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Abstract— Society 2.0 is the next stage in the evolution of 
the Information Society, enabling seamless content and 
service interaction in support of our environment, to ease 
our work and life balance, and to enrich our lives. 
Abundant sustainable resources such as energy, water, 
and food, together with smart buildings, spaces and 
transportation are all aspects of the Society 2.0 vision.   
The domain of residential energy monitoring services 
and their supporting IT ecosystems provides a rich and 
challenging environment to push the limits of our current 
IT service models, designs, and implementation 
strategies. As part of HP Labs’ ongoing research into 
environmental sustainability we have designed and 
deployed a Home Energy Intelligence Service for remote 
monitoring and assessment of residential energy 
consumption patterns, overlaid by a set of energy-related 
advisory services. Our solution consists of a residential 
sensing layer, an energy cloud service that contains a 
number of back-end components, and a user dashboard 
experience. These enable our research team to explore 
issues around holistic and fine grained sensing, 
differentiated analytics, scaling of IT services, and the 
surfacing of insights and incentives to enable 
homeowners to manage and reduce their energy 
consumption through behavioral change. 
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I. MOTIVATION AND CONTEXT 

A. Society 2.0 IT Service Challenges: 

As forces such as population growth, urbanization and 
constrained natural resource exploitation impact global 
society, our engineered environments must evolve to meet 
these challenges [1, 2].  IT technologies, including sensors, 
information management, automation, man-machine 
interaction, analytics and visualization, real-time decision 
making, collaboration tools, security management, 
sustainable IT infrastructure, and service delivery models 
(cloud services) will all become components within the 

toolset used to create Society 2.0 [3]. In a world where IT 
becomes critical, embedded and ubiquitous, the key research 
problems and challenges revolve around: 

 Preparing all services for unprecedented scale (i.e. 
sensors, users, data, processing, network traffic, etc.). 

 Massive improvements in the availability of low-cost 
high-bandwidth networks, worldwide. 

 Enabling a wide spectrum of physical devices and 
objects to become networked, and to sense, report 
and be dynamically controlled. 

 Challenges around security, privacy and accessibility 
become increasingly complex. 

 Creation, composition, integration, automation and 
delivery of sophisticated services, at all levels. 

 User-centered design, behavioral analysis, and 
acceptance of new technologies. 

 Enablement of information management and business 
intelligence services in the cloud. 

 Balancing commercial competitiveness against the 
openness of technologies. 

 Leveraging of multi-disciplinary knowledge and 
experience from companies, universities, and 
governments. 

 An understanding of how to engage in government 
programs, as many broad sustainability initiatives are 
being funded by government agencies [4]. 

 

B. Residential Energy Monitoring Environment: 

The residential energy monitoring domain provides a 
rich environment to explore all of the challenges mentioned 
above and is of growing interest and concern to countries 
around the world. 

In North America, every residence is destined to become  
a consumption and (optional) generation end point on the 
emerging Smart Grid; a collective opportunity 
encompassing 129 million households, 249 million 
computing and access devices, and an installed base of more 
than 1 billion energy consuming appliances. Demand 
response and consumer energy efficiency have also been 
highlighted as priorities in the emerging Smart Grid 



standardization efforts. The initial rollout of smart metering 
technology, coupled with the introduction of dynamic 
pricing tariffs, almost ensures that a second wave of in-
home energy-aware products will follow; the majority of 
which we envision being adapted to incorporate intelligent 
energy-aware attributes. Hence, in the foreseeable future, 
we expect products to emerge with appropriate hooks to 
enable their participation as peers within a negotiated 
supply-demand matched energy-balanced ecosystem. Such a 
system has the potential to generate vast quantities of 
mineable data which, if managed and analyzed 
appropriately, would be of great benefit to consumers, 
device manufacturers, utility providers, and the public 
sector; collectively contributing to a reduction in the 
nation’s carbon footprint. 

The creation of a home Energy Intelligence Service 
(EIS) for remote monitoring and assessment of residential 
energy consumption patterns, overlaid by a suite of energy-
related advisory services, is a significant business 
opportunity. At the heart of an EIS service is an energy-
orientated cloud service, enabling customers who deploy an 
energy information aggregator within their homes, to have 
open access to, and control over, their customized 
residential energy profile from any web-enabled device. 
Additionally, the service’s collection of energy information 
from, potentially, millions of households creates an 
opportunity for “Energy Intelligence” brokers to provide 3rd 
parties (device manufacturers, utilities, and governments) 
with a platform to analyze and deliver targeted services 
based on energy-oriented analytics, performed against a 
massive energy intelligence repository. 

 

II. HP LABS HOME ENERGY MONITORING RESEARCH 

PROOF OF CONCEPT 

 
Figure 1. Architecture and main system components of the 
HP Labs home energy monitoring solution; our prototype 

residential Energy Intelligence Service (EIS). 
 

The HP Labs prototype contains several distributed 
elements, as shown in Figure 1, where sensed data from real 
homes is retained by our energy cloud service. This enables 
our research team to explore issues around fine grained 
sensing, energy analytics, and the surfacing of actionable 
insights, which we present to the homeowners in the form 
of hints and tips to better manage their energy consumption 
related activities and behaviors. Over the last year we have 
designed and deployed these components throughout seven 

real test homes in the San Francisco bay area. The main 
system components are described in the following sub-
sections. 

A. Residential Sensing:  

Each residence is instrumented with a heterogeneous 
network of wireless sensor nodes, as shown in Figure 2. We 
monitor whole home consumption, emulating data from a 
smart meter, and also monitor individual or clustered 
devices, emulating the information stream we expect to 
receive from future Smart Grid enabled products. These 
measurements combine to provide the measurement stack as 
shown in Figure 3, comprised of measurements from actual 
nodes (hard sensors) plus values derived using data 
analytics (via disaggregation) from aggregate measurements 
(soft sensors). We can also subtract out the unmonitored 
portion of household energy consumption, which is often 
due to items that would be difficult to instrument without 
access to the homes’ internal wiring infrastructure (switched 
lighting circuits for the most part).  

 

 
Figure 2. Residential Sensing Topology.  

 
 

 
Figure 3. Energy Measurement Stack. 

 
Our initial deployments utilized commercially available 

Zigbee networking products incorporating Hall-effect 
sensing to measure alternating current at each node (a 
reasonable proxy for power consumption). An HP Labs 
custom sensor node design now provides true AC power 
monitoring, incorporating real and apparent power values, 
voltage, current, frequency and other parameters on a per 



node basis; greatly enhancing the available information 
within each installation. To cope with this increased data 
set, we created a custom software gateway, residing on a HP 
NetBook equipped with a USB dongle acting as the Zigbee 
network coordinator. This application collects and 
periodically uploads blocks of energy measurement data to 
our energy cloud service. 

  

B. Energy Cloud Service:  

This provides a suite of back-end services as shown in 
Figure 4. These incorporate data storage, data aggregation, 
data modeling and service endpoints for both incoming 
sensor data uploads and for the aggregate information 
required by the user interface presentations. Over time, we 
create and store a rich set of energy-related activity profiles 
for each home; modeling each residence as a zonal 
hierarchy, with hourly consumption and production figures 
being calculated along with corresponding baseline and 
average consumption patterns for each sensor instantiation. 

 

 
 

Figure 4. The energy cloud service’s core application 
layered architecture 

 
1) Data Model: 

A primary goal was to design a data model that would 
provide the flexibility for heterogeneous resource types and 
home configurations, support enhanced sensor types and the 
use of virtual sensors, and enable two-way interaction with 
the user regarding usage patterns and events. 

The energy cloud service runs on top of a rich 
hierarchical, but not overly complex, model to represent 
home installations, the sensing equipment within them and 
the spatial organisation of those sensors, as depicted in 
Figure 5. An installation model can accommodate multiple, 
diverse energy resources (electricity, gas, solar, etc), each 
arranged into a number of zones that contain sensors. These 
zones often map directly onto the physical layout of the 
home, where a zone represents a room, but are not restricted 
to such, and can be created to match whatever logical view 
of the home a user desires. 

In addition, the model supports “virtual” sensors, from 
which usage is not measured by a physical sensor reading. 

Instead, virtual sensor values are a result of calculations 
within the application, or are provided by an external 
source. The implemented example of this is to provide 
usage figures for the unmeasured portion of a home's energy 
consumption, utilising a whole-home sensor to provide the 
total home usage, from which the total usage of all the 
individual sensor nodes is subtracted. This type of virtual 
sensor is commonly known as an “Everything Else” sensor. 

The energy cloud service is capable of integrating data 
from multiple diverse sources, with the ability to handle 
varying intervals between readings from different power 
installations and different units of power (both within a 
single power installation, such as Amp and Watt readings for 
electricity, and across different types of energy resources 
with varying units, for example where gas, water, and 
electricity all utilise different measurement units). 
  

 

Figure 5. The energy cloud service’s data model 
hierarchy 

 
2) Data Collection & Storage:  

The primary route for data collection is via a web service 
endpoint, exposed by the energy cloud service to allow 
client devices, typically the residential gateway within each 
home, to directly connect to the service and upload sets of 
sensor readings. This feature allows each client to 
independently determine the frequency of data collection. 
Multiple resources can provide data within the same set of 
readings, or they can be segregated by the client. The back-
end system allows for the automatic detection of new 
sensors within the data provided by a client, and will store 
readings and usage aggregates for those new sensors 
automatically. Newly discovered sensors are corralled 
within a special zone that is excluded from the normal user 
views and whole-home aggregations. Once those sensors are 
identified and placed into their correct resource type and 
zone, the system will then ensure that all aggregations since 
each sensor was first discovered are updated to reflect the 



new sensor’s selected placement. 
 

3) Data Aggregation: 

While sensor readings may provide raw data in a variety 
of units, the user is always presented with a consistent view 
of the data – that of aggregate usage. For electricity this 
would be kilo-watt hours (kWh), and for gas, this could be 
Therms. To enable this, all power readings are converted 
into a unit of usage (again, for an electricity-based resource 
this would be a conversion from Amps, or Watts, to kWh) 
for a given period.  

With performance in mind, the system continually 
calculates hourly aggregate usage figures for each sensor, 
and stores them. When asked to display usage, it is those 
aggregate figures which are either used directly (if the 
granularity desired is hourly), or combined to form new 
aggregates for longer time periods. This approach of pre-
calculating aggregates provides significant performance 
benefits, with no loss of precision, for the most common 
usage scenarios, while retaining the flexibility to offer 
whatever aggregation intervals are desired. 

Only aggregates for sensors are stored. If usage figures 
for a whole home or zone are required, those are generated 
on-the-fly from the appropriate sensors. This allows the 
maximum flexibility in allowing sensors to be moved from 
one zone to another, without requiring the recalculation of 
parent aggregations. There are situations where 
recalculation of historical values is required, however: a 
notable one is where a whole-home or whole-zone smart 
meter is added to an installation. Once this special sensor is 
identified as such, the system creates a virtual “Everything 
Else” sensor to represent the unmeasured load (the 
difference between the smart meter and the total 
consumption of the device-level smart plug sensors). At this 
point, the system must then calculate all historic aggregate 
usage values for this virtual sensor. 

As part of the aggregate usage record that is stored for 
each hour, a record of the baseline usage during that hour is 
also saved. As the baseline is a particularly useful measure 
to help users gain insight into their energy consumption, we 
ensure that this is easily available for each interval, and that 
the system provides easy ways to calculate accurate baseline 
figures for any given period. 

One potential challenge for aggregation is to ensure that 
any gaps in the raw sensor data are dealt with, as outages in 
home installations or smart plugs are always a possibility. 
The way the system is designed to collate and present usage 
aggregates allows for extension of the basic behaviour to 
include simple smoothing of gaps or more sophisticated data 
creation based on historical usage analysis. 

 
4) Energy Analytics:   

The energy analytics module operates at both the 
individual and aggregate level; detecting and smoothing 
gaps in the sensor data with historically derived estimates of 

usage, mining for patterns of energy use, modeling changes 
in energy demand, and detecting anomalous behaviors. In 
turn, this generates hints and tips, customized for each 
residence, which we present as personalized, energy 
reducing behavioral recommendations via the home user 
interface. In addition, consumers could be provided with 
other types of actionable options to help them reduce their 
consumption; potentially via time-sliced load balancing 
with anonymized peers. Also, each device's energy profile 
could be compared against current best-in-class 
performance data, resulting in a customized ROI calculation 
for their potential replacement. 

Early in the project we realized that surfacing 
“actionable” insights requires fine grain monitoring of 
energy usage (on an individual device/appliance level). 
While nodal sensing, accomplished with smart plugs, 
provides the breakdown of residential consumption we 
desire, we also recognized that their mass market adoption 
would be challenging; primarily due to their expected unit 
cost and installation/configuration complexities. Energy 
disaggregation allows an aggregate energy measurement to 
be separated into its constituents. Hence we developed a 
prototype disaggregation module, based on factorial hidden 
Markov model and its extensions, to reduce the number of 
sensors required to determine the load breakdowns we 
require. This work is described in more detail in the energy 
analytics examples section of the paper. 

  

C. Home User Interface:  

Our goal was to build an “insanely simple” home energy 
awareness experience which engaged the user, and required 
minimal steps to achieve and provide actionable and 
relevant energy usage insights.  

 

Figure 6.  The home user interface. 

The user experience was designed to mimic emerging 
and current HP entertainment experiences in ease of 
discovery, usage, and family-oriented engagement. The goal 
was to strike a balance between 1) just enough information 



displayed in a compelling way for novices, and 2) more 
detail (easily accessible) for enthusiasts. As shown in Figure 
6, the top-level user interface presents zonal regions (akin to 
virtual rooms), scaled in proportion to total consumption 
and color shaded in response to usage trends over time. 
Insights are revealed in relation to the source of the 
occurrences.  

D. Operations Management Console:  

A second user interface shown in Figure 7, provides a 
spatial view of energy information, potentially from 
millions of households. This creates a service opportunity 
for 3rd parties (e.g. manufacturers, utilities, regional 
governments) through a targeted platform hosting energy-
oriented analytics which are performed against a collective 
data repository, enabling operational views of energy 
activity across a specific customer’s business function or 
region.  

 

Figure 7.  Operations Management Console. 

 

III. ENERGY ANALYTICS EXAMPLES 

A. Power Load Disaggregation:  

We propose a methodology for disaggregation of load 
into its constituents using the aggregate load and contextual 
information such as time of day, environmental conditions, 
usage of other resources, etc [8]. The main advantage of our 
methodology is that it allows aggregate load to be split up 
into its constituents without requiring each individual 
device or appliance to be instrumented.  This provides 
visibility into component wise resource consumption. 
Furthermore, since disaggregated load becomes available, 
analytic techniques can be applied individually to devices 
and appliances. 

The problem of power load disaggregation can be 
formally stated as: given the aggregate power consumption 
for T time periods, Y = [ y1, y2, …, yT ] and the number of 
appliances, M, we want to infer the power load by each of 
the M appliances, that is, 

S1 = < s11, s12, … , s1T > 
S2  = < s21, s22, … , s2T > 

  … 
SM = < sM1, sM2, … , sMT > 

 
where Si is the time series of the disaggregated load of the 
ith appliance. 

Hart [6] first investigated the problem of power load 
disaggregation in homes. He looked at changes in the 
aggregate power consumption and related them to on/off 
events. In order to disambiguate appliances or devices with 
similar power consumption, he considered additional AC 
power metrics such as reactive power, power factor, etc. 
While two-state appliances could be tracked using on/off 
events, Hart used state machines for multi-state appliances. 
He focused on two kinds of features for power 
disaggregation – transient signatures and stable-state 
signatures [6]. Transient signatures capture electrical events, 
such as high frequency noise in electrical current or voltage, 
generated as a result of an appliance turning on or off. 
Although these features are good candidates for use in 
disaggregation, sampling data fast enough to capture them 
requires special instrumentation. For example, Patel et al. 
use a custom built device to measure at rates up to 100KHz 
[7]. However, most smart meters deployed in the U.S. have 
low sampling rates, typically 1Hz or less.  

We focused on low frequency stable signatures in our 
work, and used unsupervised models such as factorial 
hidden Markov model (FHMM) to disaggregate the power 
data. In particular, we proposed a variant of FHMM, 
conditional factorial hidden semi-Markov model 
(CFHSMM), which performed better than other known 
unsupervised methods. The models considered were tested 
on real power data collected from seven homes. Further 
details on the models and their performance evaluations are 
presented in Kim et al. [8]. 

B. Anomaly Detection:  

Appliances such as refrigerators have a temporally 
varying power consumption behavior. For example, a 
refrigerator compressor turns ON/OFF periodically based on 
the degree of cooling required. This behavior directly 
impacts the amount of energy consumed by the appliance. A 
deviation from normal operational behavior may be caused 
by an anomaly and result in increased energy consumption. 
Furthermore, certain anomalous behavior may manifest as 
unique changes in the operational characteristics. Here, we 
describe a methodology to characterize the operational 
behavior of an appliance or device which could be used for 
determining deviance from normal behavior and for 
detecting anomalies. Characterization of the power 
consumption of an appliance or device can be broken into 
the following steps:   

1) Data pre-processing. Here the raw time-series 
samples are checked for invalid or out of range values; 
multiple time series are synchronized, if required; missing 



values are filled in and the time intervals between readings 
made uniform through linear interpolation, etc.  

2) Edge detection. The difference between sensor 
readings at time t and at time t–1 is computed. This provides 
a time series of all the deltas in successive time points in the 
quantities measured.  

3) Clustering. The deltas obtained in the previous step 
are clustered using a suitable clustering algorithm such as k-
means. The number of clusters, an input to most clustering 
algorithms, can be determined using domain information, or 
through one of many techniques discussed in clustering 
literature such as silhouette coefficients, evaluating ratio of 
within clusters and between clusters sum of squares 
distances, etc.  

4) Filtering the clusters. This step requires feedback 
from a domain expert (in this sense the methodology is 
semi-supervised). The clusters discovered are labeled to link 
them to a physical event or state. For example, where the 
appliance analyzed is a refrigerator, the clusters discovered 
are labeled as noise, compressor ON events, compressor 
OFF events, positive outliers and negative outliers.  

5) Estimate operational characterization parameters. 
The event/state clusters arrived at in the previous step can 
be used to estimate parameters that characterize the 
operation of the appliance or device. These parameters can 
be computed through density estimation using mixture 
models. For example, for a refrigerator, the compression 
cycle frequency distribution can be estimated. Similarly, the 
distribution of ON/OFF times can be estimated. 

To exemplify the cloud service features, an example of 
the device disaggregation is shown in Figure 8. In this case 
we disaggregate a single energy measurement from a power 
strip into its constituent parts. Within the home user 
interface, this single measurement is represented as four 
individual devices or virtual sensors.  

 

 

Figure 8 – Disaggregation results plot of four devices 
within the home, monitored via a single sensor node 

 

IV. CURRENT STATUS 

Our demonstrator has an installed base of seven real test 
homes. Each is instrumented with between 10 and 20 sensor 
nodes. Each node is sampled every 5 seconds, with locally 
collected data being uploaded every ten minutes. Over the 
last 12 months our cloud service has collected over 15 

million sensor readings, which we process and present back 
to each home, with 2 minute granularity, via our home user 
interface .  

With such fine grained sensing we build “activity 
profiles” for each appliance or device, which often reveal 
interesting family behavioral patterns that can be helpful in 
understanding how to shift energy usage to save money or 
leverage novel utility pricing programs. Figure 9 shows a 
selection of energy heat-maps, derived from activity 
profiles in a number of real test cases. Each plot details the 
relative energy usage, averaged on an hourly basis (x-axis) 
for each day of the week (y-axis). The upper plot shows 
laundry room activity, with predominant use on Friday 
mornings (a direct match to the house cleaner’s schedule) 
and more scattered use in the evenings throughout the 
week. The middle plot shows home office usage, 
highlighting a correlation between daytime energy use and 
when the individual normally works from home on 
Tuesdays and Thursdays. The lower plot shows usage from 
a gaming console, with this activity heating up during after-
school hours and over the weekends. 

 

 

 

 
 

Figure 9. – A selection of zonal and device heat maps, 
showing activity profiles in each case: Laundry Room 
(upper), Home Office (middle), and Gaming Console 

(lower). 

 

V. COMPETITIVE APPROACHES 

Our initial competitive market analysis study [5] 
classified three main types of emerging energy-orientated 
consumer products: basic sensing devices (e.g. TED’s 
Energy Detective), home energy systems and services (e.g. 
Eaton’s Home Heartbeat), and web-based software services 



(e.g. Microsoft’s Hohm). This study also revealed a distinct 
convergence of consumer and utility centric solutions, 
toward integrated end-to-end offerings. These findings 
drove our decision to incorporate both consumer and 
operations interfaces within our demonstrator, and to 
leverage existing HP consumer products where possible. 
Also, most solutions measure a single energy consumption 
variable; our solution enables much finer grained sensing 
and insights. No solutions we have seen take a holistic view 
of multiple resources (gas, solar, water, electric), which we 
could incorporate via additional sensors due to the Open 
XML-based data format we’ve adopted, or which we could 
import (via 3rd parties) directly into our energy cloud 
service. We also de-emphasized the graph views prevalent 
in the majority of solutions today.  

 

VI. CONCLUSION 

The IT services required to support residential energy 
monitoring services and EIS solutions are being explored 
with a number of emerging ecosystem and partnering 
dimensions in mind.  Our demonstrator proof of concept 
confirmed the need to prepare services of this type for 
unprecedented scale (sensors, users, data, processing, 
network traffic, etc.) and to enable the composition and 
integration of services from multiple players. Seamless 
content and service integration is key to EIS solutions 
especially those that aggregate data from multiple sources 
and content providers (city utilities, home management 
systems, etc.). Enabling the creation of value-added 
services, for example plug-in analytics modules, is also key. 

Looking  at the energy monitoring space in the context of 
the Smart Grid rollout uncovered a number of players which 
could partner to deliver compelling value-added services. 
These range from incentives for measured reduction in 
energy usage for neighborhoods, utility and city scale 
supply-demand side optimization, community-oriented 
social networking and incentive-driven services, consumer 
appliance and electronics retail incentive generation directly 
tied to consumption usage patterns, time-of-use program 
optimization and program offer generation, differentiated 
analytics services, etc. Two of the biggest challenges to 

implementing these programs will be: 1) the integration of 
services from the multiple players and partners in the value 
chain and 2) the privacy protection of activity-oriented 
consumer usage data. 
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