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An advanced product development effort undertaken
by graphics engineers in the DIGITAL Workstations
Group led to the creation of a new software application
called Shared Desktop. One project goal was to enable
collaboration among users of three-dimensional (3-D)
graphics workstations that run either the UNIX or the
Windows NT operating system. Another goal was to
allow these users to access the high-performance 3-D
capabilities of their office workstations from their 
laptop computers or home-based personal computers
(PCs) that run the Windows 95 system and do not 
have 3-D graphics hardware. This goal necessitated 
a cross–operating-system application that could effi-
ciently and effectively handle 3-D graphics in real time
and share these graphics with machines such as laptop
computers and PCs. 

In this paper, we begin with a discussion of the software
currently available for computer collaboration. We then
discuss the development of the Shared Desktop applica-
tion, focusing on the user interface, protocol splitting,
screen capture and data handling, and dissimilar frame
buffers. We conclude with sections on additional uses and
future directions of the Shared Desktop product. 

Current Collaboration Software 

Computer collaboration may be defined as the interac-
tion between computers and their human users over a
local or long-distance network. In general, it involves a
transfer of textual, graphical, audible, and visual infor-
mation from one collaborator to another. The parti-
cipants share control information either by means 
of computer-generated synchronization events or by
human voice and visual movement.1

Specifically, computer collaboration involves com-
municating and sharing data among participants who
can be located anywhere in a building, a city, a country,
or the world. Each participant has either a PC, a work-
station, or a laptop computer. Some machines contain
3-D graphics adapters with hardware acceleration.
(Computer-aided design/computer-assisted manu-
facturing [CAD/CAM] applications like Parametric
Technology Corporation’s [PTC] Pro/ENGINEER
use hardware accelerators through OpenGL2 or
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Direct3D3 programming protocols.) Other computers
do not contain 3-D accelerator boards and provide 3-D
capabilities through software-only routines on two-
dimensional (2-D) hardware. In a typical collaboration,
a person wanting to share a specific 3-D graphical dis-
play of a part or model telephones others to discuss the
design in progress. After the initial contact, the collab-
orators may continue the telephone call or switch to
the audio function of the application. The graphics part
appears on each participant’s screen along with associ-
ated keyboard and mouse events. As the collaborators
discuss the work, they may each interact with the dis-
play to highlight, rotate, and change the look or design
of the 3-D part. In this way, even though the partici-
pants are separated by some distance, they may interact
as if they were all sitting around a table working, con-
versing, and designing the 3-D part. 

Current software that facilitates computer-based
collaboration runs through a range of capabilities from
the earliest forms of electronic mail to the most recent
offerings of complete collaborative sharing of the
computer. Examples include WinFrame technology
from Citrix Systems, Inc., NetMeeting from Microsoft
Corporation, Netscape Communicator from Netscape
Communications Corporation, and other products
from Sun Microsystems, Hewlett-Packard, and Silicon
Graphics Inc. These packages offer levels of computer
sharing and collaboration from videoconferencing and
file sharing to full application sharing. Each implemen-
tation runs on specific operating systems. Although
they use various underlying communication protocols,
most recent designs work over local area and wide area
networks (LANs/WANs), including the Internet. For
example, the NetMeeting product provides confer-
encing tools like chat, whiteboard, file transfer, audio
and videoconferencing, and non-real-time, selected-
window 2-D application sharing over T120 protocols
layered on the Transmission Control Protocol/
Internet Protocol (TCP/IP).4 NetMeeting runs only
on Microsoft platforms (Windows 95 and Windows
NT operating systems). The current products are defi-
cient, however, in that they do not support multiple
operating systems, do not operate in real time, and do
not share 3-D graphics. 

User Interface 

In this section, we describe our choice of a simple user
interface for the sharing area of a desktop and our
design of the Shared Desktop Manager for client-
server computing. 

Many collaboration tools for sharing computer
information (graphical desktop, keyboard, mouse, and
audio of a given computer) were complete systems and
required too much effort on the part of the users just
to learn how to share information. A focus on learning
collaboration tools often requires users to become

experts in the collaboration software rather than in the
applications that they may share. Since the various 3-D
graphics packages that needed to be shared were com-
plicated in themselves, we decided to implement a
simple user interface in the Shared Desktop applica-
tion that nearly all audiences could easily learn and use. 

In the Shared Desktop design, we designated part
of the desktop screen as a sharing area. Graphics
objects such as icons and applications located within
the sharing area can be accessed by all conference 
participants. To share a new application, a participant
moves the application into the sharing area. To
remove an application, a participant moves it outside
the sharing area. If the sharing area encompasses the
entire desktop of the initiating participant, all applica-
tions are shared. We used standard pull-down menus
and widgets provided by either the UNIX X Motif
toolkit or the Microsoft Windows libraries. We named
the sharing area the “viewport”; it is viewed on the
desktop as a user-defined area of rectangular size and
location. Any graphical object placed into the view-
port is marked as shareable with client users in a col-
laboration. We designed the viewport so that it is
always on the bottom of a given stack of windows on a
desktop. Thus, when Shared Desktop is minimized, so
is its viewport. The objects that had been within the
viewport are returned to the initiator’s desktop and are
no longer shared. With a quick minimization, the
server collaborator can pause any sharing that was in
progress without disconnecting from the client users. 

Figure 1 illustrates a UNIX server with a Shared
Desktop viewport connected to several client systems.
The server’s viewport contains no shared objects
within its confines, and each client screen shows a
viewport received from the server. 

The viewport can be set to represent the entire visi-
ble desktop, or it can be set to equal only the size of a
given application on the screen. Accordingly, a user
who is acting as the server can determine how much of
a given desktop to share among the client collabora-
tors. The concept of a viewport is valuable because the
principal collaborator (at the server) can quickly glance
at the screen and determine what to capture and send
to other participants. (The objects and applications
sent from the server are designated by solid lines in
Figure 1.) The Shared Desktop application requires no
further action to set up an application for sharing. 

Each client sends keyboard and mouse events to the
server to control any application present in the view-
port (remote control is shown as dashed lines in
Figure 1). Server and clients synchronize cursor move-
ments so that any conference member can watch 
as others make changes to a shared application. This
allows the cursor to become a pointer during a session.
Shared Desktop implements an “anarchy” form of
remote control, with all mice and keyboards active
simultaneously. 
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When a user initiates a collaboration, the audio is off
by default but remains integral to a session as a conve-
nience (as opposed to using the telephone). Through
a pull-down menu operation, the server enables audio
for all participants in one operation. The usual audio
management tools used to set microphone recording
levels and speaker/headset play-back levels are avail-
able. As Figure 1 indicates, the UNIX machine collects
audio and distributes it to the three client collabora-
tors. Likewise, the three clients collect audio and send
it back to the server for mixing. In this way, all partici-
pants can hear one another and interact with whatever
objects appear in the viewport on the server’s screen. 

Figure 2 shows the Shared Desktop Manager from the
initiator’s viewport running on the UNIX server. A par-
ticipant may use a Session pull-down menu to control the
viewport and to connect and disconnect other confer-
ence members. The Options menu allows for audio,
remote cursor, and call-back control. The application’s
Help pull-down menu provides the usual help informa-
tion similar to a Windows help facility or a Web browser’s
help. The window lists the status of attached clients. 

Upon connection, participants can hear and interact
with the server. The resultant audio dialogue combined
with the graphics, keyboard, and mouse interactions
facilitate a collaboration environment in which partici-
pants share an application. Since each user can operate
a separate mouse and keyboard, the audio channel acts
as a synchronization mechanism to indicate which col-
laborator controls the shared applications at any given
moment. The participants communicate their actions
verbally, interacting in much the same way as people
who are sitting around a table and working. 

Design Features 

For our implementation, we concentrated on three
principal areas: protocol splitting, screen capture and
data handling, and dissimilar frame buffers. In this sec-
tion, we discuss our investigation into using a protocol
splitter and our decision to rely on screen capture and
data handling. We also discuss dissimilar frame buffers. 

Protocol Splitting 
We looked for a way to distribute 3-D graphics among
workstations and PCs that would be independent of
the application, graphics protocol, architecture, operat-
ing system, and windowing system. On UNIX, we
found application sharing provided by distributed win-
dows protocols. For example, the X Protocol5 allows a
user to send an application to a nonlocal display and to
send X applications protocol messages to several
screens simultaneously. A protocol splitter, however,
has disadvantages due to its requirements for band-
width, programming, and latency. 
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Protocol splitters require distribution of graphics
commands and display lists by means of a network.
Three-dimensional models often contain megabytes of
graphical information that describe specific screen
operations. When displaying a model locally, these
graphics operations move quickly and easily over sys-
tem buses that are capable of handling hundreds of
megabytes per second. However, when these same
graphics objects are copied over computer networks,
the amount of information can overload even the 
highest-speed networks. For example, using a 100-
megabyte (MB) Pro/ENGINEER truck assembly, a
current generation 3-D workstation can load, display,
and rotate the truck once in approximately 2 minutes.
The same operation between two identical 3-D work-
stations takes 20 minutes when performed by a distrib-
uted protocol, and the rotation of the truck does not
appear fluid to the user. If the same data or application
is duplicated on every machine, only updates with syn-
chronizing events are distributed, but this requires that
all machines have the same graphics hardware. 

The programming software needed for interopera-
tion among dissimilar operating and windowing 
systems using protocol splitting is quite involved. 
The ability to support X11 desktops, Windows 95
desktops, and Windows NT desktops while using mul-
tiple 3-D protocols like OpenGL and Direct3D would
require that these protocols exist on all platforms. 

Latency requirements for 3-D are very stringent.
Thus, any network jitter makes even the best network
link create breakup (visual distortions) when rotating
3-D objects. Network jitter also causes delays in send-
ing window protocol messages; as a delay increases,
the window events may no longer be useful. For exam-
ple, when rotating a 3-D object, the delayed events
must propagate as the network permits although this
may once again congest the network since the events
may no longer be needed. The object has now rotated
to a new view. The ability to drop some protocol mes-
sages in a time-critical way is a requirement for collab-
orating with 3-D objects, and the protocol splitter
approach to sharing has no solution for this problem. 

Screen Capture and Data Handling 
To overcome these issues, we investigated capturing the
screen display, the final bitmap result of the interaction
of graphics hardware and software that the viewer sees.
Capturing the screen is in itself nothing new; it has been
used for some time to include screen visuals in docu-
ment preparation. Initially, we were skeptical that cap-
turing the screen display could be a useful mechanism
since the amount of data on a screen can be prodigious.
Screen graphics depth and resolution can make the
amount of data in any given graphics object very large.
For example, for a 24-plane frame buffer with a 1,280
by 1,024 resolution, the total amount of data to capture
would be (24 x 1,280 x 1,024)/8 or about 4 MB. Using

the computational power of the Alpha microprocessor
for reducing the data, we continued our investigation.
We found that this approach requires the windowing
system to perform screen capture by means of a non-
CPU-intensive routine (direct memory access [DMA]
as opposed to programmed I/O). Based on our tests,
we concluded that screen capture technology would be
easier to implement than a protocol splitter, would
have better latency for 3-D operations than a protocol
splitter, and would be easily adaptable to the various
windowing systems and 3-D protocols we wished to
have interoperate. 

Graphics Compression The screen capture approach
requires a number of steps to efficiently prepare the
data for transmission. First, the contents of a viewport
are captured, and the sample is saved for comparison
with successive samples. Second, the captured viewport
samples are differenced to find screen pixels that have
not been changed and delta values for those that have
been changed. Third, the resultant array of values is
compressed by a fast, run-length encoding (RLE) of
the array of difference samples. A more CPU-intensive
compression may now be applied. The fourth step is to
apply LZ77 compression that reduces the remaining
RLE data to its smallest form. In step four, the original
data has been reduced while retaining its characteristics
so that it can be restored (uncompressed) without loss
on a receiving computer. This final lossless stage of
compression occurs only if it reduces the amount of
data and if the network was busy during a previous
transmission. Lossless compression is important for the
nondestructive transfer of data from the server’s screen
to the clients’ screens and has application in industry.
As an example, consider a doctor who is sharing an 
x-ray with an out-of-town colleague. If the graphics
were compromised by a lossy compressor, the collabo-
rators could not be guaranteed that the transmitted 
x-ray was identical to the one sent. With the Shared
Desktop application, the doctor who is sending the 
x-ray is guaranteed that the original graphics are
restored on the colleague’s display. In some forms of
compression, data is thrown out by the algorithm and
never restored, so that the final screen data may not
accurately reflect the original graphics. Figure 3 shows
the steps in the capture and compression sequence. 

On the Alpha architecture, these compression steps
are performed as 64-bit operations, both in the data
manipulation and the compression algorithms. The
Alpha architecture lends itself to a fast and efficient
implementation of the algorithms, so that the capture
of the viewport and the multistage compression of the
data can be accomplished in real time. Approximately
half of the number of instructions is used on a proces-
sor that is twice as fast as a 32-bit architecture. In addi-
tion to its 64-bit routine, the RLE is implemented as a
32-bit routine and as a comparison routine. 
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Audio Compression Similar to the graphics compres-
sion described, the audio compression in Shared
Desktop involves several steps. First, the audio samples
are captured through a microphone and sound card
combination. These samples are compared with the
background noise level (determined prior to beginning
a conference) to see if the samples are useful. Samples
below the background noise level are not transferred.
This implements a silence detection method whereby
only useful samples will advance to the next level 
of compression. Second, the next compression uses
G.711 or other similar audio compression standards
and converts adaptive differential pulse code modula-
tion (ADPCM) samples at 64 kilobits per second into
16 kilobits per second (4:1 lossy compression).6 Third,
this data is then ready for transfer to a receiving com-
puter so that it may be decompressed and output to a
speaker or a headset. The audio stream resulting from
these steps generates at most 16 kilobits per second
when someone is speaking, and no output when it is
silent. Figure 3 also shows the audio compression steps. 

Data Transmission After the graphics and audio data
are collected and compressed, they are combined and
transmitted across the network by a patented, higher-
level protocol that ensures timely delivery of each
packet.7 All packets are sent using TCP/IP over the
Internet. Although the higher-level protocol does not
guarantee true real-time characteristics, the patented
protocol allows for coherent audio, synchronization 
of graphics and cursor events, and near real-time
graphics animation. 

As an example, the screen capture shown in Figure 4
displays a 100-MB Pro/ENGINEER assembly being
shared through the Shared Desktop application. The
Shared Desktop Manager system (system where the

assembly database resides) is an AlphaStation 500
workstation running the DIGITAL UNIX operating
system with a PowerStorm 4D60 graphics controller.
In this example, an 800- by 600-pixel by 24-bit Shared
Desktop viewport is being captured, compressed, and
transmitted to the Shared Desktop client system at
about five updates per second. The update rate is
determined by the capture viewport size, the extent of
detail changes between captures, the amount of pro-
cessing power needed by the application to make
changes to the model, and the speed of the network.
In this example, when rotating the truck assembly, a
compressed stream of 400 to 500 kilobits per second is
generated and represents the five updates per second
mentioned. A simple assembly might be able to do a
rotation with Shared Desktop capturing and transmit-
ting 15 updates per second, and a more complicated
model (like the truck assembly shown) would receive
fewer updates per second. 

Dissimilar Frame Buffers 
To complete the requirements of our implementation,
we needed to share graphics information across dis-
similar hardware, i.e., machines with different graphic
frame buffer depths. The frame buffer depth refers to
the amount of storage the graphics adapter gives to
each displayed pixel on the screen. A 16-bit-deep dis-
play assigns each pixel a 16-bit value to represent the
pixel. This representation is usually the color informa-
tion for the pixel, i.e., what color the user sees for a
given pixel.8 The frame buffer depths are a necessary
reality since different graphics devices have widely
varying screen depths, ranging from 4 planes (4 bits
per pixel) to 32 planes (32 bits per pixel). Typically,
higher-end graphics devices have higher-depth graph-
ics outputs, especially for 3-D graphics, and the lower-
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The matrix shows input screen or visual type depth
across the top row and delineates output bitmap depth
on the left column. Bitmap depths of 4, 8, 15, 16, 24,
and 32 are used in Windows systems, and depths of 4,
8, 12, 24, and 32 are used in X11. The x in the matrix
requires no conversion and is captured and displayed
without the need for additional conversion. The e
shows bitmap depths that can be expanded to the out-
put format by using a colormap or by shifting pixels
into the correct format. The d shows that information
must be dithered to match the output. Dithering can
result in a minimal loss of information, but we have
developed a very good and efficient method of doing
this conversion. The m (mix mode) marks those visual
types on X11 that can exist on the screen when the
root depth is 24 or 32; i.e., an 8-bit window can be
present on a 24-bit display. The mix mode requires a
different interpretation of the 24-bit pixels prior to
compression and transmission. Since no 12-bit output
displays exist, n marks inapplicable transformations.
Alternate formats of 24 pixels (3 bytes per pixel and
blue/green/red [BGR] triples) are supported as well
as 8-bit pseudocolor and 8-bit true color. 

Sample Uses 

Like other collaboration software, the Shared Desktop
application can be used in remote situations to help

depth displays are usually found on less-capable, 2-D
graphics platforms. Most laptop computers have low
bit depth (8 to 16) displays and no 3-D capabilities.
Commodity PCs also typically have 8- or 16-plane
depths. Graphics devices that support 3-D graphics
provide deeper display types such as 24-bit or 32-bit.
Some devices support a mix of several or all the bit
depths listed in the matrix (below) either concurrently
or for the entire screen at one time. 

We defined a matrix of screen depths and proceeded
to fill in the various combinations so that the applica-
tion would work effectively across different platforms
and graphics hardware capabilities. The matrix enables
computers without 3-D capability to display the out-
put from 3-D-capable graphics devices. The matrix of
screen-depth combinations follows. 

Output 
Bitmap Input Screen or Visual Type Depth 
Depth 4 8 12 15 16 24 32 

4 x md md d d d d 
8 e mx md d d d d 

12 n n n n n n n 
15 e me me x d d d 
16 e me me e x d d 
24 e me me e e x d 
32 e me me e e e x 

Figure 4
Screen Capture of the Windows Shared Desktop Client Sharing Pro/ENGINEER with a UNIX Shared Desktop Server 
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people communicate and share data. These uses include
telecommuting, debugging/support, and education. 

Telecommuting 
One feature we built into Shared Desktop is the ability
to originate a sharing session from a remote location.
Our intent was to allow an individual to work outside
the office environment on a home PC or a laptop com-
puter. In the telecommuting scenario, a workstation
with high-end graphics functions and applications
located in the office would call back the home user’s
low-end system and present the user with his work
environment. For example, consider a user of PTC’s
Pro/ENGINEER who is working on a 3-D assembly
with a 100-MB database and must make a change to
the part from home. Prior to the Shared Desktop
application, the only options were either to mimic the
work environment at home or drive to the office to
make the change. To mimic a work environment, the
equipment at home must support Pro/ENGINEER
software and might require 3-D hardware. In addi-
tion, the user would have to retrieve a recent version of
the 100-MB database over the telephone lines, which
would take many hours to copy. With the Shared
Desktop application, the user can access the 100-MB
part using the low-end computer over standard tele-
phone lines. The changes to the assembly then occur
on the system and to the large database at the office. 

Remote Debugging/Support 
Another use of the Shared Desktop application is for
customer support or remote debugging. Consider the
user of a 3-D design application who discovers a bug
in a new version of the software. A complex model
often causes a bug that requires software support to
obtain the database to re-create the problem. Using
Shared Desktop, a user could show a support repre-
sentative the problem on the running application, as
opposed to filing a problem report. 

Off-site Training 
A remote training scenario provides a final example of
collaboration using computers. The Shared Desktop
application facilitates remote training by connecting
students in a sharing session. Each student’s desktop
displays a lesson composed of the course material
installed on the instructor’s desktop. Students interact
with the teacher by audio, mouse, and keyboard
actions on objects in the screen viewport. In essence,
the teacher uses the synchronized cursors to highlight
or point to objects on the screen. 

Conclusion and Future Directions 

The Shared Desktop collaboration software employs 
a simple user interface that emphasizes ease of 3-D
application sharing and audio conferencing. Compared

to application sharing based on a protocol splitter, the
Shared Desktop application offers easier interoper-
ability and better latency during 3-D operations. With 
a protocol splitter approach, it is difficult to decide
which, if any, graphics events to drop when network
jitter or network bandwidth delays occur. Our
approach is synchronized to the last screen capture.
When the network is no longer congested, the current
screen capture can be sent, thus minimizing the per-
ceived effect of the network delay. The only disadvan-
tage to bitmap sharing is its requirement that the
windowing system and display driver implement a
DMA screen capture function and not programmed
I/O. DMA screen capture requests have a minimal
load on the windowing system. 

We are planning a number of improvements to the
advanced development version of Shared Desktop. 
In our initial work, we made no changes to the win-
dowing systems. Ideally, the product version might
have a mechanism that notifies an application when
and where another application has made changes to
the screen. With the added ability to capture only
those areas of the screen that have changed since the
last notification, the windowing system could perform
the first two steps in the capture process. 

Although the compression scheme we implemented
works for most cases, some graphics may not compress
well using the combination of RLE and LZ77. Instead,
content-specific compression or adaptive compression
techniques might be better applied. This is an area of
study we hope to pursue. 

The current graphical user interface (GUI) lacks
some conferencing features. The product version will 
be packaged with other applications to provide video,
chat, whiteboard, file transfer, and user locator/
directory services. 

Finally, the sharing model we implemented for the
Shared Desktop application is easily ported to other
systems. Thus the application could be available for
widespread use. 
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