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Abstract—Information-theoretic security offered by the wire-
tap channel model has been extensively studied for various
scenarios recently. One scenario that has not received much
attention is secrecy for systems with memory in the form of
input constraints or inter-symbol interference (ISI). In this work,
we consider finite state wiretap channels (FSWCs), which model
the scenario of secrecy with memory. Using results on secrecy
capacity for arbitrary wiretap channels, we first arrive at the
secrecy capacity of a FSWC. Then, we develop a stochastic
algorithm for computing tight lower bounds on the secrecy
capacity of a less-noisy FSWC, and illustrate the computation
through examples. Our results provide numerical comparisons
between secrecy capacities with and without memory, and provide
specific targets for code design.

I. INTRODUCTION

Information-theoretic security in practical physical systems

has been an area of intense recent research. The wiretap

channel model, originally introduced by Wyner [1], has been

studied in several scenarios. The secrecy capacity of a wiretap

channel is of primary importance in such studies. Whenever

the secrecy capacity is positive, secret information can be sent

from a legitimate transmitter to the legitimate receiver over the

main channel in the presence of an eavesdropper observing

over the wiretapper’s channel. Thus, deriving the secrecy

capacity and computing its value numerically are important

first steps in designing practical codes for security.

In this paper, we introduce the novel scenario of a finite-state

wiretap channel (FSWC), establish its secrecy capacity, and

provide a method for computing lower bounds on the secrecy

capacity. A study of FSWC could potentially open up several

possibilities, including embedding secret messages on noisy

media such as printed hardcopies, storage of secret messages

on magnetic and optical devices, and secret transmission over

fiber-optic cables. In most, if not all these cases, a suitable

model for the main channel and/or the wiretapper’s channel

is the finite state channel. Examples of finite state channels

include partial response models used in magnetic and optical

recording, input-constrained inter-symbol interference (ISI)

models, and input runlength constraints.

Computing information-theoretic quantities for finite-state

channels with memory is a non-trivial problem [2], [3] with

some important recent progress in [4], [5]. The algorithm

proposed in this paper for computing lower bounds on the

secrecy capacity of a FSWC, is similar in spirit to the

stochastic algorithm of [4]. However, the algorithm of [4]

cannot be directly used for secrecy capacity, which involves

the difference of two mutual information terms. By a series

of careful modifications and manipulations, we develop a

new stochastic algorithm for computing estimates of secrecy

capacity. We study the convergence rate of the algorithm

through simulations, and develop lower and upper bounds for

the estimates to establish convergence.

The specific contributions of this work are the following: In

Section II-B, we characterize the secrecy capacity of a finite-

state wiretap channel (FSWC), i.e., a wiretap channel whose

component channels are finite-state channels. We provide

a stochastic algorithm in Section III for computing lower

bounds on the secrecy capacity. To fix ideas, we first consider

in Section III-A the example of a (0, 1)-constrained input,

noiseless main channel, and a BSC wiretapper’s channel, and

then generalize to the less-noisy FSWC in Section III-B.

II. FINITE-STATE WIRETAP CHANNELS

The generalized wiretap channel framework, introduced

in [6] for discrete memoryless channels (DMCs) has been

extended to arbitrary channels recently in [7]. In a wiretap

channel setting, the legitimate transmitter and receiver are

connected by a main channel, while an eavesdropper observes

the channel input over the wiretapper’s channel with the same

input alphabet as the main channel. In this work, we consider

the setting where the main channel and wiretapper’s channel

are discrete finite-state channels [8], which is a general model

for channels with memory. We refer to such a setting as the

finite-state wiretap channel (FSWC). Precise definitions and

notation are introduced below.

A. Definitions and Notation

A discrete finite-state channel is defined by the transition

probability Pr{YlS
′
l |XlS

′
l−1}, where Xl ∈ X is the input,

S′
l ∈ S ′ is the state, and Yl ∈ Y is the output at time l.

The alphabets X , Y and S ′ are assumed to be finite, and

the transition probability is independent of the time index

l. We denote such a finite-state channel as X →S′ Y . To

simplify notation, let V
N = [V1 V2 · · ·VN ] ∈ VN for an

arbitrary variable V ∈ V , and let |V| denote the size of

V . The conditional probability Pr(YN |XN , S′
0 = s′0) across

X →S′ Y can be computed from the transition probability.

As usual, I(X;Y ) denotes the average mutual information

between X and Y .
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For the finite-state wiretap channel (FSWC), the main

channel is characterized by the transition probability

P1(YlS
′
l |XlS

′
l−1}, input alphabet X , output alphabet Y and

state alphabet S ′, while the wiretapper’s channel is charac-

terized by the transition probability P2(ZlS
′′
l |XlS

′′
l−1}, input

alphabet X , output alphabet Z and state alphabet S ′′. The

common input Xl to the main channel and the wiretapper’s

channel could, in general, be the output of a finite-state source

characterized by the transition probability P (XlSl|Sl−1},

state alphabet S, and output alphabet X . In such a case,

the finite-state joint source-channel model for the wiretap

channel (FSJSCW) is defined by the transition probability

Pr{XlYlZlS̃l|S̃l−1}, where S̃ ∈ S̃ , S × S ′ × S ′′ is the

redefined state variable1.

B. Secrecy Capacity

Suppose that the legitimate transmitter needs to send a

secret message M ∈ M over the main channel, while

keeping the eavesdropper ignorant rate-wise. A secrecy rate

Rs = log2 |M|/N is said to be achievable if there exists a

series of encodings at the transmitter from M into XN with

corresponding decodings from YN into M producing M̂ such

that (1) Pr{M̂ 6= M} → 0 and (2) I(M ;ZN )/N → 0 as

N → ∞. The secrecy capacity of a wiretap channel is the

supremum of all achievable secrecy rates.

The secrecy capacity of an arbitrary wiretap channel with

several applications has been determined in [7]. One such

application is to the mixed channel, which exactly matches

the definition of the FSWC. The main result (adapted from

Theorem 3 in [7]) is that the secrecy capacity of a FSWC is

given by

Cs = max
P (VN ,XN )

(

min
s′
0

lim
N→∞

1

N
I(VN ;YN |S′

0 = s′0)

− max
s′′
0

lim
N→∞

1

N
I(VN ;ZN |S′′

0 = s′′0),

)

(1)

where V
N is a sequence of auxiliary random variables such

that V
N → X

N → (YN ,ZN ) is a Markov chain. The

maximization is over possible joint distributions of V
N and

X
N denoted P (VN ,XN ).
If the finite-state channels C1 and C2 are indecomposable

(see [8] for the exact definition, but most practical finite

state channels are indecomposable), the maximization and

minimization with respect to the initial states is not necessary.

Hence, for indecomposable channels, the secrecy capacity

becomes

Cs = max
P (VN ,XN )

lim
N→∞

1

N

(

I(VN ;YN |S′
0 = s′0)

− I(VN ;ZN |S′′
0 = s′′0)

)

(2)

for arbitrary initial states s′0 and s′′0 keeping V
N → X

N →
(YN ,ZN ) as a Markov chain.

1In certain cases, |S̃| = max {|S|, |S′|, |S′′|} suffices

C. Less-noisy Condition and Simplifications

The formula for secrecy capacity given in (2) involves an

auxiliary random variable in the general case. An interesting

scenario that simplifies the computation of (2) is the less-noisy

characterization. A DMC X → Y is less-noisy than a DMC

X → Z, if for all random variables V such that V → X →
(Y,Z) is a Markov chain, I(V ;Y ) ≥ I(V ;Z). If the main

channel is less-noisy than the wiretapper’s channel in a DMC

wiretap scenario, the auxiliary random variable drops out of

the formula for secrecy capacity.

In a similar way, an indecomposable finite-state channel

X →S′ Y can be said to be less-noisy than another inde-

composable finite-state channel X →S′′ Z, if there exists a

positive integer N0 so that, for N > N0 and all initial states

(s′0, s′′0 ), I(VN ;YN |s′0) ≥ I(VN ;ZN |s′′0) for all sequences

of auxiliary random variables V
N such that V

N → X
N →

(YN ,ZN ) is a Markov chain.

Under the above definition for less-noisy finite-state chan-

nels, the secrecy capacity formula simplifies in a manner

similar to that of the DMC. Therefore, by the same proof

as for DMCs, we have that the secrecy capacity of indecom-

posable FSWCs, whose main channel is less-noisy than the

wiretapper’s channel, is given by

Cs = max
P (XN )

lim
N→∞

1

N

(

I(XN ;YN |S′
0 = s′0)

− I(XN ;ZN |S′′
0 = s′′0)

)

(3)

for arbitrary initial states s′0 and s′′0 . We do not explicitly write-

out the state initialization in the rest of this paper.

III. ALGORITHM FOR COMPUTING TIGHT LOWER

BOUNDS ON SECRECY CAPACITY

In most cases, an analytical solution for equation (3) cannot

be obtained. This is true even in seemingly simple settings

where the main channel is noiseless and the input X
N is

constrained. Thus, a general numeric procedure for computing

the secrecy capacity is of much interest here. Though Arimoto-

Blahut-like algorithms have recently been proposed for the

DMC wiretap setting [9], these algorithms are not applicable

for our present case of finite-state wiretap channels. Thus, the

remainder of this paper is focused on deriving a numerical

procedure to compute tight lower bounds on the secrecy

capacity given by (3).

Let us start by observing that the maximization in (3) is

over all possible input distributions P (XN ). Our first step

is to restrict this search space by only considering Markov

sequences X
N , i.e., X

N is generated by a Markov source

SM of some memory order M . Next, we provide a stochastic

algorithm for optimizing the transition probabilities of the

Markov source SM , so as to maximize the secrecy rate over a

given less-noisy FSWC. Let us denote this optimized secrecy

rate by Cs(SM ). Then, Cs(SM ) is a lower bound on the

secrecy capacity Cs in (3).

The basic idea behind our stochastic algorithm is best

understood using the following example.
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A. Example:(0, 1)-constrained source, noiseless C1, noisy C2

A (d, k)-constrained sequence is defined as a binary se-

quence where successive “1”s are separated by at least d and

at most k consecutive “0”s. When d = 0 and k = 1, we ob-

tain a (0, 1)-constrained sequence, where runs of consecutive

“0”s are prohibited. For example, 1010111 satisfies the (0, 1)

constraint, whereas 1001011 violates this constraint.

Consider such a (0, 1)-constrained sequence X
N , generated

by the 2-state stationary Markov source shown in Fig. 1. Let

us denote this source as S1, since it has memory order 1. We

now ask: what is the maximum secrecy rate using S1, i.e.,

what is the maximum rate at which Alice can transmit source

sequences to Bob while keeping Eve ignorant rate-wise? Here,

we assume that the channel between Alice and Bob C1 is

noise-free, and that Eve can overhear only a noisy version

of Alice’s transmission. For illustration, let us further assume

that C2 is a binary symmetric channel (BSC) with cross-over

probability p, denoted as BSC(p). The above assumptions will

be relaxed in subsequent, more general discussions.

With this set-up, we obtain following (3)

Cs(S1) = max
P11

lim
N→∞

1

N

[

H(XN ) − I(XN ;ZN )
]

, (4)

where Cs(S1) denotes the maximum secrecy rate using

Markov source S1 with state-transition probability P11, as

shown in Fig. 1. Clearly, an analytical closed-form solution

for (4) is infeasible. Our goal now is to provide a stochastic

algorithm for performing the optimization in (4).

To this end, we would like to express (4) in the following

form, which would then allow us to use the noisy adjacency

matrix technique [4].

Cs(S1) = max
P11

lim
N→∞

1

N

[

H(XN ) − I(XN ;ZN )
]

(5)

= max
P11

lim
N→∞

[

1

N
H(XN ) −

1

N
H(ZN )

+
1

N
H(ZN |XN )

]

(6)

= max
P11

∑

i,j:(i,j)∈T

µiPij

[

log
1

Pij

+ T
(1)
ij + T

(2)
ij

]

,(7)

where µi denotes the stationary probability of state i, Pij

denotes the transition probability from state i to state j,

and T = {(1, 1), (1, 2), (2, 1)} is the set of all valid state

transitions for the Markov source S1 shown in Fig. 1. Note

that
∑

j Pij = 1 for i = 1, 2 so that S1 is specified by P11

alone, and µj =
∑

i µiPij by the stationarity requirement.

P11/1

P12/0

P21/1

1 2

Fig. 1. 2-state Markov source with memory order 1, with branch labels
denoting transition probability/source output.

Since C2 is BSC(p), the term T
(2)
ij in (7) is simply the binary

entropy h(p) = −p log p − (1 − p) log(1 − p). The term T
(1)
ij

in (7) can be accurately estimated as follows

T̂
(1)
ij =

log Pr(zN )

NµiPij

(

1

N

N
∑

l=1

Prl(i, j|z
N )

)

, (8)

where Prl(i, j|z
N ) is used to denote the conditional probability

Pr(Sl−1 = i, Sl = j|zN ). Using Bayes rule, (8) can be viewed

as

T̂
(1)
ij =

1

N

(

1

N

N
∑

l=1

log Pr(zN |Sl−1 = i, Sl = j)

)

. (9)

By invoking the law of large numbers along with the er-

godicity assumption, we see that limN→∞ T̂
(1)
ij = T

(1)
ij and

limN→∞

∑

i,j:(i,j)∈T
µiPij T̂

(1)
ij = −H(Z), with probability

1, where H(Z) = limN→∞
1
N

H(ZN ) is the entropy-rate

of the hidden Markov process Zl. Thus, the estimate T̂
(1)
ij

can be obtained as in (8) by a single long simulation. The

quantities Prl(i, j|z
N ) and log Pr(zN ) can be computed using

the Arnold-Loeliger sum-product approach [10], which is a

variant of the well-known BCJR algorithm [11].

We now give the stochastic algorithm to compute Cs(S1)
for the present example.

Initialization

Pick any arbitrary P11, 0 < P11 < 1.

Set P12 = 1 − P11, P21 = 1.

Repeat until convergence

Step 1: For N large, generate xN as the output of

source S1 (according to the transition probabilities Pij) and

pass them through C2 to get zN

Step 2: Run the Arnold-Loeliger modified sum-

product algorithm to compute the estimate T̂
(1)
ij

Step 3: Estimate the noisy adjacency matrix as

Âij =

{

2T̂
(1)
ij if (i, j) ∈ T

0 otherwise,

and find its maximal eigenvalue Ŵmax and the corresponding

eigenvector b̂ =
[

b̂1 b̂2

]T

Step 4: Compute the entries for the new transition

probability matrix for (i, j) ∈ T as Pij =
b̂j

b̂i

.
Âij

Ŵmax

end

Compute the secrecy capacity estimate Ĉs(S1) =
log(Ŵmax) + h(p)

Thus, Cs(S1) can be estimated using the given stochastic

algorithm. Let us denote by Cs(0, 1), the maximum achiev-

able secrecy rate for noiseless C1, BSC(p) C2, and (0, 1)-

constrained input. Then, Cs(S1) gives a lower bound on

Cs(0, 1). For comparison, another lower bound Cl
s(0, 1) can

be obtained as follows. Let us assume Alice transmits max-

entropic (0, 1) sequences to Bob. Then H(XN )/N in (4) is
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Fig. 2. Optimized secrecy rate for (0, 1) and (1, 3) input constraints as a
function of the BSC crossover probability p. Also shown are corresponding
upper bounds, lower bounds, and the unconstrained secrecy capacity.

simply the noiseless (0, 1)-constrained capacity C01. Next,

using upper bounds given in [3], we obtain an upper bound on

the second term as I(XN ;ZN )/N ≤ Cub(p). For the exact

computation of Cub(p), see [3]. Since the secrecy capacity is at

least as large as the RHS of (4) evaluated for the maxentropic

distribution, we obtain Cs(0, 1) ≥ Cl
s(0, 1) = C01 − Cub(p).

Our results are shown in Fig. 2. We see that Cs(S1) is a

better lower bound than Cl
s(0, 1). Still better lower bounds

can be derived by increasing the memory order of the Markov

source, though we observed only marginal improvements for

this example.

An upper bound on secrecy capacity, denoted Cu
s (0, 1), is

also shown in Fig. 2 for comparison. Rewriting (4), we see that

the RHS becomes H(XN |ZN )/N , which is upper bounded by

Cu
s (0, 1) = H(S2|S1, Z2, Z3) (Si: state at time i) evaluated

at the stationary distribution as shown in [12]. It is seen that

Cu
s (0, 1) is numerically very close to the lower bound Cs(S1),

thus suggesting the tightness of our estimate.

The above computation and bounds are readily extended to

other (d, k)-constrained inputs. Plots for d = 1 and k = 3 are

shown in Fig. 2. In this case, an order-3 Markov source was

used to generate the (1, 3)-constrained sequences. As before,

the secrecy rate Cs(S3) was estimated using our stochastic

algorithm by optimizing the transition probabilities of this

Markov source. The corresponding upper bound Cu
s (1, 3) is

also shown for comparison. Once again, Cs(S3) is seen to

be numerically very close to the upper bound, and hence it

provides a tight lower bound on the secrecy capacity Cs(1, 3).

B. The general less-noisy case

Having understood the basic idea, let us now extend the

stochastic algorithm of Section III-A to the general case of

indecomposable finite-state channels C1 and C2 which satisfy

the less-noisy condition (see Section II-C). For this purpose,

we use the finite-state joint source-channel model for the

wiretap channel (FSJSCW). As an example, let us consider C1

to be the dicode channel with impulse response 1-D, and C2

to be the EPR4 channel with impulse response 1+D-D2-D3.

We allow a Markov source of memory order 1. Trellis sections

for the Markov source and the dicode main channel C1 are

shown in Fig. 3. Trellis sections for the EPR4 wiretapper’s

channel and the FSJSCW model are shown in Fig. 4.
2

1

2
′

1
′P11/ − 1

P12/1

P21/ − 1

P22/1

−1/0

1/2

−1/ − 2

1/0

Fig. 3. On the left is order-1 Markov source with X = {−1, 1} and branch
labels denoting transition probability/source output; on the right is dicode
main channel with branch labels denoting channel input/noiseless output.

Let us now denote the Markov source of Fig. 3(a) by S1.

Proceeding similar to Section III-A, we obtain

Cs(S) = max
Pij :(i,j)∈T

lim
N→∞

1

N

[

I(XN ;YN ) − I(XN ;ZN )
]

= max
Pij :(i,j)∈T

lim
N→∞

1

N

[

H(XN ) − H(XN |YN )

− H(ZN ) + H(ZN |XN )

]

(10)

= max
Pij :(i,j)∈T

∑

i,j:(i,j)∈T

µiPij

[

log
1

Pij

+ T
(1)
ij

+ T
(2)
ij + T

(3)
ij

]

, (11)

where, as before, µi denotes the stationary probability of state

i, Pij denotes the transition probability from state i to state

j, and T denotes the set of all valid state transitions, but the

model now is the FSJSCW. In (11), T
(1)
ij , T

(2)
ij , and T

(3)
ij are

now estimated as follows

T̂
(1)
ij =

1

N

N
∑

l=1



log
Prl(i, j|y

N )
Prl(i,j|yN )

µiPij

Prl(i|yN )
Prl(i|yN )

µi



 (12)

T̂
(2)
ij =

log Pr(zN )

NµiPij

(

1

N

N
∑

l=1

Prl(i, j|z
N )

)

(13)

T̂
(3)
ij = −

log Pr(zN |xN )

NµiPij

(

1

N

N
∑

l=1

Prl(i, j|z
N )

)

, (14)

where Prl(i, j|z
N ) now denotes the conditional probability

Pr(S̃l−1 = i, S̃l = j|zN ), and Prl(i|y
N ) denotes the condi-

tional probability Pr(S̃l−1 = i|yN ). For the derivation of (12),

we refer the reader to [4]. Estimates T̂
(2)
ij and T̂

(3)
ij are obtained

similar to (8) earlier.

By invoking the law of large numbers along with the ergod-

icity assumption, we see that the above estimates converge

to T
(1)
ij , T

(2)
ij , and T

(3)
ij , respectively, with probability 1 as

N → ∞. Thus, T̂
(1)
ij T̂

(2)
ij and T̂

(3)
ij can be obtained using a

single long simulation of the FSJSCW model. The quantities

Prl(i, j|y
N ), Prl(i|y

N ), Prl(i, j|z
N ), and log Pr(zN ) can be

computed using the Arnold-Loeliger sum-product approach,

while the quantity Pr(zN |xN ) can be computed using the
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Fig. 4. (a) EPR4 wiretapper’s channel with branch labels denoting channel
input/noiseless output; (b) FSJSCW model with branch labels denoting (tran-
sition probability, source output)/(noiseless main channel output, noiseless
wiretapper’s channel output).

FSJSCW model and the noise model (AWGN for instance).

Finally, the stochastic algorithm to compute Cs(S) can be

given as follows.

Initialization

Pick an arbitrary distribution Pij which satisfies the fol-

lowing two conditions

1) if (i, j) ∈ T then 0 < Pij < 1, else Pij = 0
2)
∑

j Pij = 1 for any i

Repeat until convergence

Step 1: For N large, generate xN , yN , zN according

to the FSJSCW model.

Step 2: Run the Arnold-Loeliger modified sum-

product algorithm to compute estimates T̂
(1)
ij , T̂

(2)
ij , and T̂

(3)
ij .

Step 3: Estimate the noisy adjacency matrix as

Âij =

{

2T̂
(1)
ij

+T̂
(2)
ij

+T̂
(3)
ij if (i, j) ∈ T

0 otherwise,
(15)

and find its maximal eigenvalue Ŵmax and the corresponding

eigenvector b̂ =
[

b̂1 b̂2

]T

Step 4: Compute the entries for the new transition

probability matrix for (i, j) ∈ T as Pij =
b̂j

b̂i

.
Âij

Ŵmax

end

Compute the secrecy capacity estimate Ĉs(S) =
log(Ŵmax)

To summarize, we have presented a general stochastic al-

gorithm to optimize the transition probabilities of any Markov

source SM , so as to increase the secrecy rate over a given

less-noisy FSWC. Let us denote the optimized secrecy rate

estimated by our algorithm as Ĉs(SM ). Our experimental

results suggest that for large simulation block lengths N , the

estimate Ĉs(SM ) converges to Cs(SM ), the maximum secrecy

rate achievable by SM . We have also verified this behavior

using brute-force optimization techniques on Markov sources

of small memory order.

Further, with increasing M , Cs(SM ) provides a series of

lower bounds on the secrecy capacity Cs in (3). Compari-

son with outer bounds suggests that these lower bounds are

tight. An interesting question is whether Cs(SM ) actually

converges to the secrecy capacity Cs as the memory order

M of the Markov source goes to infinity. This behavior has

been recently confirmed for finite-state channels [13], and we

conjecture that it also holds for finite-state wiretap channels.

IV. CONCLUSION

In this work, we considered the finite-state wiretap channel

(FSWC), which models information-theoretic secrecy scenar-

ios for systems with memory. We characterized the secrecy

capacity of a FSWC, and provided a stochastic algorithm for

optimizing the secrecy rate of a given Markov source over

the less-noisy FSWC. Our results provide accurate numerical

estimates of secrecy capacity for several practical scenarios

such as storage channels with memory. These estimates can be

used as targets for code design for secrecy. On the theoretical

side, we conjecture that the optimized secrecy rates actually

approach the secrecy capacity as the memory order of the

Markov source goes to infinity.
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