

Handwritten Gesture Recognition for Gesture Keyboard

R. Balaji1, V. Deepu, Sriganesh Madhvanath and Jayasree Prabhakaran

Hewlett-Packard Laboratories, Bangalore, India
{deepuv,srig, jayasree.prabhakaran}@hp.com

1 ECE, Purdue University, This work was carried out while
the author was in HP Labs India

Abstract
Gesture Keyboard (GKB) is a novel method of text

input for syllabic scripts whose success and
acceptance is critically dependent on the reliability of
handwritten gesture recognition. In this paper, we
describe the solution we have developed for the
Devanagari Gesture Keyboard. A data driven
approach is adopted for the recognition of basic
shapes corresponding to components of gestures.
Script specific rules are then employed to combine
basic shapes into gestures. These rules are captured
externally in an XML configuration file so that the
system may be adapted for different scripts easily.
Evaluation of the solution using gesture data collected
from novice users shows a gesture recognition
accuracy of 97% for supported writing styles. The
paper concludes with next steps.

Keywords: Gesture Recognition, Text Input,
Devanagari, Indic scripts

1. Introduction
Text input of Indic scripts poses a unique

challenge, because of the large number of syllabic
characters formed by combining consonants and
vowel diacritics (called matras). The Gesture
Keyboard (GKB) solves this problem in a novel way
with an inexpensive digitizing tablet peripheral device
[1].

The keyboard allows the user to enter isolated
vowels, base consonants and some symbols by
tapping with the stylus on their respective locations in
the layout printed and pasted on the digitizing tablet.
For the input of syllabic characters corresponding to
consonant-vowel combinations, the user can write
(gesture) the corresponding matras at the consonant
location using the stylus. The gesture is recognized
and combined with the base consonant to form the
syllabic character as depicted in Figure 1. Since
handwriting input is constrained to a relatively small
number of gestures, much higher recognition
accuracies can be achieved in principle, compared to
the unconstrained input of characters or words.

Figure 1. Gesture Keyboard for Devanagari

The Devanagari GKB supports a set of 19
Devanagari matras in different writing styles (a total
of 23 gestures) and one special gesture (strike-
through) as shown as Figure 2. Each gesture is
composed of one or more pen strokes and is ideally
written at a specific position relative to the glyph of
the base consonant. It is well known that with gesture
or handwriting based interfaces, recognition accuracy
is a critical determiner of success or failure in the
marketplace. The objective of our effort was to
recognize these 24 gestures with accuracy exceeding
95% - which is the acceptance threshold indicated by
user studies[6].

Figure 2. 24 gestures supported by Devanagari
GKB

2. Gesture Keyboard Architecture

The architecture of GKB is shown in Figure 3.
The activity of gesture recognition is divided across
two major components known respectively as the
Controller and the Shape Recognition Engine (SRE).
This division is motivated by the observation that the
different gestures are in turn composed of different
spatial arrangements of a core set of single-stroke
shapes which we call g-strokes. The g-strokes
corresponding to the Devanagari gestures of Figure 2
are shown in Table 1. The SRE, recognizes these
simple single-stroke shapes, while the Controller
assembles the identified g-strokes into complete
gestures.

 Figure 3. Gesture Keyboard Architecture

While on the face of it, the recognition of a small
number of gestures in constrained styles appears to be
a simple problem, it is made challenging by a number
of issues. Writers seldom write like the ideals shown
in Figure 2 and Table 1, with the result that different
g-strokes are often indistinguishable in shape and
position. The inexpensive tablet hardware introduces
other sources of error, such as inaccurate registration
of pen-down and pen-up events (related to the
sensitivity of the pen-tip switch), the unfamiliar and
slippery plastic surface, the lack of visual feedback
(the pen does not ink!), and errors in sensed position
resulting from the writer’s grip and resulting tilt of the
pen, as well as from the sensing circuitry. There is
also ambiguity of another kind - two g-strokes made
consecutively on the same consonant may correspond
to a single two-stroke gesture, or two single-stroke
gestures, depending on the time elapsed between
them, relative to the speed of writing.

In the following sections, the SRE and Controller
are described in detail. However we first describe the
critical activity of handwritten gesture data collection
and annotation that produced the g-stroke data for
training the SRE, and for evaluating the reliability of
Gesture Recognition.

3. Data Collection and Annotation
Devanagari gesture data was collected from 135

school children between the ages of 7 and 12 from a
school in Bangalore. A specially created desktop PC
application was used for data collection, along with
the standard AceCad® digitizing tablet used by GKB,
with all but three consonants at different corners of

the layout (cha, na, ya) masked out. After capturing
the writer profile (age, gender, handedness, familiarity
with Devanagari, and so on), the writer was led
through a calibration process aimed at estimating the
pen tilt for the specific writer. Subsequently the writer
was prompted to write each gesture in turn on each of
3 consonants using the tablet, and the ink logged in
the standard UNIPEN format.

The gesture data was manually validated and
annotated at the lab using a second tool. The
objectives of annotation were (i) to verify correctness
of input, and identify noise, spurious strokes &
unsupported styles, and (ii) for each gesture sample,
capture the style, component ID, and g-stroke ID of
each constituent stroke. Some of the flags used to
annotate g-strokes included Spurious stroke, Wrong
Orientation, Noisy, and Unsupported g-stroke.

Approximately two-thirds of the gesture data
collected (100 writers) was set aside for design and
training of gesture recognition algorithms, and the
remainder was used for testing and evaluation of
accuracy.

Being manual in nature, the process of validation
and annotation is prone to human error. Following the
first pass of annotation, a clustering algorithm was
used to group g-strokes with the same label further,
based on shape similarity. Singleton clusters found in
this process were likely to be noise or mislabeled.
Another approach used to find annotation errors was
to train the SRE and classify the training data samples
themselves. Incorrectly recognized training samples
were frequently noisy or otherwise mislabeled.
Suspect samples discovered by these processes were
manually inspected and reannotated in a second pass.

4. Shape Recognition Engine
As already mentioned, the SRE is intended to

recognize single stroke shapes. During the training
phase, samples of each pattern class (in this case, g-
stroke) acquired earlier are preprocessed, and features
extracted. A model or reference data (statistical or
otherwise) corresponding to each class is computed
and stored. During the recognition phase, a test
sample is classified as one of the known pattern
classes using the stored models.

Table 1. g-strokes for Devanagari GKB

In the context of Devanagari gesture recognition, it
was found that the supported styles of gestures could
be decomposed into a set of 13 g-strokes (Table 1).
The SRE used in the present version of GKB uses two
different recognizers in combination for the
recognition of these g-strokes. The first uses the actual

(x,y) points constituting the stroke as features,
whereas the other uses global features of the stroke as
a whole. The two recognizers share many
preprocessing operations which are captured in a
common preprocessing module.

4.1. Preprocessing
During the preprocessing process, the g-stroke
obtained from the Digitizer Abstraction Layer as a
variable length sequence of (x,y) pen-positions is
passed through a series of transformations to remove
noise and unwanted variations among samples:
• Thinning is the process of removing duplicate

points resulting from the user pausing in the
midst of writing.

• Smoothing is the process of removing random
and high frequency noise from the data, resulting
from either the capture device or unsteadiness of
the hand.

• Dehooking is the process of removing “hook”
artifacts from delayed registration of pen lifts or
slippage of the pen when it is first placed on the
tablet.

• Orientation normalization is the process by
which all strokes, regardless of the direction of
writing, are normalized to go in a certain standard
direction.

• Size normalization is designed to overcome the
variability in the size and position of the
handwritten shape across writers, and results in
all traces being translated to the origin and scaled
to a standard size while preserving aspect ratio.

• Finally, equidistant resampling resamples each
stroke at equal intervals in space along its
trajectory, and removes variability from speed
variations while writing and across writers. The
resampling is performed such that a constant
number of points are obtained from any trace.

4.2. Subspace-based Recognition
The first recognition scheme used by the SRE is

based on Principal Component Analysis (PCA) [2]. In
this scheme, the x-y coordinates after preprocessing
are used directly as features for classification,
resulting in a fixed-length feature vector representing
the g-stroke.

Figure 4. Eigenvector decomposition of a g-
stroke class

Each pattern class (i.e. g-stroke) is modeled
statistically by a subspace based on the Principal

Components computed from training samples of the
class (Figure 4). To obtain the Principal Components,
the Eigenvectors of the covariance matrix extracted
from the training samples are computed. The
Eigenvectors corresponding to the n largest
Eigenvalues in descending order (where n is a tunable
parameter) form a subspace (called Eigenspace)
representing the class, and are stored as the model for
the class.

Figure 5. Classification using Eigenspaces

When a new g-stroke is to be recognized, the
Weighted Mahalanobis Distance [3, 4] of its feature-
vector from the Eigenspaces of each of the shapes is
computed (Figure 5). The g-stroke IDs corresponding
to these Eigenspaces are arranged in ascending order
of the computed distance from each of these spaces.
The top N g-stroke ids along with confidence values
are returned as the result of shape recognition.

Figure 6. Global features extracted from g-
strokes

4.3. Global Shape Recognition
The second recognition scheme employed by the

SRE uses a set of simple features that characterize the
overall shape of the g-stroke (Figure 6). Total Curve
Length, as the name implies, is the length of the raw
g-stroke before normalization. End-to-End Ratio is the

ratio of the distance between the stroke endpoints, to
the total curve length. Another feature used is the
orientation of the stroke with respect to the horizontal.
The Position Information Index is the fraction of
points in the upper half of the consonant “cell” of the
GKB layout. Finally, the total swept angle is
computed as the sum of angles subtended by
consecutive line segments in the piecewise linear
approximation of the stroke.

For a given class, the values of these features are
computed from the training samples, and stored as the
model for the class. Given a g-stroke to be recognized,
the global features are computed from the g-stroke
and the k-nearest neighbors are computed from among
the stored prototypes of all the classes, using an
Euclidean distance metric. These N most probable
classes among these are returned as the output of
shape recognition.

4.4. Combination and Final Results
The results from the two shape recognizers are

combined using the Borda Count Combination
scheme [5], a rank-based combination scheme
wherein the final rank for a given pattern class is
computed by summing the ranks returned by each of
the recognizers. The top N results after rank
combination are returned by the SRE as the final
result of shape recognition.

The subspace-based shape recognizer, Global
shape recognizer, and Borda Count combination
leverage the Lipi Toolkit [7] – a toolkit for Online
Handwriting Recognition created at HP Labs India to
simplify the creation of recognizers, and their
integration into pen-based applications. The toolkit
provides a library of common preprocessing
operations, in addition to Makefiles and build scripts
for building recognizers as dynamic link libraries. The
standard shape recognition interface exposed by these
recognizers simplifies their training, evaluation and
subsequent integration into the GKB application.

5. Controller
The Controller’s role in gesture recognition is one

of aggregating and mapping g-stroke IDs to the actual
gesture IDs depending on their position relative to the
cell and other g-strokes, and inter-stroke timing
information. The Controller is essentially an event
processor, and its behavior is determined by a Finite
State Machine (Figure 7).

In the figure, each transition is annotated as
Trigger Event/Action(s). Further, the notation “^” is
used to represent any action that generates an event.
The FSM has two states – Ready and Wait. The
machine is initialized to the Ready state. On receiving
a Tap event, the Controller identifies and returns the
base consonant corresponding to the cell in the GKB
layout on which the tap occurred. However, when the
received event is a g-stroke event (distinguished from

a tap using length, duration and other attributes of the
stroke), the g-stroke is recognized using the SRE, and
the resulting g-stroke IDs along with their confidence
values are stored into a trellis, after applying certain
language-specific combination rules.

5.1. Language-specific Rules
These language-specific rules specify how a g-

stroke may be “refined” into multiple gesture IDs
when the same g-stroke ID could map to different
gesture IDs depending on position. A simple
positional classifier is used within the Controller to
disambiguate these gestures, based on the distance of
the g-stroke from the “ideal” gesture position. A
weighted combination of the confidences from shape
recognition and positional classification is used to
compute the final confidence for each hypothesized
gesture. However since the computed position of a
gesture tends to differ from its “ideal” position
because of inaccuracies in writing, as well as the tilt
of the pen, position is only given a small weight
relative to shape in the weighted combination. The
result of this step is a set of refined gesture IDs that
are distinct in both shape and position. The language-
specific rules also specify the valid combinations of g-
strokes/gestures to form other valid gestures. Since
these relations and mappings are script-specific, a
standard XML interface is provided for defining them,
thereby facilitating adaptation of the GKB for new
languages and scripts.

5.2. Trellis
Each column in the trellis table represents the set

of possible gesture IDs (interpretations) of the gesture
at a given time. A relative position rule is applied to
every refined g-stroke that forms a part of the multi-
stroke gesture before storing it into the trellis table.
This is meant to ascertain that the stroke occurs in the
correct position relative to the hypothesized multi-
stroke gesture. A Timer event is triggered if the stroke
is either part of a valid gesture combination, or not the
last stroke of the multi-stroke gesture.

On a Timer event, the FSM moves from its Ready
state to Wait state, expecting the next stroke of a valid
combination (i.e. multi-stroke gesture). If the
recognized stroke does not belong to a valid
combination, the Timeout event is triggered,
signifying the end of input for the current gesture.

At this point the best path in the trellis
(corresponding to the most plausible interpretation) is
chosen based on the accumulated confidences of the
paths in the Trellis. This also causes the FSM to
transition to its Ready state and the Controller to
return the syllable corresponding to the base
consonant + the recognized gesture.

Figure 8. Snapshot o
interpretations correspon

Figure 8 shows the

gestured an “◌ै (AI)” g
The dashed lines show
by the SRE and refined
The solid transitions
leading to the formation

6. Status
A robust implem

components described
Gesture Keyboard which

Ta

g-
stroke

ID
A

0
1
2
3
4
5
6
7
8
9

10
11
12

AVG
Figure 7. Finite State Machine used by GKB Controller to process events

f Trellis showing different
ding to an “◌ ै(AI)” matra
 Trellis after the user has

esture in Devanagari script.
the multiple choices returned
 by the positional classifier.
are the valid combinations
of multi-stroke gestures.

entation of the various
has been integrated into

 has since been licensed and

now available as a packaged product. We have
evaluated gesture recognition accuracy for the input of
Devanagari at both g-stroke level (SRE) and gesture
level (Controller) on the test data (35 writers). As
shown in Table 2, mean top-choice accuracies both
for individual g-strokes as well as entire syllables are
of the order of 97%. Most of the residual errors in
gesture recognition result from highly similar training
samples of different g–stroke classes, and the
ambiguity in position as explained earlier. Another
source of errors is the continued presence of a small
number of mislabeled, noncompliant and noisy data in
the training set, which adversely affects the accuracy
of subspace-based recognition.

We also evaluated the performance of Linear
Discriminant Analysis (LDA). While the g-stroke
level accuracies are comparable (96.9%), both
memory and time complexities are higher than those
for subspace recognition Experiments with first time
users have confirmed that GKB v1.0 is a usable
solution for Devanagari data entry, is readily accepted
by the users without the need for much training, and
does not cause anxiety on account of recognition
accuracy. The GKB architecture is being adapted for
two additional Indic languages.with their own scripts
– Tamil and Kannada – and initial experiments

ble 2. g-stroke and Gesture level accuracies on Devanagari Test data.

TOP1
ccuracy

(%)

TOP2
Accuracy

(%)
96.77 99.35

100.00 -
92.98 100.00
94.74 100.00
98.32 100.00

100.00 -
94.55 97.27
98.25 100.00
98.15 100.00

100.00 -
94.12 99.16
96.83 100.00
95.53 98.19
97.14 99.57

Gesture ID Gesture TOP1 Accuracy (%)
0 Halant 95.12%
1 AA matra 94.94%
2 E matra 96.81%
3 EE matra 93.81%
4 U matra 98.92%
5 Big U matra 100.00%
6 Ru matra 99.00%
7 AE matra 99.02%
8 AI matra 94.74%
9 O matra 95.08%

10 AU matra 100.00%
11 Chandra 97.20%
12 Bindu 98.28%
13 Chandra Bindu 93.90%
14 Aha matra 96.51%
15 Reph 92.78%
16 Half-Ra 93.16%
17 Nukta 98.67%
18 Strike-through 96.67%

 AVG 96.56%

indicate that similar accuracies obtained for these
scripts

7. Summary and Next Steps
In this paper, we described our solution for the

creation of highly accurate gesture recognition for the
Gesture Keyboard, initially described in [1]. The next
steps are oriented towards improving accuracy to even
higher levels, extending support to more natural styles
of writing, and demonstrating the generality of the
solution on other scripts.

To obtain higher levels of accuracy especially in
the presence of more writing styles (and hence more
g-stroke classes), we have started to explore pairwise
classification based on Support Vector Machines, and
other features in addition to the ones described.
Another important research direction is writer
adaptation, which in certain usage scenarios has the
potential to significantly improve accuracy, while
allowing greater flexibility in terms of allowed writing
styles. A related investigation is into less data-
intensive recognition schemes with a view to reducing
the scope and burden of manual data collection and
annotation required for high accuracy.

A major reason for misrecognitions yet to be
adequately addressed is the influence of the tilt of the
pen on the recorded pen position. In the present GKB,
a simple two-point calibration method is used to
model the way the user is holding the pen and correct
for pen tilt. This needs to be revisited and improved
upon, from the perspectives of both usability and
accuracy.

Finally, there is also the need for a scheme for
rejection of unsupported gestures based on
recognition confidences and other attributes. The
present implementation tends to return the nearest
match among the supported gestures, and a rejection
mechanism would allow improved feedback to the
user regarding unsupported styles, and consequently
faster adaptation of the user to the styles that are
supported.

Acknowledgements
We gratefully acknowledge the contributions to

the Gesture Keyboard project from various colleagues
- too numerous to list here - from HP Labs, HP GDIC,
and other collaborating organizations. Significant
contributions to the work described here came from
Mudit Agrawal, Thanigai Murugan and Venkata
Rajesh M. We also thank Shekhar Borgaonkar and A.
Prashanth of HP Labs for the original GKB concept,
and subsequent technical contributions and inputs.

 References
[1] Ashish Krishna, Rahul Ajmera, Sandesh Halarnkar and

Prashant Pandit, Gesture Keyboard - User Centered
Design of a Unique Input Device for Indic Scripts,

HCI International-2005, Las Vegas, Nevada, USA,
July 22-27, 2005.

[2] Deepu V. and Sriganesh Madhvanath, Principal
Component Analysis for Online Handwritten
Character Recognition, 17th Intl Conf. Pattern
Recognition (ICPR 2004), Cambridge, United
Kingdom, August 23-26, 2004.

[3] H. Mitoma, S. Uchida, and H. Sakoe, Online Character
Recognition Using Eigen-Deformations, 9th
International Workshop on Frontiers in Handwriting
recognition (IWFHR–9), Tokyo, Japan, October 26-29,
2004 pp 3-8.

[4] Richard O. Duda, Peter E. Hart and David G. Stork,
Pattern Classification , John Wiley &Sons, NY, 2000.

[5] Tin K.H., Jonathan H. and Sargur N. Srihari, Decision
Combination in Multiple Classifier Systems, IEEE
Transactions of Pattern Analysis and Machine
Intelligence, 16(1), Jan 1994, pp 66-75.

[6] Mary LaLomia, User Acceptance of Handwritten
Recognition Accuracy, Conference Companion on
Human Factors in Computing Systems, Boston, USA,
April 24 - 28, 1994 pp 107-108.

[7] Sriganesh Madhvanath, Deepu Vijayasenan and
Thanigai Murugan Kadiresan, LipiTk: A Generic
Toolkit for Online Handwriting Recognition,. 10th
International Workshop on Frontiers in Handwriting
Recognition (IWFHR-10), La Baule, France, Oct 2006

	Introduction
	Gesture Keyboard Architecture
	Data Collection and Annotation
	Shape Recognition Engine
	Preprocessing
	Subspace-based Recognition
	Global Shape Recognition
	Combination and Final Results

	Controller
	Language-specific Rules
	Trellis

	Status
	Summary and Next Steps

