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ABSTRACT 
Provenance becomes a critical requirement for healthcare IT 
infrastructures, especially when pervasive biomedical sensors act 
as a source of raw medical streams for large-scale, automated 
clinical decision support systems. Medical and legal requirements 
will make it obligatory for such systems to answer queries 
regarding the underlying data samples from which output alerts 
are derived, the IDs of the processing components used and the 
privileges of the individuals and software components accessing 
the medical data. Unfortunately, existing models of either 
annotation or process based provenance are designed for 
transaction-oriented systems and do not satisfy the unique 
requirements for systems processing high-volume, continuous 
medical streams. This paper proposes a simple, but useful, hybrid 
provenance model called Time-Value Centric (TVC) provenance. 
In this model, each entry in the output data stream (e.g., an output 
alert) is linked to some specific time windows of incoming data 
samples that contribute to the generation of the particular output 
entry, with the time-dependence potentially varying with the data 
values. An initial design of the provenance storage and querying 
architecture for this TVC model is also presented.  

Categories and Subject Descriptors 
J.3 [Life and Medical Sciences]: Medical Information Systems  

General Terms 
Algorithms, Management, Security 

Keywords 
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1. INTRODUCTION 
Faced with a rising elderly population, governments and 
healthcare providers in many developed countries are 
investigating the development of a large-scale, distributed 
infrastructure for remote medical monitoring. A particularly 
compelling vision for IT-enhanced healthcare delivery focuses on 
the use of body-worn pervasive sensors that provide multiple 
streams of medical data (such as heart rate, SpO2 saturation, ECG  

signals and muscular activity levels). The availability of such 
rich, personal medical history can provide compelling benefits, 
such as proactive anomaly detection, drug side-effect monitoring 
and trend analysis of lifestyle activity patterns, especially for 
patients with chronic diseases such as congestive heart failure, 
high blood pressure and Alzheimer’s. Prior research on remote 
monitoring has largely focused on the client side, typically 
developing various components for a pervasive relay device that 
acts as a personal hub [1] in a 3-tier remote monitoring 
framework [1,2]. Research on the server-side has been largely 
absent, with research prototypes treating the server merely as a 
large data-store. 
 
As part of our recently-launched Century project, we are 
investigating the data management components and capabilities 
required at the backend to make this vision of pervasive 
healthcare a reality. Century is intended as a unified repository of 
biomedical data streams from a large patient population—
however, our effort is driven by the observation that the backend 
must be much more than a passive repository; it must be capable 
of analyzing, processing and transforming the raw medical 
sensor streams. In particular, automated stream analysis 
components will prove critical to the development of sensor-
driven diagnostic and clinical support systems, as otherwise 
medical professionals will simply be swamped by the high 
volume of raw sensor data generated by a large patient 
population.  
 
The issue of data provenance support is an important one for 
systems such as Century, as the medical domain often makes it 
mandatory to support functions such as “dependency analysis” or 
“data replay” needed to satisfy auditing and other regulatory 
requirements. In particular, various Century stakeholders (e.g., 
doctors, family members) should be able to inspect, often at a 
much later date,  Century’s internal “information flow”, to either 
manually validate the processing logic within Century or to 
perform fault-diagnosis in the case of anomalies. Broadly 
speaking, “provenance” in our context implies that the 
CENTURY infrastructure must not only filter and process high-
volume data streams, but also store sufficient metadata to 
subsequently answer questions such as a) “What low-level sensor 
data contributed to (or did not) to this automated alert”, b) “which 
stream processing components did this alert depend on?” or c) 
“what sensor was used to obtain this raw medical reading?”.  
 
A modest amount of research on provenance mechanisms has 
been conducted, largely for scientific workflow systems (e.g., 

1Authors listed in alphabetical order 
 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
HealthNet’07, June 11, 2007, San Juan, Puerto Rico, USA. 
Copyright 2007 ACM  978-1-59593-767-4/07/0006...$5.00. 

 

95



Karma[3], PreServ[4]), low-level operating systems or file 
systems (e.g., PASS [5]) or Web-Services oriented workflows 
(e.g., PASOA [6]). However, all of these provenance approaches 
apply to transactional systems and do not satisfy the unique 
requirements and constraints of stream-based systems.  In 
particular, we argue that the most widely-used “annotation” 
model of provenance, where the requisite metadata is associated 
with each individual data element, is inappropriate for stream-
based systems, as it fails to exploit the unique dependency 
characteristics across data streams and results in prohibitive 
storage overhead. Based on this observation, we introduce a Time-
Value-Centric (TVC) model for stream-oriented provenance in 
this paper. The key driver of this model is the observation that, in 
many instances, the provenance metadata is invariant over 
multiple successive data elements of a stream. It is thus best to 
collect the provenance data at the stream segment level (rather 
than at the data element level).  

1.1 Contributions of This Paper 
This paper makes the following important contributions: 

• It establishes the distinctive features of the provenance 
problem for stream-oriented middleware systems. 

• It introduces the TVC model as a simple, yet widely 
applicable, and efficient primitive for expressing lineage 
dependencies among medical events. 

• It provides an initial specification of the way in which the 
provenance relationships between various medical events 
and streams may be stored and retrieved. 

 

2. CENTURY BACKGROUND AND NEED 
FOR MEDICAL PROVENANCE 
The Century project [8] is building a distributed and shared 
middleware platform that ingests very large numbers of event 
streams, makes “sense” of this input data and distributes the 
resulting knowledge to a diverse set of stakeholders. This set 
includes patients and their extended families, medical 
professionals, hospitals and insurance companies, among others.  
These stakeholders might be interested in different perspectives 
on the data collected. For example, nurses may monitor the 
wellbeing of specific patients, while a CDC analyst might mine 
the data streams, aggregated across a large patient population, to 
predict disease outbreaks. However, all stakeholders face a 
common risk: of being inundated with data if the raw, 
unprocessed, biomedical event streams were directed towards 
them. To address this central problem of data overload, Century’s 
core component is a stream processing infrastructure capable of 
accepting and analyzing very large volumes of input data streams.  
 
Figure 1 shows a high level view of Century. At its heart is the 
Stream Processing Core (SPC) [9] platform, which offers support 
for the development and deployment of scalable stream analysis 
applications. Unlike most prior stream processing technologies, 
SPC supports both relational and user defined stream processing 
operators. Figure 1 also includes an example of a Congestive 
Heart Failure (CHF) analysis graph containing a combination of 
stream operators (that we refer to as Processing Elements or PEs). 
Broadly speaking, the CHF application takes 3 types of sensor 
inputs (ECG, blood pressure and weight) for an individual over a 
specific time interval and periodically generates an “alert” (either 

“normal” or “abnormal”) depending on the temporal evolution of 
the streams. Century adds several additional components to SPC.  
The first component is an event store where high-rate biomedical 
event streams are persisted, potentially for very long time periods 
(e.g., 6 years) to satisfy specific regulatory requirement. The 
event store allows authorized external applications to query, 
update or even delete these records. The provenance subsystem is 
another major new component of Century, as well as the focus of 
this paper. The provenance subsystem allows allow stakeholders 
to query for the origins of raw and processed event streams.  

Hub

Hub

Stream Processing Core

Pr
ov

en
an

ce
AP

IExplicit Collector Implicit Collector

Provenance Store

QRS

BP S/D

RR P and T

Arrhythmia

Weight trend
detector

CHF

alert

alert

Congestive Heart Failure

Source PE

Hub

Glucometer

ECG

Weight

BP

Hub

SMS 
Sink PE

Alert 
Sink PE

D
at

al
AP

I
XQ

ue
ry

DB

Event Store

Primary Physician

Emergency

Family/Friends

Government/Census

Company/Gym

CENTURY

Freq
Analyzer

 

Figure 1. Century Components (The stream processing graph 
illustrates the CHF monitoring application) 

 

3.  PRIOR WORK AND PROVENANCE 
CHALLENGES FOR MEDICAL STREAMS 
The bulk of prior research on provenance focuses on transactional 
systems, which typically involve a discrete (and relatively low-
rate) request-response style of interaction. Examples of such 
transaction workflows include: 

• Scientific and Web-Services Workflows: Systems such as 
Karma and PreServ are designed to capture interactions 
among various components for data-driven scientific 
workflows, such as atmospheric sensing and genomic 
computing. These systems focus purely on process 
provenance, i.e., they store the history of inter-component 
interactions (e.g., SOAP invocations), rather than the actual 
transformation of the datasets. 

• File Systems and Databases: Approaches such as PASS and 
LinFS [7] are typically annotation-based—they associate 
provenance metadata with individual data items, such as files 
or DB records. As an example, PASS automatically stores 
the modification history of files, including information on 
the calling application, the file descriptor state, etc.   

 
In contrast, Century needs to support provenance for high-volume 
data streams. Here, the term “stream” implies a logically-related 
set of data events possessing a well-defined temporal sequence. 
For example, continuous ECG readings from a cardiac monitor or 
periodic accelerometer readings (for movement monitoring) from 
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a single individual sensor can be considered to be two 
independent data streams. The limited work in stream-based 
provenance includes [10], which focuses on identifying and 
storing the dependency relations among streams (by encoding, as 
a tree, the IDs of ancestor streams of a derived stream), rather 
than the data dependencies for various elements of the stream. 
 

Table 1: Data Rates for Representative Medical Sensors 

 
We believe that provenance support in Century must consider the 
following characteristics: 
a) High Data Volume: Many of the medical applications that 

we consider involve the transformation and storage of data 
from sensors with very high data rates. (As an illustration, 
Table 1 shows the basic data rates associated with a variety 
of medical sensors.) Given such a high data rate, the 
“annotation” based model of provenance, where the metadata 
is appended to the data itself, is not particularly efficient 
from a storage perspective.  

b) High Throughput Support: The stream-processing 
middleware must also be computationally-efficient to support 
the high stream event rate. For high volume data streams, the 
process of per-data item annotation is likely to result in 
significant processing overhead (as provenance requires the 
generation of per-packet information, such as unique 
identifiers and timestamps), as well as incur high storage 
latency [11], and could thus impact the system’s throughput.  
Accordingly, we require a provenance solution that is 
reactive (i.e., the computation of provenance is invoked only 
when appropriate attributes of interest change). 

c) Statefulness of Stream Operators:  Many transformations of 
interest on raw medical data occur over “time windows” of 
raw sensor data. In other words, the operators are stateful, 
with the transformation logic for a particular data element 
implicitly affected by past input elements or other external 
“context”. An example of such a stateful operator is an 
“activity detector that detects if an individual’s pedometer 
reading (number of steps walked) on a particular day falls 
below 70% of the average footsteps/day over the past week”. 
In contrast, the provenance for a user accessing a scientific 
library via a Web service would consist of parameters such 
as the requester’s user ID or the library’s version number—
this provenance data is independent of past or future 
transactions.  

 

The limitations of existing provenance models become clear on 
reviewing these three vital features of Century. Annotation-based 
approaches are particularly poorly suited to our high-volume, 
stream-oriented environment due to the high storage and 
processing overheads. Process-oriented provenance models, on 
the other hand, are inadequate for many clinical decision-support 
applications, especially if healthcare professionals desire to 
visually inspect the data dependencies and derive their own 
conclusions (and perhaps, override the recommendations of the 
automated system). The observations above lead to two key new 
requirements: 

a) A hybrid model of provenance is required.  Such a 
hybrid model should ideally combine the low storage 
and processing overhead of stream-based provenance 
with the higher descriptive capabilities of data-oriented 
annotation models.  

b) The provenance system should be consciously 
architected to support a query-vs-store tradeoff, in 
effect trading off higher reconstruction complexity 
(during the infrequent provenance queries) for more 
efficient metadata storage and generation.  

In the next section, we introduce the TVC model as the first, 
simple yet useful, instance of such a hybrid provenance model. 

4. THE TIME AND VALUE CENTRIC 
MODEL 
The temporal aspect of the TVC model draws on the fact that 
many of the transformations of sensor data streams implicitly 
involve the use of input data samples that lie within a finite time-
window (or sets of such windows). Mathematically, a simple 
model could track the value of a data element belonging to a 
stream Si (output by a processing element PEi) as a function of 
specific samples (from input streams) that occur within designated 
time intervals in the past. In other words, for any element ei(t)∈Si, 
with a creation timestamp of t, the following relationship holds: 
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where Lj is the number of distinct disjoint ‘time intervals’ which 
define the values of Sj on which ei(t) depends, and startjk and endjk 
define the boundaries of these intervals. For the simple cases 
where endjk=0 and L=1, we may express the time dependency of 
an input stream Sj in terms of a single interval value Δj. Moreover, 
these dependencies are time-invariant—in other words, the 
dependence of a derived medical event to other medical samples 
or raw sensor data can be expressed succinctly and completely 
independently of the specific timestamp or ID of each sample. 
Moreover, as long as each individual data item contains its 
timestamp and a stream ID, the dependent set of data elements 
can always be derived. 

4.1 State-Based Changes in Temporal 
Dependencies 
In several practical cases of interest, the temporal dependency 
may be time-invariant, but still exhibit a dependency on some 
data value. In general, the “data” value can refer to an element 
belonging to one of the input streams or to some internal “state” 
(that indirectly modifies) the processing logic of a PE. As an 

Type of 
Sensor Device 

Bits/ 
sensor 
sample 

Channels/ 
device 

Typical 
reporting 
frequency 

Data 
rate 
(KB/day
) 

SpO2 3000 1 3 Hz 94,922 

EKG (cardiac) 12 6 256 Hz 194,400 

Accelero-
meter 64 3 100 Hz 202,500 

EEG (brain) 12 12 256 Hz 388,800 

EMG (muscle) 12 6 1024 Hz 777,600 
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example of such state-dependent processing, consider the 
following rule (where HR indicates values from a heart rate sensor 
and loc refers to the user’s location context: 
   IF loc= “gym”, then generate ALERT iff (AVG(HR(t-     
10,t)>140); 
    ELSE generate ALERT iff (AVG(HR(t-30,t)> 90). 

In this case, it is easy to see that the temporal dependence term Δ 
depends on the patient’s location, with a more aggressive policy 
(smaller time window) being used when the patient is exercising 
in the gym.  To capture and reconstruct this sort of provenance 
dependence, we need to extend the provenance model—as a 
generalization, we can associate multiple “dependency 
ruleblocks” (the logic of Equation 1) with each PE, with each 
block corresponding to a distinct state (or range of specific 
values). To reconstruct the data provenance, the output data 
sample must not only possess a timestamp and stream ID, but also 
an index to the specific ruleblock (from the set of ruleblocks of 
the creating PE) associated with it. An example of the logical 
metadata associated with an arbitrary PE is shown in Figure 2.  

Processing 
Element

Si(t) Si(t-1) Si(t-2)

Output stream Si

Sj(t)
Sj(t-1)

Sj(t-2)
Sj(t-3)

Sk(t)
Sk(t-1) Sk(t-2)

Sk(t-3)

Input stream Sj

Input stream Sk

Ei(t) Sj(t-2,t)  ∪ Sk (t-1,t)“home”2

Ei(t) Sj(t) ∪ Sj(t-3,t-2) ∪
Sk (t-2,t-1)

“gym”1

Dependency RulePE 
State

Rule 
Block 
ID

TVC Dependency Ruleblocks

State defined by 
Location Context

 
Figure 2. The PE-based model for expressing TVC 
provenance. The curly braces indicate the input dependencies 
on Si(t) for the state “loc=gym”. 
 

4.2 The Query for the TVC Model 
Although relatively simple, we believe that the TVC model 
provides adequate expressiveness and can answer the following 
important provenance query: 

Given a specific event (or data sample), show me the set of 
data samples from the input streams on which this output 
event may depend.  

This can clearly be applied recursively, to reconstruct an 
expanding data-dependency tree). As a CHF-based example, a 
nurse receiving a CHF alert may inspect the relevant subsets of 
ECG, weight and pressure data that generated that alert. 

5. ARCHITECTURE FOR PROVENANCE 
STORAGE AND QUERY RESOLUTION 
To implement the TVC model in any stream processing system, 
we require the following features: 

a) Each PE must be associated with a set of rules (which we 
call a RuleBlock), where each rule expresses (in some 
format) a specific temporal dependence on input streams. 

b) Each individual data element must be associated with a 
specific stream, with each stream possessing a unique stream 
ID, and have a well-defined timestamp (to help establish 
appropriate temporal relationships). 
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Figure 3. The Provenance sub-system and associated storage 
for the TVC model.  
Figure 3 shows the functional design of the provenance storage 
sub-system (modeled as a set of database tables) for the TVC 
model. In our initial design, we assume that the set of dependency 
rules is manually-specified: in other words, the author of a PE is 
responsible for explicitly specifying the IDs and logic of each rule 
block. In addition, the Provenance Storage Manager (PSM) 
runtime component ensures that every data element output by the 
PE is “marked” with a system-generated timestamp and the ID of 
the PE. Figure 3 shows how this resulting metadata is stored in 
the event database as part of the Streaming Data Object (SDO) 
table. In addition, every instance of a PE creates a unique entry in 
the RuleBlocks table, containing the relevant set of rules. 

5.1 Logical PEs and Instances: Optimizing 
Through Rule Templates  
A careful inspection of Figure 3 shows that the RuleBlock entry 
associated with a particular PE needs to be unique for each 
“physical” running instance of a PE. For example, if both    “Joe” 
and “Bob” are being monitored for CHF using the same “logical” 
QRS detector, they would each have a separate entry in the 
RuleBlocks table, with the Dependency_Rule field containing the 
user-specific stream bindings. This additional overhead can 
however, be avoided by the use of “template” ruleblocks, which 
are associated with a logical PE. This is based on the observation 
that multiple instances of the same PE employ essentially 
identical logic, differing only in the actual stream bindings. 
Accordingly, in an optimized TVC architecture, the temporal 
“ruleblocks” are associated with each unique logical PE. Each 
instance of a PE creates a an entry in a separate StreamMapping 
table, containing the IDs of the actual input streams and an index 
into the RuleBlocks table for the corresponding physical PE.  

5.2 Satisfying Data Dependency Queries  
Given the provenance subsystem architecture presented above, we 
can now answer the query “Show me all data samples on which 

98



e(t) depends” for any arbitrary data event (e.g., CHF alert) stored 
in the event database (the SDO table). Figure 4 illustrates the 
pseudocode for the data dependency query. Intuitively speaking, 
the process consists of first retrieving the “rule dependency” 
block associated with the event being queried, and then using the 
StreamMapping structure (for the corresponding PE instance) to 
identify the template in the appropriate logical rule-block. 
Subsequently, the resolution algorithm will determine the precise 
input stream IDs and issue a SELECT query to retrieve the data 
samples possessing the relevant stream ID and having a 
timestamp within the corresponding time window.  
 
In the example pseudocode in Figure 4, we assume that the 
ruleblock template is expressed using the algebraic notation 
illustrated in Figure 3. In reality, there are many options for 
encoding the dependency rule. To help component developers 
easily specify such provenance rules, we are investigating the use 
of specific ontologies to help capture the dependency 
relationships. We believe the development of ontologies to 
provide support for TVC-based dependencies constitutes a key 
research issue for building practical healthcare decision-support 
systems. 

 
Figure 4. Algorithm for Resolving a Data Dependency 
Provenance Query  

6. SIMPLE OVERHEAD ANALYSIS OF 
TVC SCHEMES 
In this section, we present a relatively simple, but representative, 
numerical analysis of the storage overheads of annotation-based 
provenance vs. our TVC-based provenance approach. Table 2 lists 
the various mathematical symbols used in our analysis, as well as 
the typical values we associated with our CHF sample 
application.   
 
For the annotation approach, each output “alert” must carry as 
metadata the IDs of all the input SDOs that spawned this alert—in 
general, this implies a total of Δi*ρi

D*Ssdo bits from input stream 
Sj. Accordingly, the additional “fractional overhead” (FO) of 
provenance metadata FOannot in this model (as a function of the 
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For the basic TVC model (where the dependencies are 
enumerated on a ‘per-instance’ basis), there are significant 
savings in per-alert overhead; however, this comes at the cost of 
slightly higher (1+κ) overhead to store stream-specific metadata 
(e.g., the stream IDs) in the raw SDOs, as well as the per-PE 
metadata needed to store the temporal dependence rules. In this 
case, the fractional overhead FOTVC as a function of T is given by: 
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If users are allowed be clustered into groups in which provenance 
dependency rules are invariant and can be shared (i.e, PEs are 
instantiated per groups of users), the rule block overhead can be 
reduced by a factor 0 < β < 1 corresponding to the average group 
size 1/β. In this case, the fractional overhead FOTVCG becomes: 
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Finally, for the optimized TVC model (where the dependency is 
captured by instance-independent templates), we eliminate the 
per-user group overhead of metadata storage, but incur a lower 
overhead of maintaining the stream-to-user group mappings. As 
Nβ user groups, each with S streams, require, per group, 
S*log(SNβ) bits to store the stream mappings, the overhead 
FOTVC-op is:  
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Table 2: Mathematical Symbols for Provenance Analysis 
Symbo
l 

Meaning Value Used in 
Analysis 

N, S No. of users being monitored and 
number of input sensor streams/user 

{50, 50,000}; 3 
(ECG, blood 
pressure (BP) and 
weight (BP)) 

β Average fraction of users in groups  0.1 

Npe No. of PEs in the application 
“graph” 

=11 for the CHF 
application  

ri Bits/sec of ‘raw’ data from sensor i. 

We assume 256Hz, 12bit, 3 channels 
for ECG, 3 
samples/day@3bytes/sample for BP, 
and 3 samples/day@2bytes/sample 
for WT. 

9216 bps  (ECG), 
8.33*10-4 bps 
(BP), 5.5*10-4 bps 
(WT) 

ρD
i Samples (SDOs)/sec for sensor i. We 

assume that ECG is chunked in 1-sec 
blocks, while HR and BP associate 
each raw sample with a new 

1 for ECG, 
3.44*10-4 for HR 
and BP  

RetrieveDependentData (Event e){ 
1. ts= e.Timestamp; streamID= e.streamID; 
2. streamMap= lookupStreamMap(e.processID);   //retrieve 
  streamMap of PE instance that created event e 
3. ruleBlock= getRule(streamMap.logicalPE, e.ruleIndex);   //retrieve  
the  logical ruleblock  
4. {inputStream[], startInterval[],endInterval[]}= resolveDependency 
(ruleblock, streamMap.streamIDs[]);   //this is the method that creates 
the specific stream dependencies for this input sample 
5. for (j=1; j <  inputStream.size(); j++); { 
      5.1 Dependj= SELECT f FROM SDO WHERE (ts-             
startInterval[j] < f.Timestamp < ts-endInterval)  AND 
(f.streamID== inputStream[j]); 
        5.2 SetofDependentData = Dependj; 
     } 
6. return SetofDependentData; 
} 
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“chunk”. 

Δi No. of seconds of past values of Si 
that contribute to alert 

 3600 sec for 
ECG, 6.04.105 sec 
(1 week) for BP 
and HR. 

ρalert Avg. No. of alerts/user per sec. (We 
assume an alert (normal or abnormal) 
is generated every hour). 

1/3600. 

SD

i
 Size of an SDO for input stream Si 

(in bits).  We assume each such SDO 
stores a “chunk” of raw data, and 
requires an additional 10 bytes of 
“overhead”.  

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

+ 80
1*
ρ D

i

ir

 

Salert Size of an “alert” SDO under the 
annotation model (bits). 

⎟
⎠
⎞⎜

⎝
⎛ + ∑ Δ=

S

i

SDO

id

D

ii S1
**80 ρ  

An ‘annotated’ 
alert contain the 
IDs of all the 
“input” SDOs on 
which it depends+ 
10 byte overhead 

 

Cs 

No. of distinct “states” (values) for 
individual PE 

40 

Rs No. of bits/state to represent the 
formula for temporal dependence 

80000 (“rules” can 
be expressed by 
10KB of XML 
data) 

κ Overhead/data bit added in TVC 
model. (For the dominant ECG data, 
each data SDO is ~1162 bytes, and 
TVC metadata is ~20 bytes/SDO) 

 2%.  

SSDO

id
 

The no. of bits used to represent a 
unique SDO.  

64 (this is enough 
to index ~1020 
distinct “chunks” 
(SDOs) 

Τ Time period which a CHF 
application runs (we assume long-
term continuous monitoring). 

Varied between 
7days-6months 

 
Figure 5 plots the relative storage overhead of these approaches as 
the time (T) for the CHF monitoring application is varied. From 
the plots, we see that either of the TVC-based approaches results 
in a sharp reduction of the provenance-related overhead (which is 
almost 100% under the annotation-based approach for our 
application). Moreover, the optimized TVC approach (using 
templates associated with logical PEs) is particularly efficient 
when the number of patients is large (e.g., 50,000)—in this case, 
it is able to support provenance with very low overhead (<5%). 
Consequently, this model is especially attractive for long-term 
monitoring applications over large patient populations.  

7. CONCLUSIONS 
In this paper, we have introduced stream provenance support as 
an important new functional requirement for healthcare systems 
employing sensor-based remote monitoring. The proposed TVC 
model provides a simple, expressive and very-low overhead 
construct for capturing process-level dependencies. We are 
currently working to implement this model within the SPC 
platform, by building system-level support for automatic 
collection and storage of stream-level mappings as PE graphs are 
instantiated or destroyed. We believe that the design of ontologies 

by which authors of PEs can express the associated TVC 
dependencies is an important topic of research. Finally,  
provenance in the medical domain gives rise to important privacy 
problems—in particular, Century will have to accommodate the 
fact that privacy preferences for provenance metadata might be 
distinct from similar policies on the medical data itself. 

 
Figure 5: Comparative Provenance-based Overheads 
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