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LOCO-I: A Low Complexity, Context-Based,
Lossless Image Compression Algorithm

Marcelo J. Weinberger, Gadiel Seroussi, and Guillermo Sapiro
Hewlett-Packard Laboratories, Palo Alto, CA 94304

Abstract. LOCO-I (LOw COmplexity LOssless COmpression for Images) is a novel loss-
less compression algorithm for continuous-tone images which combines the simplicity of
Huffman coding with the compression potential of context models, thus “enjoying the best
of both worlds.” The algorithm is based on a simple fixed context model, which approaches
the capability of the more complex universal context modeling techniques for capturing
high-order dependencies. The model is tuned for efficient performance in conjunction with
a collection of (context-conditioned) Huffman codes, which is realized with an adaptive,
symbol-wise, Golomb-Rice code. LOCO-I attains, in one pass, and without recourse to
the higher complexity arithmetic coders, compression ratios similar or superior to those
obtained with state-of-the-art schemes based on arithmetic coding. In fact, LOCO-I is be-
ing considered by the ISO committee as a replacement for the current lossless standard in
low-complexity applications.

1 Introduction
Lossless image compression schemes often consist of two distinct and independent
components: modeling and coding. The modeling part can be formulated as an in-
ductive inference problem, in which an image is observed pixel by pixel in some
pre-defined order (e.g., raster-scan). At each time instant i, and after having scanned
past data xi = x1x2 · · · xi, one wishes to make inferences on the next pixel value x i+1
by assigning a conditional probability distribution p(·|xi) to it.1 Ideally, the code
length contributed by xi+1 is − log p(xi+1|xi) bits (hereafter, logarithms are taken
to the base 2), which averages to the entropy of the probabilistic model. Thus, a
skewed (low-entropy) probability distribution, which assigns a high probability value
to the next pixel, is desirable. In a sequential formulation, the distribution p(·|xi) is
learned from the past and it is available to the decoder as it decodes the past string
sequentially. Alternatively, in a two-pass scheme the conditional distribution can be
learned from the whole image in a first pass and must be sent to the decoder as header
information. In this case, the total code length includes the length of the header. Yet,
both the second encoding pass and the (single-pass) decoding are subject to the same
sequential formulation.

In principle, skewed distributions can be obtained through larger conditioning
regions or “contexts.” However, this implies a larger number of parameters in the
statistical model, with an associated model cost [1] which could offset the entropy
savings. In a sequential scheme, this cost can be interpreted as capturing the penal-
ties of “context dilution” occurring when count statistics must be spread over too
many contexts, thus affecting the accuracy of the corresponding estimates. In non-
sequential (two-pass) schemes the model cost represents the code length required to
encode the model parameters estimated in the first pass, which must be transmitted
to the decoder. In both cases the model cost is proportional to the number of free
parameters in the statistical model [2].

1Notice that pixel values are indexed with only one subscript, despite corresponding to a two-
dimensional array. This subscript denotes the “time” index in the pre-defined order.



In state-of-the-art lossless image compression schemes, the above probability as-
signment is generally broken into the following components:

a. A prediction step, in which a deterministic value x̂ i+1 is guessed for the next
pixel xi+1 based on a subset of the available past sequence xi (a causal template).

b. The determination of a context in which xi+1 occurs (again, a function of a past
subsequence).

c. A probabilistic model for the prediction residual (or error signal) ei+1
∆= xi+1 −

x̂i+1, conditioned on the context of xi+1.

The optimization of these steps, inspired on the ideas of universal modeling, is ana-
lyzed in [1], where a high complexity scheme is proposed. In this scheme, the pre-
diction step is accomplished with an adaptively optimized, context-dependent linear
predictor, and the statistical modeling is performed with an optimized number of
parameters (variable-size quantized contexts). The modeled prediction residuals are
arithmetic encoded in order to attain the ideal code length [3]. In [4], some of the
optimizations performed in [1] are avoided, with no deterioration in the compression
ratios. Yet, the modeling remains in the high complexity range. In various versions
of the Sunset algorithm [5, 6], a further reduction in the modeling complexity, via
a fixed predictor and a non-optimized context model, causes some deterioration in
the compression ratios. Moreover, the models used in all these algorithms provide
best results with arithmetic coding of prediction residuals, an operation that is con-
sidered too complex in many applications, especially for software implementations.
Other alternatives have been designed with simplicity in mind and propose minor
variations of traditional DPCM techniques [7], which include Huffman coding of pre-
diction residuals obtained with some fixed predictor. Thus, these simpler techniques
are fundamentally limited in their compression performance by the first order entropy
of the prediction residuals.

LOCO-I combines the simplicity of Huffman (as opposed to arithmetic) coding
with the compression potential of context models, thus “enjoying the best of both
worlds.” The algorithm uses a non-linear predictor with rudimentary edge detecting
capability, and is based on a very simple context model, determined by quantized
gradients. A small number of free statistical parameters is used to approach the
capability of the more complex universal context modeling techniques for capturing
high-order dependencies [1], without the drawbacks of “context dilution.” This is
achieved through a single-parameter probability distribution per context, efficiently
implemented by an adaptive, symbol-wise, Golomb-Rice code [8, 9]. In addition,
reduced redundancy is achieved by embedding an alphabet extension in “flat” regions.

A low complexity scheme based on Golomb-Rice coding, FELICS, was previously
described in [10]. LOCO-I differs significantly from FELICS in that it follows a more
traditional predictor-modeler-coder structure along the paradigm of [1], in the use of
a novel and extremely simple explicit formula for Golomb-Rice parameter estimation
(described in Section 2.3), as opposed to the search procedure described in [10], and
in the use of an embedded alphabet extension to reduce code redundancy. As shown
in the results Section 3, LOCO-I attains compression ratios that are significantly
better than those of FELICS, while maintaining the same low complexity level. In
fact, the results show that LOCO-I compresses similarly or better than state-of-the
art schemes based on arithmetic coding, at a fraction of the complexity. LOCO-I is



Figure 1: A causal template for LOCO-I

being considered by the ISO/IEC JTC1/SC29/WG1 committee as a replacement for
the current lossless standard in low-complexity applications.

2 A description of LOCO-I
The prediction and modeling units in LOCO-I are based on the causal template de-
picted in Figure 1, where x denotes the current pixel, and a, b, c, d, and e are neighbor-
ing pixels in the relative positions shown in the figure. The dependence of a, b, c, d,
and e on the time index i has been deleted from the notation for simplicity.

2.1 Prediction
Ideally, guessing the value of the current pixel x i+1 based on a, b, c, d, and e should be
done by adaptively learning a model conditioned on the local edge direction. However,
our complexity constraints rule out this possibility. Yet, a primitive edge detector
is still desirable in order to approach the best possible predictor. The approach in
LOCO-I consists on performing a primitive test to detect vertical or horizontal edges.
If an edge is not detected, then the guessed value is a+b−c, as this would be the value
of xi+1 if the current pixel belonged to the “plane” defined by the three neighboring
pixels with “heights” a, b and c. This expresses the expected smoothness of the image
in the absence of edges. Specifically, the LOCO-I predictor guesses:

x̂i+1
∆=


min(a, b) if c ≥ max(a, b)
max(a, b) if c ≤ min(a, b)
a+ b− c otherwise.

(2)

Assuming, without loss of generality, that a ≤ b, then the predictor of (2) can be
interpreted as picking a in many cases where a vertical edge exists left of the current
location, b in many cases of an horizontal edge above the current location, or a plane
predictor a+ b− c if no edge has been detected.

The above predictor has been employed in image compression applications [11],
although under a different interpretation. In [11], the guessed value is seen as the
median of three fixed predictors, a, b, and a+ b− c. Notice that the predictor of (2)
does not employ either d or e, which will be used in context modeling.

2.2 Context Modeling
As noted in Section 1, reducing the number of parameters is a key objective in a
context modeling scheme. In a sequential formulation, the goal is to avoid “context
dilution,” while in a two-pass scheme we wish to reduce unnecessary table overhead.
The total number of parameters in the model depends on the number of free param-
eters defining the coding distribution at each context and on the number of contexts.

Coding distributions
It is a widely accepted observation [7] that the distribution of prediction residuals in
continuous tone images can often be approximated by a Laplacian distribution, i.e. a
two-sided exponential decay centered at zero. In principle, a prediction residual can



take on any value ε in the range −(α−1) ≤ ε ≤ α−1, where α = 2β is the size of the
input alphabet. Actually, given the predicted value x̂ (known to both the encoder
and decoder), ε can take on only α possible different values. One way to exploit this
property is to take the actual value of the prediction residual and reduce it modulo α
to a value between −α/2 and α/2−1. This has the effect of remapping large predic-
tion residuals, which have very low probability in smooth images, to small prediction
residuals. Thus, the “tails” of the distribution are merged with its central part, with-
out significantly affecting the Laplace-like behavior of the central part. The above
remapping consists of just taking the β least significant bits of x− x̂, and interpreting
them in 2’s complement representation.2

In the sequel, we assume that prediction residuals ε are in the range −α/2 ≤ ε ≤
α/2 − 1, and their distribution is assumed to decay exponentially away from zero.

In a one-pass scheme, the encoder cannot tune an optimal Huffman table to each
possible distribution of prediction residuals, as the encoding needs to be done “on
the fly.” Adaptive construction of optimal tables is ruled out by the complexity con-
straints. Instead, for each context the encoder adaptively chooses the best among a
limited set of Huffman codes, matched to exponentially decaying distributions, based
on past performance. As these distributions are assumed to be centered at 0, a single
parameter (e.g., the average of error magnitudes at the corresponding context) is suf-
ficient to characterize each one of them. The adaptive computation of this parameter
and the selection of the code are described in Section 2.3.

Context determination
The context that conditions the encoding of the current prediction residual in LOCO-I
is built out of the differences g1=d−a, g2=a−c, g3=c−b, and g4=b−e. These differ-
ences represent the local gradient, thus capturing the level of activity (smoothness,
edginess) surrounding a pixel, which governs the statistical behavior of prediction
errors. Notice that this approach differs from the one adopted in the Sunset family
[6] and other schemes, where the context is built out of the prediction errors in-
curred in previous encodings. By symmetry,3 g1, g2, and g3 influence the model in
the same way. Since further parameter reduction is obviously needed, each differ-
ence gj , j = 1, 2, 3, is quantized into a small number or approximately equiprobable
regions (the same regions for j = 1, 2, 3). In a well-defined theoretical setting [1],
this maximizes the mutual information between the current pixel and its context, an
information-theoretic measure of the amount of information provided by the condi-
tioning context on the pixel value to be modeled. Difference g4, being farther away
from the predicted pixel, is quantized more coarsely.

In principle, the number of regions into which each context difference is quantized
should be adaptively optimized. However, the low complexity requirement dictates a
fixed number of “equiprobable” regions. By symmetry, there is one region centered
at the difference value 0, and if the interval [r1, r2] represents a region, then so does
[−r1, −r2]. Thus, the total number of quantization regions for gj , j = 1, 2, 3, is an
odd integer 2R + 1, while g4 is quantized into 2T + 1 regions, T < R. This leads to
a total of (2T + 1)× (2R+ 1)3 different contexts. A further reduction in the number

2Other remappings are possible [12], which might give a slight compression advantage for smooth
images. However, these remappings have a complexity cost, and are inferior for images containing a
mixture of smooth regions and regions with many sharp transitions, e.g., compound documents.

3Here, we assume that the class of images to be encoded is essentially symmetric with respect
to horizontal/vertical, left/right, and top/bottom transpositions, as well as the pixel “negation”
transformation x→ (α−1−x).



of contexts is obtained after observing that, by symmetry, it is reasonable to assume
Prob{ei+1 = ∆ |Ci = [q1, q2, q3, q4]} = Prob{ei+1 = −∆ |Ci = [−q1,−q2,−q3,−q4]}

where Ci represents the quantized context quartet and qj, j = 1, · · · , 4, are quantized
differences corresponding, respectively, to gj , j = 1, · · · , 4. Hence, by merging con-
texts of opposite signs, the total number of contexts becomes ((2T+1)(2R+1)3+1)/2.
As stated before, the coding distributions have only one free parameter per context.
Therefore, a large number of contexts can be afforded without incurring an excessive
model cost. Our implementation uses R = 4 and T = 1, resulting in 1094 contexts.
Notice that, by merging symmetric contexts, the encoded value may actually be the
opposite of the prediction residual. This is anticipated by the decoder, which flips
the error sign if necessary to obtain the original error value.

To complete the definition of the contexts in LOCO-I, it remains to specify the val-
ues of the boundaries between quantization regions. For an 8-bit per pixel alphabet,
the quantization regions for gj , j = 1, 2, 3, are {0}, {1, 2}, {3, 4, 5, 6}, {7, 8, · · · , 14},
{ e | e ≥ 15 }, and their corresponding negative counterparts. The three quantization
regions for g4 are |g4| < 5, g4 ≥ 5, and g4 ≤ −5.

2.3 Coding
Golomb-Rice codes
Golomb codes were first described in [8], as a means for encoding nonnegative run
lengths. Given a positive integer parameter m, the Golomb code Gm encodes an
integer n ≥ 0 in two parts: a binary representation of nmodm, and a unary repre-
sentation of bn/mc.

Golomb codes are optimal [13] for exponentially decaying (geometric) probability
distributions of the nonnegative integers, i.e. distributions of the form Q(n) = (1 −
ρ)ρn, where 0 < ρ < 1. For every distribution of this form, there exists a value of the
parameter m such that Gm yields the shortest possible average code length over all
uniquely decipherable codes for the nonnegative integers. The optimal value of m is
given [13] by

m =
⌈
log(1 + ρ) / log(ρ−1)

⌉
. (3)

Rice [9] emphasized the special case of Golomb codes with m = 2k. Choosing m to
be a power of 2 leads to very simple encoding/decoding procedures: the code for n
consists of the k least significant bits of n, followed by the number formed by the
remaining higher order bits of n, in unary representation. The length of the encoding
is k + 1 + bn/2kc (the simplicity of the case m = 2k was already noted in [8]). We
refer to codes G2k as Golomb-Rice codes, and we denote them by Rk.

To match the assumption of a two-sided exponentially decaying distribution of
prediction residuals, established in Section 2.2, to the optimality of Golomb codes for
geometric distributions of nonzero integers, we need to make provisions for encoding of
negative values. This is accomplished by means of the following mapping of prediction
residuals ε in the range −α/2 ≤ ε ≤ α/2− 1 to values M(ε) in the range 0 ≤M(ε) ≤
α − 1:

M(ε) =
{

2ε ε ≥ 0,
2|ε| − 1 ε < 0. . (4)

The mapping M(ε) orders prediction residuals, interleaving negative values and pos-
itive values in the sequence 0,−1, 1,−2, 2, .... If the values ε follow a Laplacian dis-
tribution centered at zero, then the distribution of M(ε) will be close to (but not



exactly) geometric, which can then be encoded using an appropriate Golomb-Rice
code.

Sequential parameter estimation
One of the crucial steps in schemes using Golomb-Rice coding is the determination
of the optimal value of the code parameter k, i.e., in our case, the value yielding the
shortest possible average code length for M(ε) under the Laplacian hypothesis for ε.
Golomb-Rice-based schemes reported in the literature follow two basic approaches:

In a block-oriented approach [12], the image is divided into rectangular blocks
of pixels (typical sizes are 6 × 6 and 8 × 8). For each block, an optimal value of
the parameter k for the block is found, and is explicitly transmitted to the decoder
together with the encoded block.

In a sequential approach (e.g., [10]), each pixel is encoded independently, and the
encoder determines the code parameter based on the values of previous pixels. The
decoder makes the same determination, after decoding the same past sequence.

With both approaches, the parameter k can be determined either by exhaustive
search, or by an explicit computation. The exhaustive search approach is recom-
mended in both [12] and [10], even though both mention ways of estimating the
parameter k from observed values. In [12], an estimation formula based on the sum
F0 =

∑
x L(R0(x)) for pixels x in the block is presented, where L(y) denotes the length

of a binary string y. The parameter k is determined according to ranges of values of
F0 (e.g. k = 1 if 5J/2 < F0 ≤ 9J/2, where J is the block size). Reference [10] briefly
mentions the possibility of estimating k by first estimating the mean and variance of
the distribution over the observed sequence, and then deriving k from the mean and
variance.

A sequential scheme is mandatory in a context-based method, as pixels encoded
in a given context are not necessarily contiguous in the image and, thus, cannot be
easily blocked. The method used in LOCO-I for estimating the value of the parameter
k is sequential, explicit, and based on an estimate of the expectation E[|ε|] of the
magnitude of prediction errors in the past observed sequence. Using this expectation
rather than the variance or F0 results in a surprisingly simple calculation for k.

Consider a discrete Laplacian distribution P (ε) = p0γ
|ε| for prediction residuals ε

in the range −α/2 ≤ ε ≤ α/2 − 1. Here, we have 0 < γ < 1, and p0 is such that the
distribution sums to 1. The expected prediction residual magnitude is given by

aγ,α
∆= E[|ε|] =

α/2−1∑
ε=−α/2

p0γ
|ε||ε| . (5)

We are interested in the relation between the value of aγ,α and the average code
length Lγ,k resulting from using the Golomb-Rice code Rk on the mapped prediction
residuals M(ε). In particular, we seek to find the value k yielding the shortest code
length. For an infinite alphabet, it can be shown [14, Theorem 3] that a good estimate
for the optimal value of k is

k = dlog2 aγ,αe . (6)
Numerical calculations on a computer show that this result holds for all practical
values of α. In order to implement the estimation dictated by (6), the encoder and
the decoder maintain two variables per context: N , a count of prediction residuals
seen so far, and A, the accumulated sum of magnitudes of prediction residuals seen



so far. The expectation aγ,α is estimated by the ratio A/N , and k is computed as

k = min{k′ | 2k′N ≥ A}.
In software, the computation of k can be realized by the following “one-liner” in C:

for ( k=0; (N<<k)<A; k++ );
To enhance adaptation to local image variations, and general non-stationarity of
image statistics, we periodically reset the variables N and A. Specifically, we half
the contents of N and A for a given context each time N attains a predetermined
threshold N0. In this way, the immediate past is given a larger weight than the remote
past. Values of N0 between 64 and 256 work well for typical images.

Bias cancelation
Golomb-Rice codes rely heavily on the distribution of prediction residuals being a
two-sided, symmetric, exponential decay centered at zero. While these assumptions
are usually satisfied in the case of memoryless models, the situation is quite different
in the case of context-based models, where systematic, context-dependent biases in
the prediction residuals are not uncommon. These systematic biases can produce a
very significant deterioration in the compression performance of a Golomb-Rice coder.

To alleviate the effect of systematic biases, LOCO-I uses an error feedback aimed
at “centering” the distributions of prediction residuals. Specifically, for each context,
we keep a count N of context occurrences, a variable B accumulating the prediction
errors encoded so far in the context, and a correction value C, which is added to the
predicted value x̂ to offset a possible prediction bias. Variable B accumulates the pre-
diction error after correction. Variable C is initialized to zero, and it is incremented
(resp. decremented) each time the corrected prediction residual averages 0.5 or more
(resp. −0.5 or less). At this time, the accumulated corrected error B is also ad-
justed to reflect the change in C. This procedure, which can be implemented without
divisions, tends to produce average prediction residuals in the interval [−0.5, 0.5].

The bias cancelation mechanism above allows us to deal with another drawback
of Golomb-Rice encoding of prediction residuals. Due to the order imposed by the
mapping M(ε), the coder may assign a shorter code length to a negative value than
to its positive counterpart. This results in the code actually being better matched to
a probability distribution with average −1/2 for k > 0, and −2/9 for k = 0. Thus,
we better match the actual distribution of corrected prediction errors to the code
by slightly modifying the bias cancelation calculation so that it produces average
corrected prediction residuals in the interval [−1, 0]. If k = 0 and B/N < −0.5
(i.e., the center of the distribution is closer to −1 than to 0), we encode the index
M(−1 − ε).

2.4 Embedded alphabet extension
Although optimal as a prefix code, a Huffman code may be far from matched to the
distribution from which it was generated, if this distribution is very skewed. Huffman
codes are characterized by a redundancy (i.e., the excess code length over the entropy)
which vanishes only for distributions in which each probability is a negative power of
two. A related fundamental limitation is that they require a minimum code length of
one bit per encoding, which may produce a significant deterioration in the compression
ratio for contexts with very skewed distributions. This is exactly the case in contexts
representing smooth regions, for which a prediction error value of 0 is extremely likely.
In traditional (non-conditioned) Huffman codes, this problem is addressed through



Image LOCO-I FELICS Sunset CB9
Ballon 2.90 3.21 2.89
Barb 1 4.65 5.22 4.64
Barb 2 4.66 5.18 4.71
Board 3.64 4.03 3.72
Boats 3.92 4.37 3.99
Girl 3.90 4.35 3.90
Gold 4.47 4.75 4.60
Hotel 4.35 4.71 4.48
Zelda 3.87 4.17 3.79
Average 4.04 4.44 4.08

Table 1: Compression results on original JPEG image test set (bits/pixel)

alphabet extension. By encoding blocks of data as “super-symbols,” distributions
tend to be less skewed (i.e., the excess code length of the Huffman code is spread
over many symbols, thus reducing the per-symbol redundancy). Golomb-Rice codes,
being a subset of the class of Huffman codes, suffer from the same limitations.

LOCO-I addresses the redundancy of Huffman or Golomb/Rice codes due to very
skewed distributions, by embedding an alphabet extension into the context condition-
ing. Specifically, the encoder enters a “run” mode when a context with a = b = c = d
is detected. Since the central region of quantization for the gradients g1, g2, g3 is the
singleton { 0 }, the run condition is easily detected in the process of context quantiza-
tion by checking for [q1, q2, q3] = [0, 0, 0]. Once in run mode, a run of the symbol b is
expected, and the run length (which may be zero) is encoded. When the run is bro-
ken by a non-matching symbol x, the encoder goes into an “end-of-run” state, where
the difference ε = x− b is encoded (notice that we always have ε 6= 0 in this state).
Runs can also be broken by ends of lines or by reaching a pre-specified maximum
length, in which case the encoder returns to normal context-based coding. Since all
the decisions for switching in and out of the run state are based on past pixels, the
decoder can reproduce the same decisions without any side information.

The encoding of runs in LOCO-I is also based on Golomb-Rice codes, applied to
run lengths ranked by occurrence count. Thus, when a run of length r occurs, the rank
of r is encoded rather than r itself (starting with rank 0 for the most frequent run
length, and going up in rank number as frequency decreases). The ranking mechanism
adds negligibly to the running time, as the ranking rapidly converges to a stable state.

3 Results
In this section we present compression results obtained with the scheme described in
Section 2. In order to allow for comparisons with other relevant schemes reported in
the literature over a wide variety of images, two sets of results are presented.

In Table 1, we compare the compression performance of LOCO-I with that of
FELICS [10], and with the latest published results for Sunset, i.e., the CB9 algorithm
[6], on a standard set of images used in developing the existing ISO/IEC 10918-1 loss-
less (JPEG) standard. These are generally “smooth” natural images. Compression
ratios are given in bits/pixel for the luminance component of each image. The results
for FELICS were extracted from [15].

Table 2 shows results of LOCO-I compared with FELICS, and with the two ver-
sions of the existing ISO/IEC 10918-1 lossless standard, i.e. the strongest one based



on arithmetic coding, and the simplest one based on the default predictor followed
by Huffman coding using default tables. The latter is probably the most widely used
version of the lossless standard. The table also shows results for the arithmetic coding
version of the CALIC algorithm [4], which attains the best compression ratios among
schemes recently presented in response to the ISO/IEC JTC1/SC29/WG1 Call for
Contributions for a new lossless image compression standard.

The images in Table 2 are the subset of 8 bits/pixel images from the standard set
provided by the ISO/IEC JTC1/SC29/WG1 committee in its Call for Contributions.
This is a richer set with a wider variety of images, including compound documents,
aerial photographs, scanned, and computer generated images. Compression ratios are
given in bits/pixel averaged over color planes. The results for FELICS were extracted,
in this case, from [4].

The results in the tables show that LOCO-I significantly outperforms other one-
pass schemes of comparable complexity (e.g., FELICS, JPEG-Huffman), and it at-
tains compression ratios similar or superior to those of higher complexity schemes
based on arithmetic coding (e.g. Sunset CB9, JPEG-Arithmetic). LOCO-I is within
a few percentage points of the best available compression ratios (given by CALIC),
at a complexity level close to an order of magnitude lower.

To further illustrate the very favorable location of LOCO-I in a conceptual com-
pression/complexity chart, consider the following: going from lossless JPEG-Huffman
to LOCO-I we obtain an average compression gain of 28% (as per Table 2), at a com-
plexity increase estimated at 2X; going from LOCO-I to CALIC-Arithmetic we obtain
a compression gain of 4% at a complexity increase close to an order of magnitude.
Other schemes tested lie well above the polyline defined by these three points in the
conceptual chart.

As for data rates in software implementations, LOCO-I benchmarks at about
the same throughput as the UNIX compress utility, which is also the approximate
throughput reported for FELICS in [10]. Measured compression data rates on an
HP9000/735 workstation range from about 500 KB/s for natural images to about
2000 KB/s for compound documents and computer graphics images. LOCO-I decom-
pression is about 10% slower than compression, making it a fairly symmetric system.
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Lossless JPEG Lossless JPEG CALIC
Image LOCO-I FELICS Huffman arithmetic arithmetic
bike 3.59 4.06 4.34 3.92 3.50
cafe 4.80 5.31 5.74 5.35 4.68
woman 4.17 4.58 4.86 4.47 4.03
tools 5.07 5.42 5.71 5.47 4.92
bike3 4.37 4.67 5.18 4.78 4.21
cats 2.59 3.32 3.73 2.74 2.49
water 1.79 2.36 2.63 1.87 1.73
finger 5.63 6.11 5.95 5.85 5.39
us 2.67 3.28 3.77 2.52 2.45
chart 1.33 2.14 2.41 1.45 1.28
chart s 2.74 3.44 4.06 3.07 2.66
compound1 1.30 2.39 2.75 1.50 1.20
compound2 1.35 2.40 2.71 1.54 1.22
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