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Abstract 
Gesture Keyboard (GKB) is a novel method of text 

input for syllabic scripts whose success and 
acceptance is critically dependent on the reliability of 
handwritten gesture recognition.  In this paper, we 
describe the solution we have developed for the 
Devanagari Gesture Keyboard.  A data driven 
approach is adopted for the recognition of basic 
shapes corresponding to components of gestures.  
Script specific rules are then employed to combine 
basic shapes into gestures.  These rules are captured 
externally in an XML configuration file so that the 
system may be adapted for different scripts easily.  
Evaluation of the solution using gesture data collected 
from novice users shows a gesture recognition 
accuracy of 97% for supported writing styles. The 
paper concludes with next steps. 
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1. Introduction 
Text input of Indic scripts poses a unique 

challenge, because of the large number of syllabic 
characters formed by combining consonants and 
vowel diacritics (called matras).  The Gesture 
Keyboard (GKB) solves this problem in a novel way 
with an inexpensive digitizing tablet peripheral device 
[1]. 

The keyboard allows the user to enter isolated 
vowels, base consonants and some symbols by 
tapping with the stylus on their respective locations in 
the layout printed and pasted on the digitizing tablet.  
For the input of syllabic characters corresponding to 
consonant-vowel combinations, the user can write 
(gesture) the corresponding matras at the consonant 
location using the stylus.  The gesture is recognized 
and combined with the base consonant to form the 
syllabic character as depicted in Figure 1. Since 
handwriting input is constrained to a relatively small 
number of gestures, much higher recognition 
accuracies can be achieved in principle, compared to 
the unconstrained input of characters or words.  

 

Figure 1. Gesture Keyboard for Devanagari 

The Devanagari GKB supports a set of 19 
Devanagari matras in different writing styles (a total 
of 23 gestures) and one special gesture (strike-
through) as shown as Figure 2.  Each gesture is 
composed of one or more pen strokes and is ideally 
written at a specific position relative to the glyph of 
the base consonant.  It is well known that with gesture 
or handwriting based interfaces, recognition accuracy 
is a critical determiner of success or failure in the 
marketplace. The objective of our effort was to 
recognize these 24 gestures with accuracy exceeding 
95% - which is the acceptance threshold indicated by 
user studies[6]. 

 

 

Figure 2. 24 gestures supported by Devanagari 
GKB 



  
 
2. Gesture Keyboard Architecture 

The architecture of GKB is shown in Figure 3. 
The activity of gesture recognition is divided across 
two major components known respectively as the 
Controller and the Shape Recognition Engine (SRE). 
This division is motivated by the observation that the 
different gestures are in turn composed of different 
spatial arrangements of a core set of single-stroke 
shapes which we call g-strokes.  The g-strokes 
corresponding to the Devanagari gestures of Figure 2 
are shown in Table 1. The SRE, recognizes these 
simple single-stroke shapes, while the Controller 
assembles the identified g-strokes into complete 
gestures. 

 Figure 3. Gesture Keyboard Architecture 

While on the face of it, the recognition of a small 
number of gestures in constrained styles appears to be 
a simple problem, it is made challenging by a number 
of issues. Writers seldom write like the ideals shown 
in Figure 2 and Table 1, with the result that different 
g-strokes are often indistinguishable in shape and 
position.  The inexpensive tablet hardware introduces 
other sources of error, such as inaccurate registration 
of pen-down and pen-up events (related to the 
sensitivity of the pen-tip switch), the unfamiliar and 
slippery plastic surface, the lack of visual feedback 
(the pen does not ink!), and errors in sensed position 
resulting from the writer’s grip and resulting tilt of the 
pen, as well as from the sensing circuitry.  There is 
also ambiguity of another kind - two g-strokes made 
consecutively on the same consonant may correspond 
to a single two-stroke gesture, or two single-stroke 
gestures, depending on the time elapsed between 
them, relative to the speed of writing. 

In the following sections, the SRE and Controller 
are described in detail. However we first describe the 
critical activity of handwritten gesture data collection 
and annotation that produced the g-stroke data for 
training the SRE, and for evaluating the reliability of 
Gesture Recognition. 

3. Data Collection and Annotation 
Devanagari gesture data was collected from 135 

school children between the ages of 7 and 12 from a 
school in Bangalore. A specially created desktop PC 
application was used for data collection, along with 
the standard AceCad® digitizing tablet used by GKB, 
with all but three consonants at different corners of 

the layout (cha, na, ya) masked out. After capturing 
the writer profile (age, gender, handedness, familiarity 
with Devanagari, and so on), the writer was led 
through a calibration process aimed at estimating the 
pen tilt for the specific writer. Subsequently the writer 
was prompted to write each gesture in turn on each of 
3 consonants using the tablet, and the ink logged in 
the standard UNIPEN format. 

The gesture data was manually validated and 
annotated at the lab using a second tool. The 
objectives of annotation were (i) to verify correctness 
of input, and identify noise, spurious strokes & 
unsupported styles, and (ii) for each gesture sample, 
capture the style, component ID, and g-stroke ID of 
each constituent stroke. Some of the flags used to 
annotate g-strokes included Spurious stroke, Wrong 
Orientation, Noisy, and Unsupported g-stroke. 

Approximately two-thirds of the gesture data 
collected (100 writers) was set aside for design and 
training of gesture recognition algorithms, and the 
remainder was used for testing and evaluation of 
accuracy.   

Being manual in nature, the process of validation 
and annotation is prone to human error. Following the 
first pass of annotation, a clustering algorithm was 
used to group g-strokes with the same label further, 
based on shape similarity. Singleton clusters found in 
this process were likely to be noise or mislabeled. 
Another approach used to find annotation errors was 
to train the SRE and classify the training data samples 
themselves. Incorrectly recognized training samples 
were frequently noisy or otherwise mislabeled. 
Suspect samples discovered by these processes were 
manually inspected and reannotated in a second pass. 

4. Shape Recognition Engine 
As already mentioned, the SRE is intended to 

recognize single stroke shapes. During the training 
phase, samples of each pattern class (in this case, g-
stroke) acquired earlier are preprocessed, and features 
extracted. A model or reference data (statistical or 
otherwise) corresponding to each class is computed 
and stored.  During the recognition phase, a test 
sample is classified as one of the known pattern 
classes using the stored models.  

Table 1. g-strokes for Devanagari GKB 

 

    
  

 

      
 

In the context of Devanagari gesture recognition, it 
was found that the supported styles of gestures could 
be decomposed into a set of 13 g-strokes (Table 1). 
The SRE used in the present version of GKB uses two 
different recognizers in combination for the 
recognition of these g-strokes. The first uses the actual 



  
 
(x,y) points constituting the stroke as features, 
whereas the other uses global features of the stroke as 
a whole. The two recognizers share many 
preprocessing operations which are captured in a 
common preprocessing module. 

4.1. Preprocessing  
During the preprocessing process, the g-stroke 
obtained from the Digitizer Abstraction Layer as a 
variable length sequence of (x,y) pen-positions is 
passed through a series of transformations to remove 
noise and unwanted variations among samples:  
• Thinning is the process of removing duplicate 

points resulting from the user pausing in the 
midst of writing. 

• Smoothing is the process of removing random 
and high frequency noise from the data, resulting 
from either the capture device or unsteadiness of 
the hand.  

• Dehooking is the process of removing “hook” 
artifacts from delayed registration of pen lifts or 
slippage of the pen when it is first placed on the 
tablet.  

• Orientation normalization is the process by 
which all strokes, regardless of the direction of 
writing, are normalized to go in a certain standard 
direction.  

• Size normalization is designed to overcome the 
variability in the size and position of the 
handwritten shape across writers, and results in 
all traces being translated to the origin and scaled 
to a standard size while preserving aspect ratio. 

• Finally, equidistant resampling resamples each 
stroke at equal intervals in space along its 
trajectory, and removes variability from speed 
variations while writing and across writers. The 
resampling is performed such that a constant 
number of points are obtained from any trace.  

4.2. Subspace-based Recognition 
The first recognition scheme used by the SRE is 

based on Principal Component Analysis (PCA) [2]. In 
this scheme, the x-y coordinates after preprocessing 
are used directly as features for classification, 
resulting in a fixed-length feature vector representing 
the g-stroke.  

 

Figure 4. Eigenvector decomposition of a g-
stroke class 

Each pattern class (i.e. g-stroke) is modeled 
statistically by a subspace based on the Principal 

Components computed from training samples of the 
class (Figure 4). To obtain the Principal Components, 
the Eigenvectors of the covariance matrix extracted 
from the training samples are computed. The 
Eigenvectors corresponding to the n largest 
Eigenvalues in descending order (where n is a tunable 
parameter) form a subspace (called Eigenspace) 
representing the class, and are stored as the model for 
the class. 

 

Figure 5. Classification using Eigenspaces 

When a new g-stroke is to be recognized, the 
Weighted Mahalanobis Distance [3, 4] of its feature-
vector from the Eigenspaces of each of the shapes is 
computed (Figure 5). The g-stroke IDs corresponding 
to these Eigenspaces are arranged in ascending order 
of the computed distance from each of these spaces. 
The top N g-stroke ids along with confidence values 
are returned as the result of shape recognition. 

Figure 6. Global features extracted from g-
strokes 

4.3. Global Shape Recognition 
The second recognition scheme employed by the 

SRE uses a set of simple features that characterize the 
overall shape of the g-stroke (Figure 6). Total Curve 
Length, as the name implies, is the length of the raw 
g-stroke before normalization. End-to-End Ratio is the 



  
 
ratio of the distance between the stroke endpoints, to 
the total curve length. Another feature used is the 
orientation of the stroke with respect to the horizontal. 
The Position Information Index is the fraction of 
points in the upper half of the consonant “cell” of the 
GKB layout. Finally, the total swept angle is 
computed as the sum of angles subtended by 
consecutive line segments in the piecewise linear 
approximation of the stroke. 

For a given class, the values of these features are 
computed from the training samples, and stored as the 
model for the class. Given a g-stroke to be recognized, 
the global features are computed from the g-stroke 
and the k-nearest neighbors are computed from among 
the stored prototypes of all the classes, using an 
Euclidean distance metric. These N most probable 
classes among these are returned as the output of 
shape recognition.  

4.4. Combination and Final Results 
The results from the two shape recognizers are 

combined using the Borda Count Combination 
scheme [5], a rank-based combination scheme 
wherein the final rank for a given pattern class is 
computed by summing the ranks returned by each of 
the recognizers. The top N results after rank 
combination are returned by the SRE as the final 
result of shape recognition. 

The subspace-based shape recognizer, Global 
shape recognizer, and Borda Count combination 
leverage the Lipi Toolkit [7] – a toolkit for Online 
Handwriting Recognition created at HP Labs India to 
simplify the creation of recognizers, and their 
integration into pen-based applications. The toolkit 
provides a library of common preprocessing 
operations, in addition to Makefiles and build scripts 
for building recognizers as dynamic link libraries. The 
standard shape recognition interface exposed by these 
recognizers simplifies their training, evaluation and 
subsequent integration into the GKB application. 

5. Controller 
The Controller’s role in gesture recognition is one 

of aggregating and mapping g-stroke IDs to the actual 
gesture IDs depending on their position relative to the 
cell and other g-strokes, and inter-stroke timing 
information.  The Controller is essentially an event 
processor, and its behavior is determined by a Finite 
State Machine (Figure 7).  

In the figure, each transition is annotated as 
Trigger Event/Action(s). Further, the notation “^” is 
used to represent any action that generates an event. 
The FSM has two states – Ready and Wait. The 
machine is initialized to the Ready state. On receiving 
a Tap event, the Controller identifies and returns the 
base consonant corresponding to the cell in the GKB 
layout on which the tap occurred.  However, when the 
received event is a g-stroke event (distinguished from 

a tap using length, duration and other attributes of the 
stroke), the g-stroke is recognized using the SRE, and 
the resulting g-stroke IDs along with their confidence 
values are stored into a trellis, after applying certain 
language-specific combination rules.  

5.1. Language-specific Rules 
These language-specific rules specify how a g-

stroke may be “refined” into multiple gesture IDs 
when the same g-stroke ID could map to different 
gesture IDs depending on position. A simple 
positional classifier is used within the Controller to 
disambiguate these gestures, based on the distance of 
the g-stroke from the “ideal” gesture position. A 
weighted combination of the confidences from shape 
recognition and positional classification is used to 
compute the final confidence for each hypothesized 
gesture. However since the computed position of a 
gesture tends to differ from its “ideal” position 
because of inaccuracies in writing, as well as the tilt 
of the pen, position is only given a small weight 
relative to shape in the weighted combination. The 
result of this step is a set of refined gesture IDs that 
are distinct in both shape and position. The language-
specific rules also specify the valid combinations of g-
strokes/gestures to form other valid gestures. Since 
these relations and mappings are script-specific, a 
standard XML interface is provided for defining them, 
thereby facilitating adaptation of the GKB for new 
languages and scripts. 

5.2. Trellis 
Each column in the trellis table represents the set 

of possible gesture IDs (interpretations) of the gesture 
at a given time.  A relative position rule is applied to 
every refined g-stroke that forms a part of the multi-
stroke gesture before storing it into the trellis table. 
This is meant to ascertain that the stroke occurs in the 
correct position relative to the hypothesized multi-
stroke gesture. A Timer event is triggered if the stroke 
is either part of a valid gesture combination, or not the 
last stroke of the multi-stroke gesture.  

On a Timer event, the FSM moves from its Ready 
state to Wait state, expecting the next stroke of a valid 
combination (i.e. multi-stroke gesture).  If the 
recognized stroke does not belong to a valid 
combination, the Timeout event is triggered, 
signifying the end of input for the current gesture.  

At this point the best path in the trellis 
(corresponding to the most plausible interpretation) is 
chosen based on the accumulated confidences of the 
paths in the Trellis. This also causes the FSM to 
transition to its Ready state and the Controller to 
return the syllable corresponding to the base 
consonant + the recognized gesture. 
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now available as a packaged product. We have 
evaluated gesture recognition accuracy for the input of 
Devanagari at both g-stroke level (SRE) and gesture 
level (Controller) on the test data (35 writers). As 
shown in Table 2, mean top-choice accuracies both 
for individual g-strokes as well as entire syllables are 
of the order of 97%. Most of the residual errors in 
gesture recognition result from highly similar training 
samples of different g–stroke classes, and the 
ambiguity in position as explained earlier. Another 
source of errors is the continued presence of a small 
number of mislabeled, noncompliant and noisy data in 
the training set, which adversely affects the accuracy 
of subspace-based recognition. 

We also evaluated the performance of Linear 
Discriminant Analysis (LDA).  While the g-stroke 
level accuracies are comparable (96.9%), both 
memory and time complexities are higher than those 
for subspace recognition Experiments with first time 
users have confirmed that GKB v1.0 is a usable 
solution for Devanagari data entry, is readily accepted 
by the users without the need for much training, and 
does not cause anxiety on account of recognition 
accuracy.  The GKB architecture is being adapted for 
two additional Indic languages.with their own scripts 
– Tamil and Kannada – and initial experiments  

ble 2. g-stroke and Gesture level accuracies on Devanagari Test data. 

TOP1 
ccuracy 

(%) 

TOP2 
Accuracy 

(%) 
96.77 99.35 

100.00 - 
92.98 100.00 
94.74 100.00 
98.32 100.00 

100.00 - 
94.55 97.27 
98.25 100.00 
98.15 100.00 

100.00 - 
94.12 99.16 
96.83 100.00 
95.53 98.19 
97.14 99.57 

 

Gesture ID Gesture TOP1 Accuracy (%) 
0 Halant 95.12% 
1 AA matra 94.94% 
2 E matra 96.81% 
3 EE matra 93.81% 
4 U matra 98.92% 
5 Big U matra 100.00% 
6 Ru matra 99.00% 
7 AE matra 99.02% 
8 AI matra 94.74% 
9 O matra 95.08% 

10 AU matra 100.00% 
11 Chandra 97.20% 
12 Bindu 98.28% 
13 Chandra Bindu 93.90% 
14 Aha matra 96.51% 
15 Reph 92.78% 
16 Half-Ra 93.16% 
17 Nukta 98.67% 
18 Strike-through 96.67% 

 AVG 96.56% 



  
 
 
indicate that similar accuracies obtained for these 
scripts 

7. Summary and Next Steps 
In this paper, we described our solution for the 

creation of highly accurate gesture recognition for the 
Gesture Keyboard, initially described in [1]. The next 
steps are oriented towards improving accuracy to even 
higher levels, extending support to more natural styles 
of writing, and demonstrating the generality of the 
solution on other scripts.  

To obtain higher levels of accuracy especially in 
the presence of more writing styles (and hence more 
g-stroke classes), we have started to explore pairwise 
classification based on Support Vector Machines, and 
other features in addition to the ones described. 
Another important research direction is writer 
adaptation, which in certain usage scenarios has the 
potential to significantly improve accuracy, while 
allowing greater flexibility in terms of allowed writing 
styles. A related investigation is into less data-
intensive recognition schemes with a view to reducing 
the scope and burden of manual data collection and 
annotation required for high accuracy. 

A major reason for misrecognitions yet to be 
adequately addressed is the influence of the tilt of the 
pen on the recorded pen position. In the present GKB, 
a simple two-point calibration method is used to 
model the way the user is holding the pen and correct 
for pen tilt. This needs to be revisited and improved 
upon, from the perspectives of both usability and 
accuracy.  

Finally, there is also the need for a scheme for 
rejection of unsupported gestures based on 
recognition confidences and other attributes. The 
present implementation tends to return the nearest 
match among the supported gestures, and a rejection 
mechanism would allow improved feedback to the 
user regarding unsupported styles, and consequently 
faster adaptation of the user to the styles that are 
supported.  
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