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Abstract

In this paper, we describe an approach to segment hand-
written text, machine printed text and noise from annotated
machine printed documents. Three categories of word level
features are extracted. We use a modified K-Means clus-
tering algorithm for classification followed by a relabeling
procedure using Markov Random Field(MRF) based on a
concept of neighboring patches and Belief Propagation(BP)
rules. Experimental results on an imbalanced data set show
that our approach achieves an overall recall of 96.33% .

1. Introduction

Unlike the retrieval of machine printed documents,
where high OCR accuracy can be expected, the retrieval of
noisy annotated documents which contain both handwritten
text and machine printed text is still a challenge because
document retrieval in the context of handwriting has not
been widely explored.
The pre-processing of mixed documents to isolate hand-

written and machine printed text and to remove noise is an
important step in the design of systems for OCR, author
identification, signature verification and document retrieval.
In [3], Jose et al. suggest two types of features (con-

tent related features and shape related features) to charac-
terize handwritten text on bank check images. Jang et al.
[9] propose a type of geometric features to classify machine
printed and handwritten addresses on mail-pieces. Consid-
ering a text word as a sequence signal, Guo and Ma [7] sep-
arate handwritten material from documents using a Hidden
MarkovModel. In order to identify Arabic handwritten text
in mixed documents, Farooq et al. [4] use an EM based
probabilistic NN model. In [15], Zheng et al. propose a
Gibbs network which is optimized by Highest Confidence
First algorithm for text classification and extend their work

to signature detection [16]. A similar approach but using
Conditional Random Field is proposed by Shetty et al. [13].
Recently, considerable work has been done on image bi-
narization [2] using Markov Random Field(MRF) which is
inspired by MRF’s success in the area of image restoration
[5]. MRF has also been used to label text[15].
In this paper, we present a MRF based approach to sep-

arate handwritten text, machine printed text and noise from
annotated documents. Text segmentation and feature ex-
traction are covered in section 2. In section 3, we initially
classify 3 different kinds of patches using G-Means, which
are then refined using Markov Random Fields based on
the concept of a system of neighbors and Belief Propaga-
tion(BP) update rules as proposed in section 4. Experimen-
tal results and our conclusions are presented in section 5 and
section 6.

2. Preprocessing

Our pre-processing consists of two steps: (i) text seg-
mentation and (ii) feature extraction.

2.1. Text segmentation

Prior to classification, each binarized document is seg-
mented into patches which are small snippets of the image.
In our MRF based framework, we model each document
as a random field which consists of a number of patches. A
m×n sized window is used for dilation of the original bina-
rized image and the bounding box of each connected com-
ponent after dilation is defined as a patch. The size of the
window is empirically chosen such that the resultant patch
typically represents a handwritten or machine-printedword.
Patches whose size is smaller than a threshold tl or larger
than a threshold th are eliminated as noise.
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2.2. Feature extraction

Three different categories of features are considered for
classification of a given patch into one of three classes viz.,
handwritten text, machine-printed text and noise.

• Patch Level Features: 12 patch level statistic features
are extracted for each patch of size w × h as shown in
Table 1.

• Connected Component Features: Connected com-
ponents in each patch are extracted from the original
(non-dilated) binarized image and 9 connected com-
ponent based features are considered as described in
Table 1.

• Gabor Features: Gabor filters can serve as directional
band-pass filters which are modulations of a complex
sinusoidal and Gaussian function. The 2-D Gabor fil-
ter is defined as Eq.1 in the space domain (details of
parameters can be found in [11, 12, 6]):

gλ,θ,ϕ,δ,γ(x, y)

= K exp

(
−

x′2 + γ2y′2

2δ2

)
cos

(
2π

x′

λ
+ ϕ

)
(1)

where
x′ = x cos θ + y sin θ, y′ = −x sin θ + y cos θ

and λ is wavelength of the cosine factor of the Gabor
filter kernel, θ is orientation, ϕ is the phase offset, γ
is the aspect ratio and δ is the squared deviation of the
Gaussian function. A set of different θ and λ lead to
the 8 gabor filters used in our experiments.

3 Initial Classification

The initial labeling of the three different kinds of patches
during training is carried out using a modified K-Means
clustering method known as G-Means [8].
Unlike normal K-Means clustering where one has to es-

timate k, G-Means determines the number of clusters based
on the distribution of the training data. The essence of G-
Means is to split the data set using normal K-Means until
each cluster is Gaussian-like in its distribution. The proce-
dure of G-Means is described in following table.
In our experiments, G-Means is used to further cluster

the three different classes individually to obtain a total of
N centers. Then each feature point in the training data set
is assigned to a label i(0 � i < N) which is the index of
the closest center ci and the co-variance of each cluster is
calculated as:

Σi =
1

M

M∑
k=1

(xk − ci)(xk − ci)
T (0 � i < N) (2)

G-Means Procedure
1: Initialize data set as a cluster Ci = {x|x ∈ class(i)}.
2: Project samples within cluster onto an optimal projection

direction v to get corresponding one-dimensional data set
Ĉi = {y|y = 〈x, v〉/‖v‖2}.

3: Estimate the confidence of statisticA to determine cluster’s
distribution using Anderson-Darling test [1]:

A2 = −n−

n∑
k=1

2k − 1

n
[ln G(yk) + ln(1−G(yn+1−k))]

where n is the size of the data set, yk is the sorted sample
from Ĉi and G(x) is the normal distribution function.

4: IfA < α, where α is a pre-defined threshold, Ci is regarded
as a Gaussian-like distribution and is stored as a qualified
cluster with its center ci =

∑
xk/n. Otherwise, data set is

split into 2 clusters Ci+1 and Ci+2 using normal K-Means
clustering.

5: For each new cluster, go to step 2, until every cluster has a
Gaussian-like distribution.

where M is the number of feature points within the clus-
ter, xk is a sample in this cluster and ci is the center of the
cluster.
In the classification phase, the Mahalanobis distance

from a feature point to each cluster is calculated and this
feature point is assigned to the closest center(label):

L(x) = arg min
i

Dm(x, ci)

= arg min
i

√
(x − ci)T Σ−1

i (x − ci) (3)

Since the class to which each center belongs (handwrit-
ten text, machine printed text or noise) is already known
during the training phase, it is easy to map the label of the
test feature points to one of the three classes.
For convenience, we use the terminology index i of cen-

ter ci and label Li interchangeably in the following sections.

4 Relabeling

Due to overlaps in feature space, misclassification can-
not be avoided using a single classifier. Therefore, post-
processing or relabeling is needed. The intuition for rela-
beling is that a patch surrounded by patches from a single
different class has a high probability of belonging to that
class. Markov Random Field is a kind of network which
describes the statistical dependency between observed and
hidden states in the net and is a suitable model to relabel
patches in our scenario.

4.1 MRF Topology

We use the topology shown in Fig.1 for our MRF. Each
grey node xi in the hidden layer exclusively corresponds to
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Patch Feature Description

Location Relative location of patch with respect to entire document: x, y

Relative width and height Relative width and height of patch with respect to its nearest neighbor.
Foreground density The number of foreground pixels divided by the size of the patch: d =

∑
x,y

I(x, y)/(w × h)

Average stroke width The number of foreground pixels divided by the length of the contour: s =
∑

x,y
I(x, y)/l

Crossing number
The number of pixels whose intensity differs from its neighbor vertically and horizontally:
cx =

∑
x,y

I(x, y)⊕ I(x + 1, y)/h, cy =
∑

x,y
I(x, y)⊕ I(x, y + 1)/w

Variance of projection Variance of horizontal and vertical projection.
Maximum run length Maximum runlength within the patch in the horizontal and vertical directions.

Connected Component Feature Description

Components number The number of connected components within a patch: n
Maximum width and height Maximum width and height of a connected component within the patch: maxw, maxh

Mean of width and height
Average width and height of components within the patch:
avew = 1

n

∑
i
w(i), aveh = 1

n

∑
i
h(i)

Variance of width and height
Width and height variation of components within the patch:
varw =

√
1

n

∑
i
(w(i)− avew)2, varh =

√
1

n

∑
i
(h(i)− aveh)2

Hole ratio Total hole area within patch divided by patch’s size.
Overlap ratio Overlap area between connected components divided by the size of the patch.

Table 1. Patch level and connected component level features

a document patch and will be assigned to a label Li(0 �

Li < N) after initial classification. Hidden nodes are con-
nected to their four spatially closest neighbors which are
defined in the next subsection. Each white node yi in the
observation layer is a feature point for that patch and con-
nects to its hidden node. Edges between nodes carry mes-
sages which indicate the similarity (hidden layer) or depen-
dency(observation layer) between the nodes.
Messages in a network propagate in two opposite direc-

tions ([10, 14, 5]): 1) a node receives incoming messages
from its neighbors which can be used for maximum a pos-
teriori (MAP) estimation of belief at a certain node i

x̂i = arg max
xi

ψ(xi, yi)
∏

j∈N(i)

mij(xi) (4)

2) outgoingmessages from a node to its neighbors e.g. from
node j to i which leads to the message update rule

mij(xi) = max
xj

ψ(xi, xj)ψ(xj , yj)
∏

k∈N(j)\i

mjk(xj) (5)

where ψ(x, y) is the compatibility function representing the
similarity or dependency between two nodes, mij(xi) rep-
resents a message from node j to i, j ∈ N(i) are the neigh-
bors of node i and k ∈ N(j) \ i are the neighbors of node j

except node i.

Figure 1. The topology of the MRF. Each grey node
xi which is a label for a text patch connects to its
four nearest neighbors. Each observation node yi

which is a feature point in the feature space con-
nects to its hidden label xi. Edges between any
pair of nodes indicate their similarity.

4.2 System of Neighbors

The spatial distance between each pair of patches in a
document is defined as:

Dn(i, j) =
(dxi,j − x̂)2

2x̂2
+

(dyi,j − ŷ)2

2ŷ2
(6)

In this Gaussian-like function, [dxi,j , dyi,j ] represent the
convex-hull distances between patches i and j in the hor-
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izontal and vertical directions, x̂ is the dominant gap be-
tween words and ŷ is the dominant gap between text lines
over the entire document. Dominant gaps x̂ and ŷ can be
estimated using histograms. Based on the spatial distance,
the four closest neighbors are considered for each patch. In
Fig.2, the four nearest neighbors of the patch contained in
the red rectangle are represented by the four black rectan-
gles.

Figure 2. A patch and its nearest neighbors.

4.3 Belief Propagation(BP) Update Rules

Unlike other methods [15] that use patch clique occur-
rence frequency to relabel patches, we consider similarities
between two hidden nodes in both the space as well as the
feature domains. The compatibility function between hid-
den nodes xi and xj is defined as

ψ(xi, xj) = 1 + αe−Dn(i,j) + βe−De(Li,Lj) (7)

whereDn(i, j) is the spatial distance calculated from Eq.(6)
between two neighboring patches andDe(Li, Lj) is the Eu-
clidean distance between the two hidden nodes that repre-
sent the assigned centers in the feature space. α and β are
two parameters that control the influence between neigh-
bors.
The compatibility between a hidden node and its corre-

sponding observed node is:

ψ(xi, yi) = e1/(λDm(ci,oi)) (8)

whereDm(ci, oi) is the Mahalanobis distance, ci is the cen-
ter of the hidden node in feature space and oi is the feature
point representing the patch. Parameter λ controls the influ-
ence of the observed node on the hidden node.
All initial messages mij in Eqs.(4) and (5) are set to 1

and updated using Eqs.(7) and (8) until there is no label flip
during message propagation.

5 Experiments

94 documents from the Tobacco industrial litigation
archives were used in our experiments. The original bi-
narized documents were dilated using a 5 × 5 window
and segmented using the method described in Section 2.1.

(a) (b)

Figure 3. Mixed hand/machine text and low resolu-
tion patches

A total of 29685 patches(19842 machine printed patches,
832 handwritten patches and 9011 noise patches) were ex-
tracted. 15409 patches from 48 documents were used for
training. 117 centers for machine printed patches, 5 cen-
ters for handwritten patches and 53 centers for noise patches
were obtained using G-Means based clustering on the train-
ing data. The remaining 14276 patches from 46 documents
were used for testing.

Figure 4. An example document with the labeled
results from the system. Blue boxes representma-
chine printed text, red boxes represent handwrit-
ten text and black boxes represent noise.

All test patches were initially assigned to the closest cen-
ters in the feature space as described in Section 3. TheMRF
based BP rules from Section 4 were then used to relabel all
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G-Means MRF
Precision Recall Precision Recall

Machine-printed 98.91% 94.11% 99.20% 96.59%
Handwritten 47.97% 90.91% 64.99% 96.01%
Noise 92.40% 95.19% 94.84% 96.40%
Overall N/A 93.40% N/A 96.33%

Table 2. Result of classification & MRF relabeling

the patches. Precision and recall measures were computed
to estimate the performance of our approach.

precision(i) =
# of patches correctly classified as class i

# of patches classified as class i
(9)

recall(i) =
# of patches correctly classified as class i

# of patches belonging to class i
(10)

Table 2 shows that the precision and recall for each
class increased after using MRF relabeling, especially for
handwritten text. Overall recall increased from 93.4% to
96.33%. In our test set, there were about 20 patches which
contained both handwritten and machine printed text and
over 300 patches whose resolution was very low as shown
in Fig.3. The mixed handwritten/text patches should prob-
ably be treated as a separate class since it is not clear how
these should be labeled and hence were excluded from our
evaluation. The low resolution patches were labeled as ma-
chine print but were typically classified by the system as
handwritten patches and resulted in the precision metric for
the handwritten text being low. The problem of the low
resolution patches can be overcome by adding more such
samples into the training set.
Testing was also done on a separate HP image set of 66

documents that were very different from the Tobacco litiga-
tion data set. Fig.4 shows one example result from the HP
data set. Most patches are correctly classified even though
the system was only trained on the Tobacco litigation set.

6 Conclusions

In this paper, we present a Markov Random Field based
method to classify three different kinds of text(machine
printed, handwritten and noise). To integrate MRF into the
initial classifier, we use G-Means to cluster each class in-
dividually and use those centers as our hidden nodes in the
MRF. A novel Gaussian-like function is used to compute
distance between patches to locate neighbors. Experiments
show that our method has better classification performance
than a single classifier. Future work includes the use of
smaller patches and use of other classification techniques.
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