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Abstract—The Hopper-Blum (HB) protocol, which uses noised
linear parities of a shared key for authentication, has been
proposed for light-weight applications such as RFID. Recently,
algorithms for decoding linear codes have been specially designed
for use in passive attacks on the HB protocol. These linear coding
attacks have resulted in the need for long keys in the HB protocol,
making the protocol too complex for RFID in some cases. In
this work, we propose the NLHB protocol, which is a non-linear
variant of the HB protocol. The non-linearity is such that passive
attacks on the NLHB protocol continue to be provably hard by
reduction. However, the linear coding attacks cannot be directly
adapted to the proposed NLHB protocol because of the non-
linearity. Hence, smaller key sizes appear to be sufficient in the
NLHB protocol for the same level of security as the HB protocol.
We construct specific instances of the NLHB protocol and show
that they can be significantly less complex for implementation
than the HB protocol, in spite of the non-linearity. Further, we
propose an extension, called the NLHB+ protocol, that is provably
secure against a class of active attack models.

I. INTRODUCTION

The HB protocol was proposed in [1] as a low-complexity

authentication algorithm that can be computed by human users.

Its security is based upon the hardness of the “Learning Parity

in Noise” (LPN) problem [2], which is known to be NP-

Hard. Though the protocol is secure against passive attacks,

it was found to be vulnerable to active attacks [3]. Juels and

Weis [3] proposed the HB+ protocol as an alternative that

could resist certain active attacks. The added complexity of

the HB+ protocol rendered it more suitable for low-complexity

RFID tags rather than human users.

Cryptanalysis of the HB authentication protocol has resulted

in efficient solutions to the LPN problem. Notably, Levieil and

Fouque [4] proposed the LF2 algorithm, which is an improved

form of the BKW algorithm [5] for solving the LPN problem.

Later, Carrijo et al. [6] proposed a probabilistic passive attack

against HB and HB+ protocols. These new solutions have

significantly reduced the effective key-size of the HB protocol

family that depend on the hardness of decoding linear codes

for security against passive adversaries.

In this paper, we define and consider the UNLD problem,

which is a decoding problem for a specific class of non-

linear codes. We prove hardness of UNLD by reducing the

LPN problem to the UNLD problem. Following this, we

propose the NLHB protocol, which is a carefully constructed

variant of the HB protocol. The basic idea behind the NLHB

protocol is the use of a carefully-chosen non-linear Boolean

function on the linear parities generated in the HB protocol.

We prove the passive attack security of NLHB by reducing the

UNLD problem to the passive attack problem. So, security of

NLHB is based on the UNLD problem. On the practical side,

the use of the non-linear function considerably weakens the

effectiveness of passive attacks like LF2 [4] that depend on

the linearity of the parities. Therefore, key efficiency is higher

in NLHB when compared to HB. For implementation, we

demonstrate a certain quadratic form chosen from the general

family of functions that we propose for the NLHB, which

presents a specific low-cost candidate for the protocol. Using

this candidate function, the complexity of the NLHB protocol

is low enough that it can be implemented in low-cost devices

such as RFIDs. Finally, we show that the Prover/Verifier

complexity of NLHB protocol can be lower than that of the

HB protocol because of the use of smaller keys.

Active attacks similar to those on the HB protocol are

possible on the basic NLHB protocol. We demonstrate that the

basic NLHB protocol can be extended to an NLHB+ protocol,

in the spirit of HB+, for security in some active attack models.

We show that the reductions for the HB+ protocol as shown

in [7], [8] work for the NLHB+ protocol as well.

In summary, the main contribution of this paper is a low-

cost, provably-secure extension of the HB protocol through the

use of simple non-linear functions on parities that has better

resistance to known passive attacks on the HB family resulting

in higher key efficiency and cheaper implementations. Also,

the NLHB protocol can be modified in the spirit of the several

known modifications of the HB protocol to obtain better

security against different classes of active attacks.

The paper is organized as follows. In Section II, we give

a brief introduction to the HB and HB+ protocols, related

security models and the LPN problem. In Section III, we

describe the UNLD problem, a type of non-linear code de-

coding problem and prove its NP-Hardness. This is followed

by a description of the NLHB protocol and its security

proofs. Section IV contains discussions on the resistance of

the protocol to passive attacks and its Prover complexity. in

Section V, we propose the NLHB+ protocol and give its

security proofs . Section VI concludes the paper.

II. THE HB AND HB+ PROTOCOLS

The HB protocol is a symmetric-key authentication pro-

tocol. The Prover and Verifier share a random k-bit secret

key s. The protocol has two public probability parameters

ε, ε′ ∈ ]0, 1
2 [ such that ε < ε′. To authenticate, the Verifier
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sends a random k-bit challenge vector a. The Prover, in turn,

calculates the binary dot-product s.a and replies to the Verifier

with z = s.a + v, where v is a Bernoulli random variable

that takes the value 1 with probability ε and + denotes XOR

addition. This process is repeated n times. At the end of n
repetitions, the Verifier returns an “Accept” message if at most

ε′n responses are “wrong”, i.e, different from dot-products of

the secret and the corresponding challenges.

This process, which constitutes one authentication session

can be parallelized as shown in Figure 1. In the parallelized

Secret Shared s

Prover Verifier
A←−−−−−−−−−−− Choose A ∈ {0, 1}k×n

z1×n = sA + v
z−−−−−−−−−−−→ “Accept” iff d(z, sA) ≤ ε′n

Fig. 1. Parallelized version of the HB protocol

form, the Verifier challenges the Prover with a random k × n
matrix, to which the Prover responds with z = sA + v. Here,

the bits of the vector v are iid binary random variables with

Pr(1) = ε. Such a vector v is called a Bernoulli noise vector

with parameter ε. All bit operations are over the binary field

GF (2) in this article. The Verifier responds with “Accept” if

d(z, sA) ≤ ε′n, where d(·, ·) denotes Hamming distance. The

parameters ε,ε′, and n are fixed so that both the probability

of rejecting an honest Prover as well as the probability of

positively authenticating an attacker giving random responses

are negligible [4, Fig. 2].

The HB Protocol has been proved secure in the Passive

attack model as defined below.

Definition 1: (Passive attack model [3], [7]) In this model,

the adversary algorithm is two-phased. In the first phase (called

the query phase), the adversary has access to the transcripts

from several authentication sessions between an honest Prover

and Verifier. In the second phase (called the cloning phase), the

adversary tries to impersonate an honest Prover to the Verifier.

A. HB+ Protocol

The HB protocol is not secure against active attacks as

shown in [3]. To counter active attacks, the HB+ protocol

was proposed in [3]. Instead of a single secret, the Prover and

Verifier share two k-bit secret keys s1 and s2.

The parallel version of the HB+ protocol is shown in Fig.

2. In its parallel form, the HB+ protocol can be described as

follows. The Prover starts an authentication session by sending

a random “blinding” matrix B to the Verifier, which in turn

replies with a random challenge matrix A. On receiving A,

the Prover responds with z = s1B + s2A + v. Here, A and

B are k×n matrices, and v has the same definition as in the

HB protocol. The Verifier responds with an “Accept” decision

if d(z, s1B + s2A) ≤ ε′n.

The HB+ protocol is secure against both passive attacks as

well as active attacks in a model known as the “DET” attack

model.

Secrets Shared s1, s2

Prover Verifier

Choose

B ∈ {0, 1}k×n B−−−−−−−−−−−→
A←−−−−−−−−−−− Choose A ∈ {0, 1}k×n

z1×n = s1B+
z−−−−−−−−−−−→ “Accept” iff

s2A + v d(z, s1B + s2A) ≤ ε′n

Fig. 2. Parallelized version of the HB+ protocol

Definition 2: (DET Attack Model [3], [8]) In this model,

attacks are two-phased. In the first (query) phase, the adversary

can interact with an honest Prover several times. In the second

(cloning) phase, the adversary interacts with the Verifier and

attempts impersonation.

In settings where the Verifier reports repeated authentication

failures from a Prover, the “DET” model is found to be suitable

and more practical [3].

B. The LPN Problem and Passive Attacks

Definition 3: (LPN Problem [3]) Let s be a random binary

k-bit vector. Let ε ∈]0, 1
2 [ be a constant error parameter. Let A

be a random k×n matrix, and let v be a random n-bit vector

such that wt(v) ≤ εn, where wt(v) denotes the Hamming

weight of v. Given A, ε and z = (sA)+ v, find a k-bit vector

s′ such that d(z, s′A) ≤ εn.

The LPN problem has been proved to be both NP-Hard [2]

and is conjectured to be average-case hard [1]. The LPN

problem can be reduced to forging the HB protocol with a high

probability of success in the passive attack model [3] [7], and

this proves passive attack security for the HB protocol. The

best-known passive attacks on HB employ algorithms to solve

the LPN problem [4] [6].

The basic idea behind the LF2 attack in [4] is to add

columns of A (and corresponding noisy responses) so that

the resulting columns are non-zero only in a small set of rows.

Since only the key bits corresponding to these rows will affect

the new responses (during matrix multiplication), the attacker

can now find these key bits alone by doing exhaustive search

over a smaller key space relevant to this new set of equations.

Thus the whole key is found in parts. (Refer [4] for more

details). Later, a probabilistic attack on the LPN problem was

proposed in [6]. The basic idea here is to pick a few bits

out of the n response bits and find the key through Gaussian

elimination, hoping that the picked response bits are all noise-

free.

As a consequence of these attacks, a LPN instance using as

many as 512 bits of secret can be attacked with a complexity

of just 280 operations. This results in the reduction of effective

key size for the HB protocol - to get 80-bit security, 512 bits of

key are required. A key size of 512 bits limits the applicability

of the HB protocol in several RFID applications.
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III. THE UNLD PROBLEM AND THE NLHB PROTOCOL

The main idea in this paper is to replace the linear parity

generation part sA in the HB protocol with a non-linear

version f(sA) for a suitable public function f : {0, 1}n →
{0, 1}D for an integer D. The following characteristics are

desirable for such a function f :

1) The function f , assumed to be public, must allow for

the reduction of hardness of decoding problems to the

passive attacks.

2) The function f must be simple enough to implement on

low-cost devices.

3) The function f must provide better resistance to known

passive attacks that solve the LPN problem.

4) The function f should allow extensions such as HB+

for security against active attacks.

We now describe a specific class of non-linear Boolean vector

functions for this purpose, and discuss some of its properties

that will be used in the security reductions.

A. The Function f

Let D = n − p for a positive integer p. For x ∈ {0, 1}n,

y = [y1 y2 · · · yD] = f(x) is defined by

yi = xi + g([xi+1, .., xi+p]), (1)

where g : {0, 1}p → {0, 1} is Boolean function containing

strictly non-linear terms in the variables {xi+1, .., xi+p}. One

of the important properties of the function f is the following:

for uniformly distributed x ∈ {0, 1}n, f(x) is uniformly

distributed in {0, 1}D. A proof of this provided can be found

in [9], and is omitted here.

For p = 3, a specific example for the function f is as

follows:

yi = xi + xi+1xi+2 + xi+2xi+3 + xi+3xi+1, 1 ≤ i ≤ D. (2)

As we can see, such functions add very low additional com-

plexity (only 3 AND gates and 3 XOR gates in this case) to

an implementation of a linear HB protocol.

B. UNLD Problem

The set of vectors {f(sA) : s ∈ {0, 1}k} can be viewed as

a non-linear code. We now define the UNLD problem, which

(in words) is the problem of decoding this class of non-linear

codes.

Definition 4 (UNLD Problem): Let s be a random k-bit

binary vector. Let ε ∈]0, 1
2 [ be a constant error parameter. Let

A be a random k × n binary matrix and let v be a random

D-bit vector such that wt(v) ≤ εD, where wt(v) denotes the

Hamming weight of v. Given A, ε and z = f(sA) + v, find

the k-bit vector s.

We prove the hardness of the UNLD problem by reducing a

random instance of the NP-Hard LPN problem to the UNLD

problem. To show the reduction, we construct an algorithm S,

which can solve a random LPN instance, when given access

to an algorithm X that can solve the UNLD problem.

Theorem 1 (LPN reduces to UNLD): Let A be a random

k×n matrix, v′ be a (n−p)-bit Bernoulli noise vector, and s

be a random k-bit vector. Suppose there exists a probabilistic

polynomial-time (PPT) algorithm X with input 〈A,y(n−p) =
f(sA)+v′〉 that can output s with probability at least δ. Then,

there also exists a PPT algorithm S that can solve a random

LPN problem instance 〈Gk×n′ , z = mG + v〉 for randomly

chosen m, Bernoulli noise vector v and n′ ≤ (n−1)
p , k < n′

with probability at least δ.

Proof: Let z = [z1, ..., zn′ ] and v = [v1, ..., vn′ ] be the

constituent bits of the vectors described above. The algorithm

S, having access to algorithm X works as follows to solve a

random LPN instance 〈G, z〉 passed to it.

1) Pick ri for 1 ≤ i ≤ n′ − 1 such that ri ≥ (p −
1),

∑n′−1
i=1 ri = n − p − n′.

2) Insert ri Bernoulli bits between bit zi and zi+1 of z
for 1 ≤ i ≤ n′−1. This gives rise to the vector y(n−p) =
[z1, b1 b2 ... br1 , z2, br1+1 ... br1+r2 , z3, .....bn−p−n′ , zn′ ].

3) Insert ri columns of zeros in between columns i and

i + 1 of G (1 ≤ i ≤ n′ − 1) to get the matrix A. Insert

p columns of zeros after the last column of A. Now, the

dimension of A is k × n and A is of the form A =
[g100..0g200..0.....gn′00..0], where gi are the columns

of G.

4) Pass 〈A,y〉 to X and get back m′.
5) Return m′ as the estimate of the LPN secret m.

We now show that S succeeds with probability at

least δ. Consider the vector x = mA. We can see

that x = [x100..0x200..0x300.0....xn′00..0], where

[x1, x2, ..., xn′ ] are the bits of x = mG. We also see

that, since g has only non-linear terms (i.e each term

in g is some kind of product of at least two input bits)

and ri ≥ (p − 1), the vector f(x) can be written as

f(x) = [x100..0x200..0x3.....00xn′ ], as all the product terms

from g go to zero.

So, the vector y is of the form f(x) + v′, where

v′ = [v1, b1 b2 ... br1 , v2, br1+1 ... br1+r2 , v3, .....bn−p−n′ , vn′ ].
Here, vi are the Bernoulli bits since they are part of the LPN

noise vector v and bi are picked to be Bernoulli bits. In

other words, y = f(mA) + v′, where v′ is a Bernoulli noise

vector. Hence, by definition, X will return m with probability

at least δ. Since S succeeds whenever X succeeds, the

probability of success of S is at least δ.

C. NLHB Protocol

In the parallel version of the proposed NLHB pro-

tocol, the Prover and Verifier share a k-bit secret s. The

Verifier transmits a random k × n challenge matrix A to

the Prover. On receiving this, the Prover computes a D-bit

vector z = f(sA) + v, where v is a D-bit Bernoulli noise-

vector with parameter ε. The Verifier returns “Accept”, if

d(z, f(sA)) ≤ ε′D. The parameters (D, ε, ε′) have to satisfy

the conditions satisfied by the HB protocol parameters (n, ε, ε′)
(See [4]).

D. Security Proofs For NLHB In Passive Model

The proof of security for NLHB in the passive model

involves reductions from the UNLD problem to the forging
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of the NLHB protocol in the passive model. The proofs are

broadly based on the proof of security given for the HB

protocol in [7] [8], with suitable modifications and additions

to support the function f . The proofs and details are provided

in a longer version of this article available on line [9]. We

provide a brief overview for completeness.

If the ith bit of s, si = 1, modification of the i-th row of

the challenge matrix A by adding a random vector results in

a uniform distribution for sA + v. However, if si = 0, the

distribution is different from uniform. Detecting this change

in distribution is the central idea used in security reductions

for the HB protocol [3] [7]. The following lemma establishes

the above result for NLHB using the properties of the function

f .

Lemma 1: Let A be a randomly chosen k × n matrix. Let

s be a random k-bit binary secret vector. Further, assign z =
f(sA) + v, where the bits of v are i.i.d Bernoulli distributed.

Now, let c be a randomly chosen (independent of all other

factors) n-bit binary vector. For an arbitrary 1 ≤ i ≤ k, let A′

denote the matrix formed by modifying only the i-th row of

A as (A)i = (A)i + c. If hybi denotes the distribution of the

bit-string 〈A′, z〉, then hybi = Ukn+D if si = 1.

Lemma 1 enables the use of techniques used in the security

reductions of HB to be used for security reductions in NLHB.

The security reductions are given in the following two steps.

1) In the first step, we prove a reduction from the UNLD

problem to the problem of distinguishing between

Ukn+D, the distribuion representing (kn + D)-length

uniformly distributed bitstrings and As,ε,f , the distribu-

tion followed by the strings from the NLHB protocol

transcripts, A and f(sA) + v concatenated together.

2) In the second step, we provide a reduction from the

problem of distinguishing between the distributions to

the problem of forging the NLHB protocol.

For more details, see [9].

IV. IMPLEMENTATION AND EFFICIENCY

Using the specific f in (2), we will show how the existing

LF2 attack [4] on LPN is ineffective on the NLHB protocol.

Let x = [x1, ..., xn] = sA = [s.a1, ..., s.an], where [a1, ...,an]
are columns of A. Let y = f(x). Then, the passive adversary

to NLHB has access to z = y + v.

The LF2 (or BKW) algorithm works by repeatedly adding

the columns of the matrix A and obtaining the response

corresponding to this new matrix by adding the responses cor-

responding to the individual columns. We examine the result

when the attacker does one column addition. Let the attacker

modify A into A′ = [a1, ...,aj+ak, ...,an], i.e, he adds the kth

column to the jth column. The corresponding matrix product

between s and A′ will be x = [x1, x2, ..., xj + xk, ..., xn], i.e

x has the same bits as x except at the jth position, where it is

xj + xk. Let y = f(x) and let Ei = yi + yi. As can be seen,

Ei = 0 for all i except for i ∈ {j − 3, j − 2, j − 1, j}. The

following relationships are readily established.

Ej−3 = xj−1xk + xkxj−2,

Ej−2 = xj−1xk + xkxj+1,

Ej−1 = xj+1xk + xkxj+2,

Ej = xk.

Each error term above is an unknown bit to the attacker,

since he does not have access to either a noised or un-

noised version of these terms. So, the attacker has to guess

the error bits Ej−3, Ej−2, Ej−1, Ej that need to be added

to the new response to get the right responses corresponding

to the new matrix A′. The amount of uncertainty involved

in guessing these bits can be found from the entropy of

[Ej−3, Ej−2, Ej−1, Ej ]. Since the bits xi are uniformly dis-

tributed, it can easily be seen that this entropy is equal to 2.5
bits. So each time a column is added, the attacker has to guess

2.5 bits on an average. Since there are many such additions

needed in the LF2 attack, this attack does not easily extend

longer to the NLHB protocol.

In Table I, we give the values of the entropy of error

bits in the LF2 attack for different function choices with

p = 2, 3, 4. For p = 3, 4, there are other functions that achieve

the maximum entropy of 2.5 and 3, respectively. As we can

see, the entropy increases with increase in p, meaning that

LF2 attacks are harder for higher p. Similar arguments can

be given for the infeasibility of the Imai [6] attack, that also

relies heavily on linearity. The infeasibility of existing passive

attacks on the related HB protocol indicates that the NLHB

protocol can achieve 80-bit security using key sizes smaller

than 512 bits, which is the number of key bits needed by

the HB protocol for 80-bit security. In Table IV, we compare

the number of bit multiplications and additions needed by

an implementation of NLHB protocol with the function f
in (2) with that of a comparable HB protocol. We see that

prover complexity in NLHB is significantly lesser than in a

comparable HB protocol.

V. NLHB+ PROTOCOL

Though the NLHB protocol is secure against a passive

adversary, it is not secure against an active attacker. An

efficient active attack similar to the one demonstrated against

HB can also be mounted on the NLHB protocol. So, in the

spirit of the HB+ protocol, we propose the NLHB+ protocol

to provide security in the DET model.

Figure 3 shows the NLHB+ protocol. Here, the Prover

and Verifier share two secrets s1 and s2. The authentication

session is started when the Prover transmits a random k × n
blinding matrix B to the Verifier, which responds with a

random k × n challenge matrix A. The Prover responds with

z = f(s1B) + f(s2A) + v, where f and v are as defined

in the NLHB protocol. The Verifier replies with “Accept”

if d(z, f(s1B) + f(s2A)) ≤ ε′D. NLHB+ depends on the

hardness of the UNLD problem for security against active and

passive attacks. In addition, NLHB+ is secure against active

attacks in the “DET” model as outlined in the next section.
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p Function Achieving Maximum entropy for given p Maximum Entropy Achieved for given p
2 yi = xi + xi+1xi+2 2
3 yi = xi + xi+1xi+2 + xi+1xi+3 2.5
4 yi = xi + xi+1xi+4 + xi+2xi+3 3

TABLE I
MAXIMUM ENTROPY ACHIEVED OVER ALL FUNCTIONS FOR A GIVEN p AND THE FUNCTION ACHIEVING THIS MAXIMUM

.

k ε ε′ Size of Challenge Matrix Length Of Prover Response Scalar Multiplications Scalar Additions
HB 512 .25 .348 512 × 1164 n=1164 595968 594804

NLHB 128 .25 .348 128 × 1167 D=1164 152868 151701
TABLE II

COMPARISON OF PROVER/VERIFIER COMPLEXITIES BETWEEN NLHB AND HB FOR f WITH p = 3, FALSE-REJECT PROBABILITY PFR = 2−40 AND

FALSE-ACCEPT PROBABILITY PFA = 2−80 AND 80-BIT SECURITY.

Secrets Shared

s1, s2

Prover Verifier

Choose

B ∈ {0, 1}k×n B−−−−−−−−−−−→
A←−−−−−−−−−−− Choose A ∈ {0, 1}k×n

z1×D = f(s1B)
z−−−−−−−−−−−→ “Accept′′ iff d(z, f(s1B)

+f(s2A) + v +f(s2A)) ≤ ε′D

Fig. 3. Parallelized version of the NLHB+ protocol

A. Security Proof for NLHB+ In the “DET” Model

The security proof for NLHB+ in the “DET” model is

from the problem of differentiating the distributions As,ε,f

and Ukn+D of Section III-D to active attacks on the NLHB+

protocol. The strategy for the proof is broadly based on the

proofs given in [8]. See [9] for details.

1) Algorithm Z+: This is a two-phased polynomial-time

NLHB+ adversary. In its query phase, it takes a k × n
random matrix B as input, responds with a challenge

matrix A (which can be non-random) and receives

z = f(s1B) + f(s2A) + v for secrets s1 and s2. In

the challenge phase, it sends a random blinding matrix

B̂ to the NLHB+ Verifier, receives a challenge matrix

Â from the Verifier and generates a response ẑ that can

generate ”Accept” from the NLHB+ Verifier.

2) AdvNLHB+attack
Z+

(k, ε, u, f) denotes the probability of

success of Z+. The advantage is a function of the

parameters k, ε, u, f .

Theorem 2: If for some polynomial-time adversary Z+,

AdvNLHB+attack
Z+

(k, ε, u, f) is non-negligible, then the UNLD

problem can be efficiently solved.

The important steps in the proof are simulating a prover to

the adversary Z+ in the query phase and using rewinding of

Z+ to achieve our purpose in its challenge phase. Details can

be found in [9].

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proved the hardness of a non-

linear decoding problem that we call the UNLD problem and

proposed the NLHB and NLHB+ authentication protocols,

which are variants of the HB and HB+ protocols. These

new protocols have better passive attack security than the HB

and HB+ protocols. They are light-weight and have lesser

complexity of implementation than a comparable HB protocol

for the same security level.

In the future, it would be interesting to examine if any non-

linear adaptations of existing attacks are possible on the NLHB

protocol family. Also, it would be interesting to see if the MIM

attacks [10], [11] (part of a prevention-based attack model)

on the HB family of protocols can be prevented by making

appropriate changes to the NLHB protocol.
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[4] É. Levieil and P.-A. Fouque, “An improved LPN algorithm,” in Security
and Cryptography for Networks (SCN) 2006, ser. Lecture Notes in
Computer Science, vol. 4116. Springer-Verlag, 2006, pp. 348–359.

[5] A. Blum, A. Kalai, and H. Wasserman, “Noise-tolerant learning, the
parity problem, and the statistical query model,” J. ACM, vol. 50, no. 4,
pp. 506–519, 2003.

[6] J. Carrijo, R. Tonicelli, H. Imai, and A. C. A. Nascimento, “A novel
probabilistic passive attack on the protocols HB and HB+,” IEICE
Transactions, vol. E92-A, no. 2, pp. 658–662, 2009.

[7] J. Katz and J. S. Shin, “Parallel and concurrent security of the HB
and HB+ protocols,” in Advances in Cryptology - EUROCRYPT 2006,
ser. Lecture Notes in Computer Science, vol. 4004. Springer Berlin /
Heidelberg, 2006, pp. 73–87.

[8] J. Katz and A. Smith, “Analyzing the HB and HB+ protocols in the
“large error” case,” Cryptology ePrint Archive, Report 2006/326, 2006,
http://eprint.iacr.org/2006/326.pdf.

[9] M. Madhavan, A. Thangaraj, Y. Sankarasubramaniam, and
K. Viswanathan, “NLHB: A non-linear Hopper Blum protocol,”
ArXiv.org, 2010, http://arxiv.org/abs/1001.2140.

[10] H. Gilbert, M. Robshaw, and H. Sibert, “Active attack against HB+: a
provably secure lightweight authentication protocol,” Electronics Letters,
vol. 41, no. 21, pp. 1169–1170, Oct. 2005.

[11] K. Ouafi, R. Overbeck, and S. Vaudenay, “On the security of HB#
against a man-in-the-middle attack,” in Advances in Cryptology - ASI-
ACRYPT 2008, ser. Lecture Notes in Computer Science, vol. 5350.
Springer Berlin / Heidelberg, 2008, pp. 108–124.

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

2502


