
REAL-TIME OPTIMAL-MEMORY IMAGE ROTATION FOR EMBEDDED SYSTEMS

Serene Banerjee, Anjaneyulu Kuchibhotla
HP Labs India, Bangalore, India, 560030

{serene.banerjee, anji}@hp.com

ABSTRACT

Skew-corrected document images are necessary for
subsequent downstream operations such as archiving,
printing or improving OCR performance. Image
rotation is a necessary and more expensive step in
achieving skew correction of document images. Other
applications of rotation include, image registration and
orientation correction. Traditional image rotation
algorithms [2-4] such as three-shear rotation [1]
require three separable shears of the image. The
embedded use of such techniques in scanners/printers
presents technical challenges, since the memory
available is limited and/or the document image is only
available progressively in chunks of say 32 or 64 rows
(swaths). Traditional image rotation algorithms require
the entire image to be available before commencing
the rotation operation. This paper presents an
approach that allows image rotation using swaths of
the image thus minimizing the overall memory
requirement. We theoretically prove that the number
of image swaths that are to be buffered is independent
of the image size and depends only on the rotation
angle. This approach enables rotation of any arbitrary
sized image on memory constrained devices. The
memory savings realized is at least 80%, for an A4-
sized document image rotated 15o. Our progressive
approach demonstrates real-time image rotation and
hence improves on the state-of-the-art approaches for
reduction of rotation complexity [5-10].

Index Terms— image rotation, optimal-memory,
real-time performance, embedded systems

1. INTRODUCTION

It is common to observe document skew, in the output
of devices that support scanning/photocopying. This
arises while scanning thick documents or from
incorrect document placement, or from shifting of the
object while closing the scanner lid. Embedded skew
correction could help alleviate these problems. Skew
correction also enables better Optical Character
Recognition (OCR). The corrected document is likely
to be more useful for subsequent downstream
operations such as archiving, modifying,
collaborating, communicating, or printing. Image
rotation is a necessary step for skew correction and for
geometric manipulation of images. Traditional image
rotation, such as forward or backward mapping, is
time and memory expensive [1]. Previous work [2-4]

has reduced complexity of image rotation to O(MxN),
where MxN is the image size, by breaking the rotation
operation into three separable shears along the
horizontal and vertical directions, respectively. This
however requires the entire image to be in memory,
which may not be possible in some scanning based
products due to memory constraints or requirements
for real-time operation.
In addition, in automatic document feeder scanners,
the input image comes in chunks of 32 or 64 rows
called swaths. In normal course, the entire image
could be accumulated from all the swaths before
running skew detection and correction algorithms.
However, for embedded implementations due to
memory constraints it may not be practical to use
algorithms that use the entire image for rotation. If
required, skew detection could be performed
continuously on an image in real-time with the
availability of each swath [11]. In these cases, image
rotation can commence immediately after a
satisfactory skew angle is detected. In copiers and
printers, the image is again printed swath-by-swath
based on the print head size. So, if the output image
after skew correction is formed swath-by-swath, the
printing can start immediately by printing the first
swath. This reduces the user wait time and facilitates
memory-constrained embedded implementation.
This work derives the theoretical optimal-memory
requirement for swath-based image rotation and
realizes image rotation with a circular buffer. This
results in realizing rotation with the minimum memory
overhead, that is theoretically proven. Our solution
realizes rotation in a progressive manner so that real-
time rotation is demonstrated on memory constrained
devices, without loss of quality. This improves on
other complexity reduction approaches as discussed in
the next section and enables embedded
implementation. The time complexity of the proposed
algorithm is comparable to that of the three-shear
based approach [2-4]. The fixed point version was
tested on an HP All-in-One (AiO).

2. PREVIOUS RESEARCH

To the best of our knowledge, there is no previous
work on image rotation algorithms that can work on
swaths of images without requiring the entire image
for rotation. There have been a couple of approaches
for optimization of image rotation and for ensuring
good quality of the rotated image. This section will
describe the algorithms and present their advantages

and shortcomings. We will then establish a need for a
more memory-optimized algorithm. Owen et al. [5]
describes image rotation in the transform domain that
reduces visible artifacts in the rotated image.
However, the run-time complexity of the algorithm is
O(N2logN). Yu et al. [6] propose an optimized
algorithm for elimination of floating point operations
during image rotation. However, the aspect ratio of the
rotated image is not similar to that of the original, and
could be a potential threat to document image quality.
Chandran et al. [7] use Diophantine methods for
approximation of the floating point computations
during image rotation, and implement image rotation
in fixed point. However, the run-time complexity of
their algorithm is O(N3). Shen et al. [8] implement the
three-shear rotation in the discrete cosine transform
(DCT) compressed domain and achieve a 2X speedup
over the traditional spatial domain approach. All these
algorithms need the whole image in memory for image
rotation that imposes an overhead that may not be
acceptable for embedded implementations. Yeshick et
al. [9] and Kothandaraman et al. [10] propose
algorithms that rotate images for fixed angles (90o,
180o, 270o), without any memory overhead. But, their
approach cannot be generalized for any rotation angle.
In this work, we present an approach which works on
swaths of images thus substantially reducing memory
requirement. We compute the optimal-memory
requirement based on the skew angle, and develop an
efficient adaptation of the three-shear rotation using a
circular buffer that rotates the image optimally.

3. THEORY FOR PROPOSED SWATH-BASED
THREE-SHEAR ROTATION

3.1 Three-shear rotation [2-4]

Rotation is one of the most sophisticated affine
transforms. The new coordinates (x, y) of the point
being rotated are computed as follows, given the
original coordinates (u, v) and the rotation angle Ө:
















 










v

u

y

x





cossin

sincos

………….. (1)
The same computation can be achieved by
decomposing the rotation matrix into several passes,
with each pass performing certain amount of
horizontal shearing or vertical shearing. The rotation
matrix is equivalent to 3 shear matrices as shown:















































 

10
2

tan1

1sin

01

10
2

tan1

cossin

sincos 









(2)
Thus, the image is first sheared horizontally by (Ө/2)
degrees, then vertically by Ө degrees, and then back
along the horizontal direction by (Ө /2) degrees.

3.2 Proposed adaptation for swath-based images

In normal course the entire image could be
accumulated from all the swaths before running skew

detection and correction algorithms. In our case the
skew detection [11] is performed on a downscaled and
binarized version of the input image and rotation is
carried out based on swaths of the image. Skew
detection can also be performed on an image which is
available swath-by-swath if necessary [11]. The
minute a satisfactory skew angle is detected, image
rotation can commence. In printers and copiers the
image is again printed swath-by-swath based on the
size of print head. So if the output image after skew
correction is formed swath-by-swath, the printing can
start immediately from the first swath. This reduces
the wait time for the user and optimizes the memory
requirement thereby enabling an embedded
implementation. This work adapts the three-shear
rotation for swath-based input/output (Algorithm 1).
Fig. 1 shows the block diagram of the adaptation of
the three-shear algorithm for swath-based input/
output. In our approach just enough input swaths need
to be buffered, so that the output swaths will be
properly generated. Fig. 2 derives the optimal number
of swaths that need to be buffered. Our requirement is
that the output image dimensions should be equal to
the input to be able to print the same sized documents,
as the scanned/copied ones. So, it is necessary to crop
the image after the last shear so that the cropped image
size is equal to the input image size. So, initially
rows_to_crop number of rows would not be output
anyway, as they would be cropped, where
rows_to_crop = (shear3_height – image_height)/2.
For a proper output swath, swath_size rows need to be
ready after rows_to_crop. Say x swaths are to be
buffered before the first output swath is ready. Then
from Fig. 2, it can be seen that
x * Ver_dist >= swath_size, and ……… (3)
Ver_dist = difference in rows of the top-left corners of
two successive swaths after the second (vertical) shear

= number of valid rows that are filled with
data after processing each input swath
={image_width*abs(sinӨ)+(x+1)*swath_size*cosӨ+1
} – {image_width*abs(sinӨ)+x*swath_size*cosӨ+1}
= swath_size*cosӨ ………. (4)
So, interestingly the minimum number of input swaths
that are to be buffered for the first output swath is,
ceil(1/cos(Ө)) and thus independent of the image size.
In order to store these input swaths we use a circular
buffer so that we can optimize and reuse memory.
The circular buffer size or the minimum memory
required to buffer the second vertical shear output is,
image_width*abs(sinӨ)+(ceil(1/cosӨ))*swath_size*co
sӨ+1 ……… (5)

3.3 Proposed realization using a circular buffer

We implement the intermediate memory required as a
circular buffer, whose size was computed in the
previous section. The idea is that once an output swath
is dispatched/printed, the next processed input swath
can be overwritten in that memory in a circular
fashion. So, the first horizontal shear and the second
vertical shear is processed for each input swath, and

the output of the second vertical shear is stored in the
circular buffer. After these two operations, the row
number is checked to see if the first output swath is
ready (refer to the pseudo code in Algorithm 1). If not,
the first and the second steps are repeated for the next
set of input swaths. Once we know that the first output
swath is ready, the third horizontal shear is performed
on the output swath, and it is overwritten on the buffer
by the next input swath. The above steps are
performed in a pipelined manner, until all the input
swaths have been rotated properly. The pseudo-code is
given in Algorithm 1.
Allocate memory for circular buffer capable of
storing minimum number of swaths
Reset flag_first_output_ready = 0
for each input swath do

Increment input swath number;
Perform horizontal shear of swath;
Perform vertical shear of swath & fill circular buffer;
if (the minimum number of rows filled in circular

buffer >= rows_to_crop + swath_height) &&
(flag_first_output_ready = 0) do

/* Indicate that enough rows are available to
generate the first output swath */

flag_first_output_ready = 1;
end
if flag_first_output_ready == 1 do

Perform 3rd horizontal shear and output swath;
Increment output swath number;

end
end
for output swath number <= input swath number do

Perform 3rd horizontal shear and output swath;
Increment output swath number;

end
Algorithm 1: Pseudo-code for swath-based rotation
Here it is to be noted that the data fill in rate in the
circular buffer is swath_size*cos(Ө), and the rate at
which it is taken out is swath_size. As cos(Ө)≤1, after
sufficient number of swaths, the data fill in rate could
fall behind the data take out rate, and rows could be
inadvertently overwritten before they are taken out. To
avoid this problem, based on the image dimensions,
swath size and the rotation angle, it is possible to
check how many times this condition could occur, and
increase the circular buffer memory a priori, as:
image_width*abs(sinӨ)+(ceil(1/cosӨ))*swath_size*co
sӨ+1+RowsToAdd ……… (6)
where RowsToAdd rows would be overwritten when
the data input rate falls behind the data take out rate.

4. RESULTS

Image rotation was evaluated on 4 sets of 60 images at
75, 100, 150 and 300 dpi, respectively with skews of
±15o. All the images were rotated successfully. A few
results are shown in Fig. 3. The rotated images with
the proposed algorithm were bit-exact with those
rotated with the traditional three-shear rotation. Thus
there is no loss of image quality with our proposed
optimizations. The size of swaths, though 32 or 64

rows for our case, could vary from as low as 1 row, up
to image height. Irrespective of the swath-size the
rotated images were bit-exact, ensuring image quality.
As computed above the run-time memory requirement
of this algorithm depends on the image width, size of
swath and the degree of skew. For swath-size of 32
rows, Fig. 5 plots the memory requirement in MB for
rotating a 2550 x 3300 image with skews of ±15o.
Storing the whole image in memory would require 25
MB. The memory requirement for our algorithm varies
from 0.2MB-5MB for rotation angles of 0 to 15o.
Fig. 6 plots the memory for rotating an image of
varying dimensions by 15o. It shows that the run-time
memory needed for the proposed algorithm is much
less than that of the traditional three-shear rotation.
The computational overhead was minimal and a fixed-
point implementation has been ported to a HP AiO.

4. CONCLUSIONS

This work adapts the three-shear rotation algorithm for
swath-based input/output. We have theoretically
derived the optimal-memory requirement, and have
demonstrated real-time embedded rotation. On
detection of the skew angle [11]; swaths are rotated in
place, and made available for printing. This enables
real-time embedded skew correction. The proposed
approach could reduce complexity for other
applications needing rotation, such as image
registration and orientation correction.

5. REFERENCES
1. R. C. Gonzalez, R. E. Woods, “Digital Image

Processing”, Prentice Hall, 2nd ed., 2002.
2. A. W. Paeth, “A Fast Algo. for General Raster

Rotation”, Proc. Graphics Intf., pp. 77-81, May 1986.
3. M. Unser, P. Thevenaz and L. Yaroslavsky,

“Convolution-based Interpolation for Fast, High-quality
Rotation of Images”, IEEE Trans. On Image Proc.,
vol. 10, no. 4, pp. 1371—1381, Oct. 1995.

4. D. Fraser, “Comparison at High Spatial Frequencies of
Two-pass and One-pass Geometric Transformation
Algorithms”, Computer Vision, Graphics and Image
Processing, vol. 46, pp. 267—283, 1989.

5. C. B. Owen and F. Makedon, “High Quality Alias Free
Image Rotation”, Proc. IEEE Asilomar Conf. on
Signals, Sys. and Comp., Vol. 1, pp. 115—119, 1996.

6. Z. Yu, J. Dong, Z. Wei and J. Shen, “A Fast Image
Rotation Algorithm for Optical Character Recognition
on Chinese Documents”, Proc. IEEE Int. Conf. on
Comm., Circuits and Sys., vol. 1, pp. 485—489, 2006.

7. S. Chandran, A. K. Potty, M. Sohoni, “Fast Image
Trans. Using Diophantine Methods”, IEEE Trans. On
Image Proc., vol. 12, no. 6, pp. 678—684, June 2003.

8. B. Shen and I. K. Sethi, “Scanline Algorithm in
Compressed Domain”, SPIE Proc. On Digital Video
Comp. Algorithms and Tech., vol. 2668, Apr. 1996.

9. W. E. Yeshik, “Image Rotation Circuit”, International
Computer Ltd., Patent No. 4.916,746, Apr. 10, 1990.

10. S. Kothandaraman, J. R. Zbiciak, “Using Super-pixels
for Efficient In-place Rotation of Images”, TI, Patent
No.: US 2006/0204130 A1, Sep. 2006.

11. S. Banerjee, S. Noushath, P. Parikh, “Edge detection”,
HP, Patent No.: PCT/IN2009/000325, Jul. 2009.

Fig. 1: Adaptation of three-shear based rotation for swath-based input/output

Fig. 2: Computation of the minimum memory requirement for a given image width and degree of skew. The above
figure refers to the image after the second (vertical) shear.

Fig. 3: Examples showing skew in scanned documents, and their successful deskewing.

Fig. 4: Example showing buffering of the swaths in the circular buffer during the horizontal shear. Swath size is 64
rows, and skew angle is 6.5 degrees. Two swaths need to be buffered in the circular buffer before the first output is
ready. Once the first output is ready, the space can be reused for the subsequent input swaths as shown in Step 3.

Fig. 5: Savings of run-time memory with varying skew
from 0-15o. Image size: 2550x3300 pixels. x-axis: 0-15o,

y-axis: memory in MB, assuming integer as 2 bytes

Fig. 6: Savings of run-time memory with varying
image width (300-5000 pixels, aspect ratio: 8.5:11) for
150. x-axis: image size in MB, y-axis: memory in MB

Original
image

Ө/2 h

w
sw1

Ө

sh2

w

hӨ

w h

Ө

sw3

Input swath
= swath_size

Output swath
= swath_size

Circular
buffer

Ver_dist = swath_size*cosӨ

1st horizontal
shear

Ө

sh2

w

hӨ

Output swath
= swath_size Circular

buffer

Ver_dist = swath_size*cosӨ

 



cos1
_

_
__

cos*__













distVer

sizeSwath
swathsofNo

sizeSwathdistVer

Input swaths

Output swaths

Step 1

Step 3

Step 4

Step 5

Step 2

Circular buffer snapshots

2nd vertical
shear

3rd horizontal
shear

