
entry, with the time-dependence potentially varying with the data
values. An initial design of the provenance storage and querying
architecture for this TVC model is also presented.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Medical Information Systems

General Terms
Algorithms, Management, Security

Keywords
Provenance, data streams, medical sensors.

1. INTRODUCTION
Faced with a rising elderly population, governments and
healthcare providers in many developed countries are
investigating the development of a large-scale, distributed
infrastructure for remote medical monitoring. A particularly
compelling vision for IT-enhanced healthcare delivery focuses on
the use of body-worn pervasive sensors that provide multiple
streams of medical data (such as heart rate, SpO2 saturation, ECG

signals and muscular activity levels). The availability of such
rich, personal medical history can provide compelling benefits,
such as proactive anomaly detection, drug side-effect monitoring
and trend analysis of lifestyle activity patterns, especially for
patients with chronic diseases such as congestive heart failure,
high blood pressure and Alzheimer’s. Prior research on remote
monitoring has largely focused on the client side, typically
developing various components for a pervasive relay device that
acts as a personal hub [1] in a 3-tier remote monitoring
framework [1,2]. Research on the server-side has been largely
absent, with research prototypes treating the server merely as a
large data-store.

As part of our recently-launched Century project, we are
investigating the data management components and capabilities
required at the backend to make this vision of pervasive
healthcare a reality. Century is intended as a unified repository of
biomedical data streams from a large patient population—
however, our effort is driven by the observation that the backend
must be much more than a passive repository; it must be capable
of analyzing, processing and transforming the raw medical
sensor streams. In particular, automated stream analysis
components will prove critical to the development of sensor-
driven diagnostic and clinical support systems, as otherwise
medical professionals will simply be swamped by the high
volume of raw sensor data generated by a large patient
population.

The issue of data provenance support is an important one for
systems such as Century, as the medical domain often makes it
mandatory to support functions such as “dependency analysis” or
“data replay” needed to satisfy auditing and other regulatory
requirements. In particular, various Century stakeholders (e.g.,
doctors, family members) should be able to inspect, often at a
much later date, Century’s internal “information flow”, to either
manually validate the processing logic within Century or to
perform fault-diagnosis in the case of anomalies. Broadly
speaking, “provenance” in our context implies that the
CENTURY infrastructure must not only filter and process high-
volume data streams, but also store sufficient metadata to
subsequently answer questions such as a) “What low-level sensor
data contributed to (or did not) to this automated alert”, b) “which
stream processing components did this alert depend on?” or c)
“what sensor was used to obtain this raw medical reading?”.

A modest amount of research on provenance mechanisms has
been conducted, largely for scientific workflow systems (e.g.,

1Authors listed in alphabetical order

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
HealthNet’07, June 11, 2007, San Juan, Puerto Rico, USA.
Copyright 2007 ACM 978-1-59593-767-4/07/0006...$5.00.

95

Karma[3], PreServ[4]), low-level operating systems or file
systems (e.g., PASS [5]) or Web-Services oriented workflows
(e.g., PASOA [6]). However, all of these provenance approaches
apply to transactional systems and do not satisfy the unique
requirements and constraints of stream-based systems. In
particular, we argue that the most widely-used “annotation”
model of provenance, where the requisite metadata is associated
with each individual data element, is inappropriate for stream-
based systems, as it fails to exploit the unique dependency
characteristics across data streams and results in prohibitive
storage overhead. Based on this observation, we introduce a Time-
Value-Centric (TVC) model for stream-oriented provenance in
this paper. The key driver of this model is the observation that, in
many instances, the provenance metadata is invariant over
multiple successive data elements of a stream. It is thus best to
collect the provenance data at the stream segment level (rather
than at the data element level).

1.1 Contributions of This Paper
This paper makes the following important contributions:

• It establishes the distinctive features of the provenance
problem for stream-oriented middleware systems.

• It introduces the TVC model as a simple, yet widely
applicable, and efficient primitive for expressing lineage
dependencies among medical events.

• It provides an initial specification of the way in which the
provenance relationships between various medical events
and streams may be stored and retrieved.

2. CENTURY BACKGROUND AND NEED
FOR MEDICAL PROVENANCE
The Century project [8] is building a distributed and shared
middleware platform that ingests very large numbers of event
streams, makes “sense” of this input data and distributes the
resulting knowledge to a diverse set of stakeholders. This set
includes patients and their extended families, medical
professionals, hospitals and insurance companies, among others.
These stakeholders might be interested in different perspectives
on the data collected. For example, nurses may monitor the
wellbeing of specific patients, while a CDC analyst might mine
the data streams, aggregated across a large patient population, to
predict disease outbreaks. However, all stakeholders face a
common risk: of being inundated with data if the raw,
unprocessed, biomedical event streams were directed towards
them. To address this central problem of data overload, Century’s
core component is a stream processing infrastructure capable of
accepting and analyzing very large volumes of input data streams.

Figure 1 shows a high level view of Century. At its heart is the
Stream Processing Core (SPC) [9] platform, which offers support
for the development and deployment of scalable stream analysis
applications. Unlike most prior stream processing technologies,
SPC supports both relational and user defined stream processing
operators. Figure 1 also includes an example of a Congestive
Heart Failure (CHF) analysis graph containing a combination of
stream operators (that we refer to as Processing Elements or PEs).
Broadly speaking, the CHF application takes 3 types of sensor
inputs (ECG, blood pressure and weight) for an individual over a
specific time interval and periodically generates an “alert” (either

“normal” or “abnormal”) depending on the temporal evolution of
the streams. Century adds several additional components to SPC.
The first component is an event store where high-rate biomedical
event streams are persisted, potentially for very long time periods
(e.g., 6 years) to satisfy specific regulatory requirement. The
event store allows authorized external applications to query,
update or even delete these records. The provenance subsystem is
another major new component of Century, as well as the focus of
this paper. The provenance subsystem allows allow stakeholders
to query for the origins of raw and processed event streams.

Hub

Hub

Stream Processing Core

Pr
ov

en
an

ce
AP

IExplicit Collector Implicit Collector

Provenance Store

QRS

BP S/D

RR P and T

Arrhythmia

Weight trend
detector

CHF

alert

alert

Congestive Heart Failure

Source PE

Hub

Glucometer

ECG

Weight

BP

Hub

SMS
Sink PE

Alert
Sink PE

D
at

al
AP

I
XQ

ue
ry

DB

Event Store

Primary Physician

Emergency

Family/Friends

Government/Census

Company/Gym

CENTURY

Freq
Analyzer

Figure 1. Century Components (The stream processing graph
illustrates the CHF monitoring application)

3. PRIOR WORK AND PROVENANCE
CHALLENGES FOR MEDICAL STREAMS
The bulk of prior research on provenance focuses on transactional
systems, which typically involve a discrete (and relatively low-
rate) request-response style of interaction. Examples of such
transaction workflows include:

• Scientific and Web-Services Workflows: Systems such as
Karma and PreServ are designed to capture interactions
among various components for data-driven scientific
workflows, such as atmospheric sensing and genomic
computing. These systems focus purely on process
provenance, i.e., they store the history of inter-component
interactions (e.g., SOAP invocations), rather than the actual
transformation of the datasets.

• File Systems and Databases: Approaches such as PASS and
LinFS [7] are typically annotation-based—they associate
provenance metadata with individual data items, such as files
or DB records. As an example, PASS automatically stores
the modification history of files, including information on
the calling application, the file descriptor state, etc.

In contrast, Century needs to support provenance for high-volume
data streams. Here, the term “stream” implies a logically-related
set of data events possessing a well-defined temporal sequence.
For example, continuous ECG readings from a cardiac monitor or
periodic accelerometer readings (for movement monitoring) from

96

a single individual sensor can be considered to be two
independent data streams. The limited work in stream-based
provenance includes [10], which focuses on identifying and
storing the dependency relations among streams (by encoding, as
a tree, the IDs of ancestor streams of a derived stream), rather
than the data dependencies for various elements of the stream.

Table 1: Data Rates for Representative Medical Sensors

We believe that provenance support in Century must consider the
following characteristics:
a) High Data Volume: Many of the medical applications that

we consider involve the transformation and storage of data
from sensors with very high data rates. (As an illustration,
Table 1 shows the basic data rates associated with a variety
of medical sensors.) Given such a high data rate, the
“annotation” based model of provenance, where the metadata
is appended to the data itself, is not particularly efficient
from a storage perspective.

b) High Throughput Support: The stream-processing
middleware must also be computationally-efficient to support
the high stream event rate. For high volume data streams, the
process of per-data item annotation is likely to result in
significant processing overhead (as provenance requires the
generation of per-packet information, such as unique
identifiers and timestamps), as well as incur high storage
latency [11], and could thus impact the system’s throughput.
Accordingly, we require a provenance solution that is
reactive (i.e., the computation of provenance is invoked only
when appropriate attributes of interest change).

c) Statefulness of Stream Operators: Many transformations of
interest on raw medical data occur over “time windows” of
raw sensor data. In other words, the operators are stateful,
with the transformation logic for a particular data element
implicitly affected by past input elements or other external
“context”. An example of such a stateful operator is an
“activity detector that detects if an individual’s pedometer
reading (number of steps walked) on a particular day falls
below 70% of the average footsteps/day over the past week”.
In contrast, the provenance for a user accessing a scientific
library via a Web service would consist of parameters such
as the requester’s user ID or the library’s version number—
this provenance data is independent of past or future
transactions.

The limitations of existing provenance models become clear on
reviewing these three vital features of Century. Annotation-based
approaches are particularly poorly suited to our high-volume,
stream-oriented environment due to the high storage and
processing overheads. Process-oriented provenance models, on
the other hand, are inadequate for many clinical decision-support
applications, especially if healthcare professionals desire to
visually inspect the data dependencies and derive their own
conclusions (and perhaps, override the recommendations of the
automated system). The observations above lead to two key new
requirements:

a) A hybrid model of provenance is required. Such a
hybrid model should ideally combine the low storage
and processing overhead of stream-based provenance
with the higher descriptive capabilities of data-oriented
annotation models.

b) The provenance system should be consciously
architected to support a query-vs-store tradeoff, in
effect trading off higher reconstruction complexity
(during the infrequent provenance queries) for more
efficient metadata storage and generation.

In the next section, we introduce the TVC model as the first,
simple yet useful, instance of such a hybrid provenance model.

4. THE TIME AND VALUE CENTRIC
MODEL
The temporal aspect of the TVC model draws on the fact that
many of the transformations of sensor data streams implicitly
involve the use of input data samples that lie within a finite time-
window (or sets of such windows). Mathematically, a simple
model could track the value of a data element belonging to a
stream Si (output by a processing element PEi) as a function of
specific samples (from input streams) that occur within designated
time intervals in the past. In other words, for any element ei(t)∈Si,
with a creation timestamp of t, the following relationship holds:

() (){ }U U
PE

L
tteete

ij

j

Sj k
jkjkji endstartS

 input to is : 1

,:
=

−−∈⇐
 (1)

where Lj is the number of distinct disjoint ‘time intervals’ which
define the values of Sj on which ei(t) depends, and startjk and endjk
define the boundaries of these intervals. For the simple cases
where endjk=0 and L=1, we may express the time dependency of
an input stream Sj in terms of a single interval value Δj. Moreover,
these dependencies are time-invariant—in other words, the
dependence of a derived medical event to other medical samples
or raw sensor data can be expressed succinctly and completely
independently of the specific timestamp or ID of each sample.
Moreover, as long as each individual data item contains its
timestamp and a stream ID, the dependent set of data elements
can always be derived.

4.1 State-Based Changes in Temporal
Dependencies
In several practical cases of interest, the temporal dependency
may be time-invariant, but still exhibit a dependency on some
data value. In general, the “data” value can refer to an element
belonging to one of the input streams or to some internal “state”
(that indirectly modifies) the processing logic of a PE. As an

Type of
Sensor Device

Bits/
sensor
sample

Channels/
device

Typical
reporting
frequency

Data
rate
(KB/day
)

SpO2 3000 1 3 Hz 94,922

EKG (cardiac) 12 6 256 Hz 194,400

Accelero-
meter 64 3 100 Hz 202,500

EEG (brain) 12 12 256 Hz 388,800

EMG (muscle) 12 6 1024 Hz 777,600

97

example of such state-dependent processing, consider the
following rule (where HR indicates values from a heart rate sensor
and loc refers to the user’s location context:
 IF loc= “gym”, then generate ALERT iff (AVG(HR(t-
10,t)>140);
 ELSE generate ALERT iff (AVG(HR(t-30,t)> 90).

In this case, it is easy to see that the temporal dependence term Δ
depends on the patient’s location, with a more aggressive policy
(smaller time window) being used when the patient is exercising
in the gym. To capture and reconstruct this sort of provenance
dependence, we need to extend the provenance model—as a
generalization, we can associate multiple “dependency
ruleblocks” (the logic of Equation 1) with each PE, with each
block corresponding to a distinct state (or range of specific
values). To reconstruct the data provenance, the output data
sample must not only possess a timestamp and stream ID, but also
an index to the specific ruleblock (from the set of ruleblocks of
the creating PE) associated with it. An example of the logical
metadata associated with an arbitrary PE is shown in Figure 2.

Processing
Element

Si(t) Si(t-1) Si(t-2)

Output stream Si

Sj(t)
Sj(t-1)

Sj(t-2)
Sj(t-3)

Sk(t)
Sk(t-1) Sk(t-2)

Sk(t-3)

Input stream Sj

Input stream Sk

Ei(t) Sj(t-2,t) ∪ Sk (t-1,t)“home”2

Ei(t) Sj(t) ∪ Sj(t-3,t-2) ∪
Sk (t-2,t-1)

“gym”1

Dependency RulePE
State

Rule
Block
ID

TVC Dependency Ruleblocks

State defined by
Location Context

Figure 2. The PE-based model for expressing TVC
provenance. The curly braces indicate the input dependencies
on Si(t) for the state “loc=gym”.

4.2 The Query for the TVC Model
Although relatively simple, we believe that the TVC model
provides adequate expressiveness and can answer the following
important provenance query:

Given a specific event (or data sample), show me the set of
data samples from the input streams on which this output
event may depend.

This can clearly be applied recursively, to reconstruct an
expanding data-dependency tree). As a CHF-based example, a
nurse receiving a CHF alert may inspect the relevant subsets of
ECG, weight and pressure data that generated that alert.

5. ARCHITECTURE FOR PROVENANCE
STORAGE AND QUERY RESOLUTION
To implement the TVC model in any stream processing system,
we require the following features:

a) Each PE must be associated with a set of rules (which we
call a RuleBlock), where each rule expresses (in some
format) a specific temporal dependence on input streams.

b) Each individual data element must be associated with a
specific stream, with each stream possessing a unique stream
ID, and have a well-defined timestamp (to help establish
appropriate temporal relationships).

PE
(id= 1005)

RuleBlocks Table

S908

……………

11005908X9900
245807X919
256415X0808

…11005908X0807

….145807X405
EventDataRule_IDPE_IDstreamIDdataID

SDO Table

….“paused”3

….“idle”2
….“active”110015

E908(t) S807(t-2,t) ∪ S415
(t-1,t)

“home”2

E908(t) S807(t) ∪ S807(t-
3,t-2) ∪ S415 (t-2,t-1)

“gym”11005

Dependency_RulePE_Sta
te

Rule_I
D

PE_I
D

S807

S415 Event
Data

meta

Provenance Storage
Manager

1. PSM ensures that provenance
metadata for each newly created PE
instance is stored in RuleBlocks table

2. Provenance runtime adds (dataID,
streamID, PE_ID) to SDO; PE adds
Rule_ID

3. SDO is stored in SDO Table

Provenance Subsystem

Storage Subsystem

PE
(id= 1005)

RuleBlocks Table

S908

……………

11005908X9900
245807X919
256415X0808

…11005908X0807

….145807X405
EventDataRule_IDPE_IDstreamIDdataID

SDO Table

….“paused”3

….“idle”2
….“active”110015

E908(t) S807(t-2,t) ∪ S415
(t-1,t)

“home”2

E908(t) S807(t) ∪ S807(t-
3,t-2) ∪ S415 (t-2,t-1)

“gym”11005

Dependency_RulePE_Sta
te

Rule_I
D

PE_I
D

S807

S415 Event
Data

meta

Provenance Storage
Manager

1. PSM ensures that provenance
metadata for each newly created PE
instance is stored in RuleBlocks table

2. Provenance runtime adds (dataID,
streamID, PE_ID) to SDO; PE adds
Rule_ID

3. SDO is stored in SDO Table

Provenance Subsystem

Storage Subsystem

Figure 3. The Provenance sub-system and associated storage
for the TVC model.
Figure 3 shows the functional design of the provenance storage
sub-system (modeled as a set of database tables) for the TVC
model. In our initial design, we assume that the set of dependency
rules is manually-specified: in other words, the author of a PE is
responsible for explicitly specifying the IDs and logic of each rule
block. In addition, the Provenance Storage Manager (PSM)
runtime component ensures that every data element output by the
PE is “marked” with a system-generated timestamp and the ID of
the PE. Figure 3 shows how this resulting metadata is stored in
the event database as part of the Streaming Data Object (SDO)
table. In addition, every instance of a PE creates a unique entry in
the RuleBlocks table, containing the relevant set of rules.

5.1 Logical PEs and Instances: Optimizing
Through Rule Templates
A careful inspection of Figure 3 shows that the RuleBlock entry
associated with a particular PE needs to be unique for each
“physical” running instance of a PE. For example, if both “Joe”
and “Bob” are being monitored for CHF using the same “logical”
QRS detector, they would each have a separate entry in the
RuleBlocks table, with the Dependency_Rule field containing the
user-specific stream bindings. This additional overhead can
however, be avoided by the use of “template” ruleblocks, which
are associated with a logical PE. This is based on the observation
that multiple instances of the same PE employ essentially
identical logic, differing only in the actual stream bindings.
Accordingly, in an optimized TVC architecture, the temporal
“ruleblocks” are associated with each unique logical PE. Each
instance of a PE creates a an entry in a separate StreamMapping
table, containing the IDs of the actual input streams and an index
into the RuleBlocks table for the corresponding physical PE.

5.2 Satisfying Data Dependency Queries
Given the provenance subsystem architecture presented above, we
can now answer the query “Show me all data samples on which

98

e(t) depends” for any arbitrary data event (e.g., CHF alert) stored
in the event database (the SDO table). Figure 4 illustrates the
pseudocode for the data dependency query. Intuitively speaking,
the process consists of first retrieving the “rule dependency”
block associated with the event being queried, and then using the
StreamMapping structure (for the corresponding PE instance) to
identify the template in the appropriate logical rule-block.
Subsequently, the resolution algorithm will determine the precise
input stream IDs and issue a SELECT query to retrieve the data
samples possessing the relevant stream ID and having a
timestamp within the corresponding time window.

In the example pseudocode in Figure 4, we assume that the
ruleblock template is expressed using the algebraic notation
illustrated in Figure 3. In reality, there are many options for
encoding the dependency rule. To help component developers
easily specify such provenance rules, we are investigating the use
of specific ontologies to help capture the dependency
relationships. We believe the development of ontologies to
provide support for TVC-based dependencies constitutes a key
research issue for building practical healthcare decision-support
systems.

Figure 4. Algorithm for Resolving a Data Dependency
Provenance Query

6. SIMPLE OVERHEAD ANALYSIS OF
TVC SCHEMES
In this section, we present a relatively simple, but representative,
numerical analysis of the storage overheads of annotation-based
provenance vs. our TVC-based provenance approach. Table 2 lists
the various mathematical symbols used in our analysis, as well as
the typical values we associated with our CHF sample
application.

For the annotation approach, each output “alert” must carry as
metadata the IDs of all the input SDOs that spawned this alert—in
general, this implies a total of Δi*ρi

D*Ssdo bits from input stream
Sj. Accordingly, the additional “fractional overhead” (FO) of
provenance metadata FOannot in this model (as a function of the
total time period of monitoring T) is given by:

(2) 1-

1

.......

1

....

⎟
⎠

⎞
⎜
⎝

⎛

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
+

=

∑

∑

=

=

S

i

D

i

D

i

overheadstorageSDO

S

i

D

i

D

i

overheadalert

alertalert

annot

S

SS
FO

TN

TTN

ρ

ρρ
44 844 764484476

For the basic TVC model (where the dependencies are
enumerated on a ‘per-instance’ basis), there are significant
savings in per-alert overhead; however, this comes at the cost of
slightly higher (1+κ) overhead to store stream-specific metadata
(e.g., the stream IDs) in the raw SDOs, as well as the per-PE
metadata needed to store the temporal dependence rules. In this
case, the fractional overhead FOTVC as a function of T is given by:

()
(3) 1-

1

..
.....

1

1

⎟
⎠

⎞
⎜
⎝

⎛

=
=

∑

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∑++

=

S

i

D

i

D

i

TVC

S

STRCN
FO

TN

S

i

D
i

D
i

overheadTVC
overheadRuleBlocks

sspe
N

ρ

ρκ
87648476

If users are allowed be clustered into groups in which provenance
dependency rules are invariant and can be shared (i.e, PEs are
instantiated per groups of users), the rule block overhead can be
reduced by a factor 0 < β < 1 corresponding to the average group
size 1/β. In this case, the fractional overhead FOTVCG becomes:

()
(4) 1-

1

..
.....

1

1

⎟
⎠

⎞
⎜
⎝

⎛

=
=

∑

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∑++

=

S

i

D

i

D

i

TVCG

S

STRCN
FO

TN

S

i

D
i

D
i

overheadTVC
overheadRuleBlocks

sspe
N

ρ

ρκβ
87648476

Finally, for the optimized TVC model (where the dependency is
captured by instance-independent templates), we eliminate the
per-user group overhead of metadata storage, but incur a lower
overhead of maintaining the stream-to-user group mappings. As
Nβ user groups, each with S streams, require, per group,
S*log(SNβ) bits to store the stream mappings, the overhead
FOTVC-op is:

() ()
(5) 1-

1

......

1

1log

⎟
⎠

⎞
⎜
⎝

⎛

=
+

=

∑

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∑++

=

− S

i

D

i

D

i

OptTVC

S

STSNS
RCN

FO
TN

S

i

D
i

D
i

overheadStream

N
TemplateRuleBlock

sspe

ρ

ρκββ
48476

48476

Table 2: Mathematical Symbols for Provenance Analysis
Symbo
l

Meaning Value Used in
Analysis

N, S No. of users being monitored and
number of input sensor streams/user

{50, 50,000}; 3
(ECG, blood
pressure (BP) and
weight (BP))

β Average fraction of users in groups 0.1

Npe No. of PEs in the application
“graph”

=11 for the CHF
application

ri Bits/sec of ‘raw’ data from sensor i.

We assume 256Hz, 12bit, 3 channels
for ECG, 3
samples/day@3bytes/sample for BP,
and 3 samples/day@2bytes/sample
for WT.

9216 bps (ECG),
8.33*10-4 bps
(BP), 5.5*10-4 bps
(WT)

ρD
i Samples (SDOs)/sec for sensor i. We

assume that ECG is chunked in 1-sec
blocks, while HR and BP associate
each raw sample with a new

1 for ECG,
3.44*10-4 for HR
and BP

RetrieveDependentData (Event e){
1. ts= e.Timestamp; streamID= e.streamID;
2. streamMap= lookupStreamMap(e.processID); //retrieve
 streamMap of PE instance that created event e
3. ruleBlock= getRule(streamMap.logicalPE, e.ruleIndex); //retrieve
the logical ruleblock
4. {inputStream[], startInterval[],endInterval[]}= resolveDependency
(ruleblock, streamMap.streamIDs[]); //this is the method that creates
the specific stream dependencies for this input sample
5. for (j=1; j < inputStream.size(); j++); {
 5.1 Dependj= SELECT f FROM SDO WHERE (ts-
startInterval[j] < f.Timestamp < ts-endInterval) AND
(f.streamID== inputStream[j]);
 5.2 SetofDependentData = Dependj;
 }
6. return SetofDependentData;
}

99

“chunk”.

Δi No. of seconds of past values of Si
that contribute to alert

 3600 sec for
ECG, 6.04.105 sec
(1 week) for BP
and HR.

ρalert Avg. No. of alerts/user per sec. (We
assume an alert (normal or abnormal)
is generated every hour).

1/3600.

SD

i
 Size of an SDO for input stream Si

(in bits). We assume each such SDO
stores a “chunk” of raw data, and
requires an additional 10 bytes of
“overhead”.

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

+ 80
1*
ρ D

i

ir

Salert Size of an “alert” SDO under the
annotation model (bits).

⎟
⎠
⎞⎜

⎝
⎛ + ∑ Δ=

S

i

SDO

id

D

ii S1
**80 ρ

An ‘annotated’
alert contain the
IDs of all the
“input” SDOs on
which it depends+
10 byte overhead

Cs

No. of distinct “states” (values) for
individual PE

40

Rs No. of bits/state to represent the
formula for temporal dependence

80000 (“rules” can
be expressed by
10KB of XML
data)

κ Overhead/data bit added in TVC
model. (For the dominant ECG data,
each data SDO is ~1162 bytes, and
TVC metadata is ~20 bytes/SDO)

 2%.

SSDO

id

The no. of bits used to represent a
unique SDO.

64 (this is enough
to index ~1020
distinct “chunks”
(SDOs)

Τ Time period which a CHF
application runs (we assume long-
term continuous monitoring).

Varied between
7days-6months

Figure 5 plots the relative storage overhead of these approaches as
the time (T) for the CHF monitoring application is varied. From
the plots, we see that either of the TVC-based approaches results
in a sharp reduction of the provenance-related overhead (which is
almost 100% under the annotation-based approach for our
application). Moreover, the optimized TVC approach (using
templates associated with logical PEs) is particularly efficient
when the number of patients is large (e.g., 50,000)—in this case,
it is able to support provenance with very low overhead (<5%).
Consequently, this model is especially attractive for long-term
monitoring applications over large patient populations.

7. CONCLUSIONS
In this paper, we have introduced stream provenance support as
an important new functional requirement for healthcare systems
employing sensor-based remote monitoring. The proposed TVC
model provides a simple, expressive and very-low overhead
construct for capturing process-level dependencies. We are
currently working to implement this model within the SPC
platform, by building system-level support for automatic
collection and storage of stream-level mappings as PE graphs are
instantiated or destroyed. We believe that the design of ontologies

by which authors of PEs can express the associated TVC
dependencies is an important topic of research. Finally,
provenance in the medical domain gives rise to important privacy
problems—in particular, Century will have to accommodate the
fact that privacy preferences for provenance metadata might be
distinct from similar policies on the medical data itself.

Figure 5: Comparative Provenance-based Overheads

8. REFERENCES
[1] Husemann, D., Narayanaswami, C., and Nidd, M. Personal

Mobile Hub. 8th International Symposium on Wearable
Computers (ISWC 2004), November 2004.

[2] Lubrin, E., Lawrence, E., and Navarro, K.F. MoteCare: An
Adaptive Smart BAN Health Monitoring System. In
Proceedings of the 24th IASTED international conference on
Biomedical Engineering, February 2006.

[3] Simmhan, Y.L., Plale, B. and Gannon, D. Performance
Evaluation of the Karma Provenance Framework for
Scientific Workflows. International Provenance and
Annotation Workshop (IPAW), May 2006.

[4] Groth, P., Luck, M., and Moreau, L. A protocol for recording
provenance in service-oriented grids. In Proceedings of of
the 8th International Conference on Principles of Distributed
Systems (OPODIS'04), December 2004.

[5] Muniswamy-Reddy, K., Holland, D., Braun U., and Seltzer,
M. Provenance-Aware Storage Systems. In Proceedings of
the 2006 USENIX Annual Technical Conference, June 2006.

[6] Chen, L., et al. A proof of concept: Provenance in a Service
Oriented Architecture. In Proceedings of the Fourth All
Hands Meeting (AHM), September 2005.

[7] Lineage File System, http://crypto.stanford.edu/~cao/lineage. html
[8] M. Blount, et al. Century: Automated Aspects of Patient

Care. Under submission.
[9] Amini, L., et al. SPC: A Distributed, Scalable Platform for

Data Mining. SIGKDD 2006 Workshop on Data Mining
Standards, Services, and Platforms, August 2006.

[10] Vijayakumar, N., and Plale, B. Towards Low Overhead
Provenance Tracking in Near Real-Time Stream Filtering.
International Provenance and Annotation Workshop (IPAW),
May 2006.

[11] Nicola M., and John. J. XML parsing: A threat to database
performance. 12th International Conference on Information
and Knowledge Managment, 2003.

100

