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In this paper, we propose two confidence measures (CMs) in speech
recognition: one based on acoustic likelihood and the other based on
phone duration. For a decoded speech frame aligned to an HMM state,
the CM based on acoustic likelihood depends on the relative position of 
its output likelihood value in the probability distribution of likelihood
value in that particular state. The CM of whole phone is the geometric
mean of CMs of all frames in it. The CM based on duration depends on
the deviation of the observed duration from the expected duration of the 
recognized phone. The two CMs are combined using weighted geometric
mean to obtain a hybrid phone CM. The hybrid CM shows significant
improvement over the CM based on time normalized log-likelihood 
score. On TI-digits database, at 20% false acceptance rate, the normalized
acoustic log-likelihood based CM has a detection rate of 83.8% while the
hybrid CM has a detection rate of 92.4%. 
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Abstract
In this paper, we propose two confidence measures (CMs) in
speech recognition: one based on acoustic likelihood and the
other based on phone duration. For a decoded speech frame
aligned to an HMM state, the CM based on acoustic likelihood
depends on the relative position of its output likelihood value
in the probability distribution of likelihood value in that partic-
ular state. The CM of whole phone is the geometric mean of
CMs of all frames in it. The CM based on duration depends
on the deviation of the observed duration from the expected du-
ration of the recognized phone. The two CMs are combined
using weighted geometric mean to obtain a hybrid phone CM.
The hybrid CM shows significant improvement over the CM
based on time normalized log-likelihood score. On TI-digits
database, at20% false acceptance rate, the normalized acoustic
log-likelihood based CM has a detection rate of83.8% while
the hybrid CM has a detection rate of92.4%.

1. Introduction
In any communication scenario using speech, either human to
human or human to machine, the intelligibility of speech is an
important factor. Poor articulation of speech, ambient noise etc,
make speech less intelligible and thereby difficult to recognize.
Humans overcome this problem by either asking the speaker
to repeat or interpret speech using higher level knowledge like
pragmatics and context. In the case of human to machine in-
teraction, less intelligible speech can be dealt with confidence
measures. Confidence measures assign a degree of confidence
to the recognized words. Using confidence measures, the ASR
could identify the words which are likely to be erroneous and
the application using ASR could use corrective action.

The fundamental rule in statistical speech recognition is the
Baye’s rule given by:

Wopt = arg max
W

P (W | O)

= arg max
W

p(O | W ).P (W )

p(O)

= arg max
W

p(O | W ).P (W )

The recognized word sequenceWopt is the one which maxi-
mizes the posterior probabilityP (W | O), wherep(O | W )
is the acoustic model,P (W ) is the language model andp(O)
is the unconditional acoustic likelihood of the observation se-
quence. While decoding, the unconditional acoustic likelihood
p(O) is normally omitted since it is invariant to the choice of a
particular word sequence. As a result, the acoustic scorep(O |
W ) obtained during recognition will be unnormalized and can-
not be used as a measure of confidence. Different approaches

have been tried to approximatep(O) to obtain the right confi-
dence measureP (Wopt|O). The unconditional acoustic likeli-
hoodp(O) could be evaluated by summing up likelihoods given
all speech models (generic catch-all models [1]). The likelihood
p(O) can also be approximated to the likelihood score obtained
by doing a phone recognition of the same speech segment. In
ASRs using lattice re-scoring,p(O) could also be derived from
the word lattice [2].

In many cases, the computational complexity in evaluating
p(O) could even match the complexity of actual recognition.
In scenarios where this is undesirable, a meaningful confidence
measure could be obtained from unnormalizedp(O | W ) by
dividing it by the number of frames [3][4]. Though this ap-
proach achieves time normalization, the CM depends on the
decoded phones. In this paper, we still use the unnormalized
acoustic likelihood of each frame, but normalize it using a pri-
ori knowledge of the distribution of the likelihood scores. We
also propose a similar normalization scheme for the duration of
the recognized phones.

The paper is organized as follows: In section 2, we discuss
the CM based on time normalized log-likelihood score and ana-
lyze its shortcomings as a confidence measure. In section 3, we
propose the new confidence measures. The experiments and the
results are presented in section 4.

2. Time Normalized Log-Likelihood Score
The ASR returns the word sequenceWopt = {W1 . . . WK} as
well as the underlying HMM state sequence. The time normal-
ized log-likelihood scoreCNLS for the wordWk is given by:

C
Wk
NLS =

1

Tk
log p(Ok | Wk) (1)

p(Ok | Wk) = bs1(O1) · as1s2 . . . bsTk
(OTk ) (2)

whereOk = (O1 . . . OTk ) is the feature vector sequence and
(s1 . . . sTk ) is the corresponding HMM state sequence,bsi(Ot)
is the output likelihood ofOt in statesi andasisj is the transi-
tion probability from statesi to statesj . Ideally, the confidence
measure should be indicative of the correctness of the decoded
string and should not depend on actual phones/words decoded
so that CMs can be compared across different words. However,
the normalized log-likelihood scorecNLS depends on the de-
coded phone sequence. To illustrate this point, Fig. 1 shows
the output probability density functions (pdf) in HMM state 1
of context independent phones /z/ (e.g, /z/ in zero) and /ai/ (e.g.
/ai/ in nine). Please note that plot is for one dimension only.
The following two cases explain the inefficiency ofCNLS as a
measure of confidence:
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Figure 1: Output pdfs in state 1 of phones /ai/ and /z/. The
pdfs are plotted for the first component of the feature vector,
mfcc[1]. The points a, b and c denote the output likelihood
valuesbz(Ot), bai(Ot′) andbai(Ot′′) respectively.

Case-1: Let Ot andOt′ be feature vectors exactly aligned to
the mean of pdfsbz(O) andbai(O) of state 1 of /z/ and /ai/ re-
spectively. Asbz(Ot) ¿ bai(Ot′), they contribute unequally
to CNLS in (1). Ideally, asOt andOt′ are the acoustic means
in their respective states, their CMs should be equal.
Case-2:Let Ot′′ be the feature vector aligned to state 1 in /ai/
and has a likelihood valuebai(Ot′′) = bz(Ot). As Ot and
Ot′′ have the same likelihood values, they contribute equally to
CNLS in (1). Ideally,Ot should have a higher CM as it is the
acoustic mean in its state as opposed toOt′′ which is away from
its mean.

In this paper, we explore a method to transform the output
likelihood values using a priori knowledge of their distribution.

3. Proposed Confidence Measures
In this section, we propose two confidence measures, one based
on acoustic likelihood value and the other based on phone du-
ration. We also describe a method to combine the two CMs to
obtain a hybrid confidence measure.

3.1. Acoustic Confidence Measure

In ASR, a triphone is normally modeled by anN -state left-right
HMM. The output density in an HMM state is modeled as a
Gaussian mixture. For statej in triphonei (hereafter denoted
by state(i, j)), the output densitybij(O) is given by:

bij(O) =

MX

k=1

wijkN (µijk, Uijk; O) (3)

where,M is the number of mixtures,wijk is thekth mixture
weight andN (µ, U ; O) is the unimodal Normal density with
meanµ, covariance matrixU and given by:

N (µ, U ; O) = (2π)−
N
2 |U |−

1
2
exp(−1

2
(O − µ)T U−1(O − µ))

The ASR returns the recognized word sequence as well as the
HMM state sequence. Suppose that thetth speech frameOt

is aligned tostate(i, j) and has an output likelihood value of
bij(Ot), we define the new acoustic CMcA

t for that frame as:

cA
t = P [Bij ≤ bij(Ot)] (4)

WhereBij is a single dimensional random variable denoting
the output likelihood value of feature vectors that are correctly

aligned tostate(i, j). The CM cA
t is the probability that the

output likelihood value instate(i, j) is lesser than the observed
test vector likelihoodbij(Ot). The normalized CMcA

t is a bet-
ter measure of confidence than the CMs obtained directly from
the output likelihood scores.Bij is the transformed random
variableBij = bij(O). To simplify the notations, we drop the
subscriptij in further discussions. Solving forB = b(O) in (4)
and moving to logarithmic domain, we get:

cA
t = P [log(b(O)) ≤ log(b(Ot))] (5)

Assuming unimodal output density in (3), the acoustic CM in
(5) reduces to (6) whereR is the region of integration (ROI).

cA
t = 1−

Z

R

b(O′)dO′ (6)

R = {O : (O−µ)T U−1(O−µ) < (Ot−µ)T U−1(Ot−µ)}
If the feature vectorOt is the acoustic mean of the state to which
it aligns to i.e,Ot = µ, then the ROI is the null set{Φ} and
vectorOt has a maximum CM ofct = 1.

R = {O : (O − µ)T U−1(O − µ) < 0} = {Φ} (7)

In Fig. 1, the feature vectorsOt andOt′ are the acoustic means
of state 1 in phones /z/ and /ai/ respectively. As explained
above, bothOt and Ot′ will have the same confidence mea-
sure ofcA

t = cA
t′ = 1. Thus, the proposed CM has overcome

the shortcomings ofCNLS as discussed in case-1 in section 2.
In practice, the output density in an HMM state will be mul-

timodal and it is not possible to obtain a closed form solution
for cA

t in terms ofb(O). Hence we evaluatecA
t from (5) as:

cA
t =

Z log(b(Ot))

b′=−∞
fB′(b

′)db′ (8)

wherefB′ is the pdf of the transformed random variableB′ =
log(B) = log(b(O)) denoting the log-likelihood values of
speech feature vectors when aligned to the correct HMM state.
The pdffB′(b

′) is estimated non-parametrically from the train-
ing data as explained in section 3.2.

Fig. 2 shows the non-parametrically estimated pdf of the
output log-likelihood value in state 1 of phones /z/ and /ai/. The
pointsa, b andc on the x-axis correspond to the output likeli-
hood valuesa, b andc of vectorsOt, Ot′ andOt′′ as shown in
Fig. 1. Integration in (8) can be interpreted as the area under a
pdf curve. It is clear from the figure thatOt andOt′ will have
equal CMs ofcA

t = cA
t′ = 1 as the total area under a pdf is al-

ways unity. The CM for the feature vectorOt′′ is the area under
fB′ai

(b′) from b′ = −∞ to the pointc which is less than unity.

It should be noted thatcA
t′′ < cA

t even though the log-likelihood
values are the same forOt′′ as well asOt. This explains how
the proposed CM handles case-2 explained in section 2.

The confidence measure for a phone is computed as the ge-
ometric mean of the CMs of the speech frames in the phone. If
a phonep hasTp frames, its acoustic CM,CA

p is given by:

CA
p = exp(

1

Tp

TpX
t=1

log cA
t ) (9)
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Figure 2:The pdf of log-likelihood (log base = 1.0001) scores
in state1 of phones /ai/ and /z/. The pointsa, b and c on the
x-axis denote the log-likelihoodslog bz(Ot), log bai(Ot′) and
log bai(Ot′′) respectively

3.2. Non-Parametric pdf estimation

If the output pdf in the HMM state is unimodal Gaussian i.e,
M=1 in (3), it can be shown thatB′ will have a Gamma dis-
tribution. However, in the multimodal case, we cannot assume
a parametric form forfB′ . Non parametric methods of pdf es-
timation are useful when there is no a priori knowledge of the
underlying distribution. Parzen window [5] method is a kernel
based non parametric pdf estimation method. In this method
a kernel functionϕxk (y) (Rectangular, Gaussian etc) is gener-
ated around each data pointxk in the training set and the pdf is
evaluated by adding these kernel functions and scaling the sum.

f(y) =
1

V

KX

k=1

ϕxk (y) (10)

The training data is force aligned to its correct transcript us-
ing the Viterbi algorithm [6]. Suppose the feature vectors
O1 . . . OK are aligned to a particular state in a triphone and
each frame has a log-likelihood score oflog(b(Ok)), k =
1, . . . K, the pdffB′(b

′) is given by:

fB′(b
′) =

1

Kh

KX

k=1

ϕ(
b′ − log(b(Ok))

h
) (11)

where,ϕ(u) is the rectangular kernel function given by (12) and
h is the scaling factor.

ϕ(u) =

(
1 | u |≤ 1/2

0 otherwise
(12)

3.3. Duration Confidence Measure

Different approaches have been tried in the past to use phone
duration as a feature in utterance verification [7]. LetD be the
discrete random variable denoting the phone duration (in terms
of number of frames),pD(n) the probability mass function
(pmf) of D andµD the expected duration of phone. Supposed
is the observed duration of the recognized phone, the new confi-
dence measure is based on the deviation (d′ = |d− µD|) of the
observed duration from the expected duration as opposed to di-
rectly usingpD(n = d). If the random variableD′ = |D−µD|

denotes the deviation, we define the duration based CM as:

CD
p = P [D′ ≥ d′] = 1− P [D′ < d′] (13)

= 1− P [µD − d′ < D < µD + d′] (14)

= 1−
bµD+|d−µD|cX

n=dµD−|d−µD|e
pD(n) (15)

Closer the value of observed duration to its expected duration,
the higher is the duration confidence measure of that phone. To
evaluate the duration pmf of each triphone, we force align the
training data to its correct transcript and obtain the histogram
of the phone duration. The histogram is then smoothened and
normalized to get the pmfpD(n).

3.4. Combination of Confidence Measures

We use weighted geometric mean to combine the acoustic and
duration CMs to obtain a hybrid phone confidence measure.

Cp = exp(walog(CA
p ) + (1− wa)log(CD

p )) (16)

Wherewa(0 ≤ wa ≤ 1) is the acoustic CM weight factor.
The word confidence measureCW is the geometric mean of the
hybrid phone confidence measures of the constituent phones.

4. Experiments and Results
To test the proposed confidence measures, we conducted ex-
periments using open source speech recognition toolkit Sphinx-
Train and Sphinx-3 flat decoder [8]. In this section, we discuss
the experiments and the relevant results.

4.1. Database

Experiments were conducted on speaker independent contin-
uous digit recognition task. The vocabulary consisted of11
words (ten digits and oh). TI-digits [9] database was used for
training the ASR as well as evaluating the performance of the
confidence measures. The training set consisted of 12549 digit
utterances from 163 speakers and the test set consisted of 12547
utterances from 163 speakers

4.2. ASR System

Mel Frequency Cepstral Coefficients (MFCCs) were used as
features for speech recognition. The speech signal sampled at
16 kHz is frame blocked with a window length of20 msec and
frame shift of10 msec. The13-dimension MFCC vector, delta
coefficients and delta-delta coefficients form a39-dimensional
feature vector. Triphone is used as the basic speech modeling
unit, modeled by a5-state left-right HMM. The output density
in each state is modeled as mixture of4 Gaussians. The word
error rate of the ASR was3.1% while the sentence error rate
was8.0%

4.3. Confidence Measure Results

To evaluate the performance of the confidence measures, rec-
ognized words are compared against the correct transcription of
the utterance and each word is classified ascorrect or wrong.
The confidence measures of hypothesized digits are compared
against a threshold to eitheracceptor reject the digit. Receiver
Operator Characteristics (ROC) [10] - plot of the detection rate
versus the false acceptance rate - is plotted by varying the confi-
dence threshold between0 and1. A confidence measure is good
if it has higher detection rates at lower false acceptance rate.



The proposed confidence measures are tested for its ef-
ficiency in detecting putative errors [10] (erroneous but in-
vocabulary words) as well as Out-Of-Vocabulary (OOV) words.
Table 1 compares the performance of different confidence mea-
sures in rejecting the putative errors. The proposed confidence
measures have out performed the baseline confidence measures.
Also, the hybrid CM (wa = 0.8) based on acoustic likelihood
as well as phone duration has performed better than the CM
based only on acoustic likelihoods (wa = 1.0).

Table 1: Performance of the CMs in rejecting putative errors.
Detection rates for false acceptance rates of 30, 20 and 10%

Confidence Measure Word Detection Rate
30% 20% 10%

Baseline Acoustic CM (CNLS) 90.9 82.3 67.2
Proposed Acoustic CM (wa = 1) 93.5 90.0 81.4
Proposed Hybrid CM (wa = 0.8) 94.5 91.8 82.5

To evaluate the performance of the proposed CMs in detect-
ing the OOVs, we simulate recognition errors in the following
manner. For every digit (oh, zero, . . . nine), we decode utter-
ances containing the digit using language models not contain-
ing the particular digit. Table 2 shows the overall performance
of the CMs in detecting OOVs. The results clearly indicate that
the hybrid method has the best performance.

Table 2:Performance of the CMs in rejecting OOVs. Detection
rates for false acceptance rates of 30%, 20% and 10%

Confidence Measure Word Detection Rate
30% 20% 10%

Baseline Acoustic CM (CNLS) 91.6 83.8 68.5
Proposed Acoustic CM (wa = 1) 94.2 90.4 81.3
Proposed Hybrid CM (wa = 0.8) 95.4 92.4 84.2

Fig. 3 is the plot of ROC curves of the baseline method
CNLS and the proposed confidence measures in detecting the
OOVs. A higher ROC curve indicates a better confidence mea-
sure. The goodness of the confidence measure is given by the
figure-of-merit (FOM) which is the area under the ROC curve.
The optimum acoustic weightwa in (16) is obtained by empir-
ically plotting (Fig. 4) the FOM of the hybrid CM for different
values ofwa. The hybrid CM withwa = 0.8 has the best
performance. This is consistent with existing knowledge that
acoustic likelihood scores are more reliable than duration as a
feature for confidence measure.
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5. Conclusion
In this paper we have investigated two confidence measures,
one based on transforming the output acoustic likelihood and
another based on the duration of recognized phone. We have
also explored a method to combine these confidence measures
to obtain a hybrid confidence measure. In our experiments, the
duration based confidence measure depends on the deviation of
the observed phone duration from the mean (expected) duration.
However, if the pmf of the duration is not symmetric, the mode
may be a better statistic for computing the deviation than the
mean. Work is being carried out to explore this further.
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