
The OpenVMS Alpha operating system initially sup-
ported a 32-bit virtual address space that maximized
compatibility for OpenVMS VAX users as they ported
their applications from the VAX platform to the Alpha
platform. Providing access to the 64-bit virtual mem-
ory capability defined by the Alpha architecture was
always a goal for the OpenVMS operating system. An
early consideration was the eventual use of this tech-
nology to enable a transition from a purely 32-bit-
oriented context to a purely 64-bit-oriented native
context. OpenVMS designers recognized that such
a fundamental transition for the operating system,
along with a 32-bit VAX compatibility mode support
environment, would take a long time to implement
and could seriously jeopardize the migration of appli-
cations from the VAX platform to the Alpha platform.
A phased approach was called for, by which the operat-
ing system could evolve over time, allowing for quicker
time-to-market for significant features and better, more
timely support for binary compatibility.

In 1989, a strategy emerged that defined two funda-
mental phases of OpenVMS Alpha development. Phase
1 would deliver the OpenVMS Alpha operating system
initially with a virtual address space that faithfully repli-
cated address space as it was defined by the VAX archi-
tecture. This familiar 32-bit environment would ease
the migration of applications from the VAX platform
to the Alpha platform and would ease the port of the
operating system itself. Phase 1, the OpenVMS Alpha
version 1.0 product, was delivered in 1992.1

For Phase 2, the OpenVMS operating system would
successfully exploit the 64-bit virtual address capacity
of the Alpha architecture, laying the groundwork
for further evolution of the OpenVMS system. In
1989, strategists predicted that Phase 2 could be deliv-
ered approximately three years after Phase 1. As
planned, Phase 2 culminated in 1995 with the delivery
of OpenVMS Alpha version 7.0, the first version of
the OpenVMS operating system to support 64-bit
virtual addressing.

This paper discusses how the OpenVMS Alpha
Operating System Development group extended the
OpenVMS virtual address space to 64 bits. Topics
covered include compatibility for existing applica-
tions, the options for extending the address space, the

Digital Technical Journal Vol. 8 No. 2 1996 57

Extending OpenVMS
for 64-bit Addressable
Virtual Memory

Michael S. Harvey
Leonard S. Szubowicz

The OpenVMS operating system recently
extended its 32-bit virtual address space to
exploit the Alpha processor’s 64-bit virtual
addressing capacity while ensuring binary
compatibility for 32-bit nonprivileged pro-
grams. This 64-bit technology is now available
both to OpenVMS users and to the operating
system itself. Extending the virtual address
space is a fundamental evolutionary step for
the OpenVMS operating system, which has
existed within the bounds of a 32-bit address
space for nearly 20 years. We chose an asym-
metric division of virtual address extension that
allocates the majority of the address space to
applications by minimizing the address space
devoted to the kernel. Significant scaling issues
arose with respect to the kernel that dictated
a different approach to page table residency
within the OpenVMS address space. The paper
discusses key scaling issues, their solutions,
and the resulting layout of the 64-bit virtual
address space.

strategy for page table residency, and the final layout of
the OpenVMS 64-bit virtual address space. In imple-
menting support for 64-bit virtual addresses, design-
ers maximized privileged code compatibility; the paper
presents some key measures taken to this end and pro-
vides a privileged code example. A discussion of the
immediate use of 64-bit addressing by the OpenVMS
kernel and a summary of the work accomplished con-
clude the paper.

Compatibility Constraints

Growing the virtual address space from a 32-bit to
a 64-bit capacity was subject to one overarching con-
sideration: compatibility. Specifically, any existing non-
privileged program that could execute prior to the
introduction of 64-bit addressing support, even in
binary form, must continue to run correctly and
unmodified under a version of the OpenVMS operat-
ing system that supports a 64-bit virtual address space.

In this context, a nonprivileged program is one that
is coded only to stable interfaces that are not allowed
to change from one release of the operating system to
another. In contrast, a privileged program is defined
as one that must be linked against the OpenVMS
kernel to resolve references to internal interfaces and
data structures that may change as the kernel evolves.

The compatibility constraint dictates that the follow-
ing characteristics of the 32-bit virtual address space
environment, upon which a nonprivileged program
may depend, must continue to appear unchanged.2

■ The lower-addressed half (2 gigabytes [GB]) of vir-
tual address space is defined to be private to a given
process. This process-private space is further divided
into two 1-GB spaces that grow toward each other.
1. The lower 1-GB space is referred to as P0 space.

This space is called the program region, where
user programs typically reside while running.

2. The higher 1-GB space is referred to as P1 space.
This space is called the control region and con-
tains the stacks for a given process, process-
permanent code, and various process-specific
control cells.

■ The higher-addressed half (2 GB) of virtual address
space is defined to be shared by all processes. This
shared space is where the OpenVMS operating sys-
tem kernel resides. Although the VAX architecture
divides this space into a pair of separately named
1-GB regions (S0 space and S1 space), the OpenVMS
Alpha operating system makes no material distinc-
tion between the two regions and refers to them
collectively as S0/S1 space.

Figure 1 illustrates the 32-bit virtual address space
layout as implemented by the OpenVMS Alpha oper-
ating system prior to version 7.0.1 An interesting

mechanism can be seen in the Alpha implementation
of this address space. The Alpha architecture defines
32-bit load operations such that values (possibly
pointers) are sign extended from bit 31 as they are
loaded into registers.3 This facilitates address calcula-
tions with results that are 64-bit, sign-extended forms
of the original 32-bit pointer values. For all P0 or P1
space addresses, the upper 32 bits of a given pointer in
a register will be written with zeros. For all S0/S1
space addresses, the upper 32 bits of a given pointer in
a register will be written with ones. Hence, on the
Alpha platform, the 32-bit virtual address space actu-
ally exists as the lowest 2 GB and highest 2 GB of the
entire 64-bit virtual address space. From the perspec-
tive of a program using only 32-bit pointers, these
regions appear to be contiguous, exactly as they
appeared on the VAX platform.

Superset Address Space Options

We considered the following three general options for
extending the address space beyond the current 32-bit
limits. The degree to which each option would relieve
the address space pressure being felt by applications
and the OpenVMS kernel itself varied significantly,
as did the cost of implementing each option.

1. Extension of shared space
2. Extension of process-private space
3. Extension of both shared space and process-private

space

The first option considered was to extend the virtual
address boundaries for shared space only. Process-
private space would remain limited to its current size
of 2 GB. If processes needed access to a huge amount
of virtual memory, the memory would have to have
been created in shared space where, by definition, all
processes would have access to it. This option’s chief
advantage was that no changes were required in the
complex memory management code that specifically
supports process-private space. Choosing this option
would have minimized the time-to-market for deliver-
ing some degree of virtual address extension, however
limited it would be. Avoiding any impact to process-
private space was also its chief disadvantage. By failing
to extend process-private space, this option proved to
be generally unappealing to our customers. In addi-
tion, it was viewed as a makeshift solution that we
would be unable to discard once process-private space
was extended at a future time.

The second option was to extend process-private
space only. This option would have delivered the
highly desirable 64-bit capacity to processes but would
not have extended shared space beyond its current
32-bit boundaries. The option presumed to reduce
the degree of change in the kernel, hence maximizing

58 Digital Technical Journal Vol. 8 No. 2 1996

privileged code compatibility and ensuring faster time-
to-market. However, analysis of this option showed
that there were enough significant portions of the ker-
nel requiring change that, in practice, very little addi-
tional privileged code compatibility, such as for
drivers, would be achievable. Also, this option did not
address certain important problems that are specific to
shared space, such as limitations on the kernel’s capac-
ity to manage ever-larger, very large memory (VLM)
systems in the future.

We decided to pursue the option of a flat, superset
64-bit virtual address space that provided extensions
for both the shared and the process-private portions of
the space that a given process could reference. The
new, extended process-private space, named P2 space,
is adjacent to P1 space and extends toward higher
virtual addresses.4,5 The new, extended shared space,
named S2 space, is adjacent to S0/S1 space and
extends toward lower virtual addresses. P2 and S2
spaces grow toward each other.

A remaining design problem was to decide where
P2 and S2 would meet in the address space layout.
A simple approach would split the 64-bit address
space exactly in half, symmetrically scaling up the
design of the 32-bit address space already in place.
(The address space is split in this way by the Digital
UNIX operating system.3) This solution is easy to
explain because, on the one hand, it extends the 32-bit
convention that the most significant address bit can be
treated as a sign bit, indicating whether an address
is private or shared. On the other hand, it allocates
fully one-half the available virtual address space to the

operating system kernel, whether or not this space is
needed in its entirety.

The pressure to grow the address space generally
stems from applications rather than from the operat-
ing system itself. In response, we implemented the
64-bit address space with a boundary that floats
between the process-private and shared portions. The
operating system configures at bootstrap only as much
virtual address space as it needs (never more than
50 percent of the whole). At this point, the boundary
becomes fixed for all processes, with the majority of
the address space available for process-private use.

A floating boundary maximizes the virtual address
space that is available to applications; however, using
the sign bit to distinguish between process-private
pointers and shared-space pointers continues to work
only for 32-bit pointers. The location of the floating
boundary must be used to distinguish between 64-bit
process-private and shared pointers. We believed that
this was a minor trade-off in return for realizing twice
as much process-private address space as would other-
wise have been achieved.

Page Table Residency

While pursuing the 64-bit virtual address space layout,
we grappled with the issue of where the page tables
that map the address space would reside within that
address space. This section discusses the page table
structure that supports the OpenVMS operating sys-
tem, the residency issue, and the method we chose to
resolve this issue.

Digital Technical Journal Vol. 8 No. 2 1996 59

P1 SPACE

00000000.00000000

00000000.7FFFFFFF
00000000.80000000

FFFFFFFF.7FFFFFFF
FFFFFFFF.80000000

FFFFFFFF.FFFFFFFF

S0/S1 SPACE

UNREACHABLE WITH
32-BIT POINTERS

(264 – 232) BYTES

P0 SPACE

PROCESSES

PROCESS
PRIVATE
(2 GB)

SHARED
SPACE
(2 GB)

Figure 1
OpenVMS Alpha 32-bit Virtual Address Space

Virtual Address–to–Physical Address Translation
The Alpha architecture allows an implementation to
choose one of the following four page sizes: 8 kilo-
bytes (KB), 16 KB, 32 KB, or 64 KB.3 The architecture
also defines a multilevel, hierarchical page table struc-
ture for virtual address-to-physical address (VA–to–
PA) translations. All OpenVMS Alpha platforms have
implemented a page size of 8 KB and three levels
in this page table structure. Although throughout
this paper we assume a page size of 8 KB and three
levels in the page table hierarchy, no loss of generality
is incurred by this assumption.

Figure 2 illustrates the VA–to–PA translation
sequence using the multilevel page table structure.

1. The page table base register (PTBR) is a per-process
pointer to the highest level (L1) of that process’
page table structure. At the highest level is one
8-KB page (L1PT) that contains 1,024 page table
entries (PTEs) of 8 bytes each. Each PTE at the
highest page table level (that is, each L1PTE) maps
a page table page at the next lower level in the trans-
lation hierarchy (the L2PTs).

2. The Segment 1 bit field of a given virtual address
is an index into the L1PT that selects a particular
L1PTE, hence selecting a specific L2PT for the next
stage of the translation.

3. The Segment 2 bit field of the virtual address
then indexes into that L2PT to select an L2PTE,

hence selecting a specific L3PT for the next stage
of the translation.

4. The Segment 3 bit field of the virtual address then
indexes into that L3PT to select an L3PTE, hence
selecting a specific 8-KB code or data page.

5. The byte-within-page bit field of the virtual address
then selects a specific byte address in that page.

An Alpha implementation may increase the page
size and/or number of levels in the page table hierar-
chy, thus mapping greater amounts of virtual space up
to the full 64-bit amount. The assumed combination
of 8-KB page size and three levels of page table allows
the system to map up to 8 terabytes (TB) (i.e., 1,024
3 1,024 3 1,024 3 8 KB 5 8 TB) of virtual memory
for a single process.

To map the entire 8-TB address space available to a
single process requires up to 8 GB of PTEs (i.e., 1,024
3 1,024 3 1,024 3 8 bytes 5 8 GB). This fact alone
presents a serious sizing issue for the OpenVMS oper-
ating system. The 32-bit page table residency model
that the OpenVMS operating system ported from the
VAX platform to the Alpha platform does not have
the capacity to support such large page tables.

Page Tables: 32-bit Residency Model
We stated earlier that materializing a 32-bit virtual
address space as it was defined by the VAX architecture
would ease the effort to port the OpenVMS operating

60 Digital Technical Journal Vol. 8 No. 2 1996

SEGMENT 1

BYTE
WITHIN
PAGE

SIGN EXTENSION
OF SEGMENT 1

SEGMENT 2 SEGMENT 3

031324263

PAGE TABLE
BASE REGISTER

L1PT L2PTs L3PTs DATA PAGES

VIRTUAL
ADDRESS

Figure 2
Virtual Address–to–Physical Address Translation

system from the VAX platform to the Alpha platform.
A concrete example of this relates to page table resi-
dency in virtual memory.

The VAX architecture defines, for a given process,
a P0 page table and a P1 page table that map that
process’ P0 and P1 spaces, respectively.2 The architec-
ture specifies that these page tables are to be located in
S0/S1 shared virtual address space. Thus, the page
tables in virtual memory are accessible regardless of
which process context is currently active on the system.

The OpenVMS VAX operating system places a given
process’ P0 and P1 page tables, along with other per-
process data, in a fixed-size data structure called a bal-
ance slot. An array of such slots exists within S0/S1
space with each memory-resident process being
assigned to one of these slots.

This page table residency design was ported from
the VAX platform to the Alpha platform.1 The L3PTs
needed to map P0 and P1 spaces and the one L2PT
needed to map those L3PTs are all mapped into a bal-
ance slot in S0/S1 space. (To conserve virtual mem-
ory, the process’ L1PT is not mapped into S0/S1
space.) The net effect is illustrated in Figure 3.

The VAX architecture defines a separate, physically
resident system page table (SPT) that maps S0/S1
space. The SPT was explicitly mapped into S0/S1
space by the OpenVMS operating system on both the
VAX and the Alpha platforms.

Only 2 megabytes (MB) of level 3 PT space is
required to map all of a given process’ P0 and P1
spaces. This balance slot design reasonably accommo-
dates a large number of processes, all of whose P0 and
P1 page tables simultaneously reside within those
balance slots in S0/S1 shared space.

This design cannot scale to support a 64-bit virtual
address space. Measured in terms of gigabytes per
process, the page tables required to map such an enor-
mous address space are too big for the balance slots,
which are constrained to exist inside the 2-GB S0/S1
space. The designers had to find another approach for
page table residency.

Self-mapping the Page Tables
Recall from earlier discussion that on today’s Alpha
implementations, the page size is 8 KB, three levels of
translation exist within the hierarchical page table struc-
ture, and each page table page contains 1,024 PTEs.
Each L1PTE maps 8 GB of virtual memory. Eight giga-
bytes of PT space allows all 8 TB of virtual memory that
this implementation can materialize to be mapped.

An elegant approach to mapping a process’ page
tables into virtual memory is to self-map them. A sin-
gle PTE in the highest-level page table page is set to
map that page table page. That is, the selected L1PTE
contains the page frame number of the level 1 page
table page that contains that L1PTE.

Digital Technical Journal Vol. 8 No. 2 1996 61

SLOT

SLOT

SLOT

SLOT

SLOT

SLOT

BALANCE
SLOTS

PROCESS
HEADER

PROCESS-PRIVATE
L2PT

P0 PAGE TABLE
(L3PTs)

P1 PAGE TABLE
(L3PTs)

SIZED AT
BOOTSTRAP

ARROWS INDICATE
DIRECTION OF GROWTH

Figure 3
32-bit Page Tables in S0/S1 Space (Prior to OpenVMS Alpha Version 7.0)

The effect of this self-mapping on the VA–to–PA
translation sequence (shown in Figure 2) is subtle but
important.

■ For those virtual addresses with a Segment 1 bit
field value that selects the self-mapper L1PTE, step
2 of the VA–to–PA translation sequence reselects
the L1PT as the effective L2PT (L2PT9) for the
next stage of the translation.

■ Step 3 indexes into L2PT9 (the L1PT) using the
Segment 2 bit field value to select an L3PT9.

■ Step 4 indexes into L3PT9 (an L2PT) using the
Segment 3 bit field value to select a specific data
page.

■ Step 5 indexes into that data page (an L3PT) using
the byte-within-page bit field of the virtual address
to select a specific byte address within that page.

When step 5 of the VA–to–PA translation sequence
is finished, the final page being accessed is itself one of
the level 3 page table pages, not a page that is mapped

by a level 3 page table page. The self-map operation
places the entire 8-GB page table structure at the end
of the VA–to–PA translation sequence for a specific
8-GB portion of the process’ address space. This vir-
tual space that contains all of a process’ potential page
tables is called page table space (PT space).6

Figure 4 depicts the effect of self-mapping the page
tables. On the left is the highest-level page table
page containing a fixed number of PTEs. On the right
is the virtual address space that is mapped by that page
table page. The mapped address space consists of a col-
lection of identically sized, contiguous address range
sections, each one mapped by a PTE in the corre-
sponding position in the highest-level page table page.
(For clarity, lower levels of the page table structure are
omitted from the figure.)

Notice that L1PTE #1022 in Figure 4 was chosen to
map the high-level page table page that contains that
PTE. (The reason for this particular choice will
be explained in the next section. Theoretically, any one

62 Digital Technical Journal Vol. 8 No. 2 1996

L1PT’S PFN

L1PT’S PFN

PT SPACE

S0/S1

P0/P1

64-BIT ADDRESSABLE
VIRTUAL ADDRESS SPACE

00000000.00000000

8-GB #0

8-GB #1

8-GB #1022

8-GB #1023

FFFFFFFF.FFFFFFFF

1,020 8 GB

KEY:

PTBR
PFN
PTE

PAGE TABLE BASE REGISTER
PAGE FRAME NUMBER
PAGE TABLE ENTRY

PTBR

L1PT

PTE #1022

Figure 4
Effect of Page Table Self-map

of the L1PTEs could have been chosen as the self-
mapper.) The section of virtual memory mapped by
the chosen L1PTE contains the entire set of page
tables needed to map the available address space of
a given process. This section of virtual memory is PT
space, which is depicted on the right side of Figure 4
in the 1,022d 8-GB section in the materialized virtual
address space.

The base address for this PT space incorporates the
index of the chosen self-mapper L1PTE (1,022 5
3FE(16)) as follows (see Figure 2):

Segment 1 bit field 5 3FE
Segment 2 bit field 5 0
Segment 3 bit field 5 0
Byte within page 5 0,

which result in

VA 5 FFFFFFFC.00000000
(also known as PT_Base).

Figure 5 illustrates the exact contents of PT space
for a given process. One can observe the positional
effect of choosing a particular high-level PTE to self-
map the page tables even within PT space. In Figure 4,
the choice of PTE for self-mapping not only places PT
space as a whole in the 1,022d 8-GB section in virtual
memory but also means that

■ The 1,022d grouping of the lowest-level page
tables (L3PTs) within PT space is actually the col-
lection of next-higher-level PTs (L2PTs) that map
the other groupings of L3PTs, beginning at
Segment 1 bit field 5 3FE
Segment 2 bit field 5 3FE
Segment 3 bit field 5 0
Byte within page 5 0,
which result in
VA 5 FFFFFFFD.FF000000
(also known as L2_Base).

■ Within that block of L2PTs, the 1,022d L2PT is
actually the next-higher-level page table that maps
the L2PTs, namely, the L1PT. The L1PT begins at
Segment 1 bit field 5 3FE
Segment 2 bit field 5 3FE
Segment 3 bit field 5 3FE
Byte within page 5 0,
which result in
VA 5 FFFFFFFD.FF7FC000
(also known as L1_Base).

■ Within that L1PT, the 1,022d PTE is the one used
for self-mapping these page tables. The address of
the self-mapper L1PTE is

Digital Technical Journal Vol. 8 No. 2 1996 63

NEXT-LOWER 8 GB

L2PT

L1PT
L2PT

1,021 L2PTs

NEXT-HIGHER 8 GB

1,024 L2PTs

1,024 L3PTs

1,024 L3PTs

1,021 (1,024 L3PTs)

PT_BASE:

L2_BASE:

L1_BASE:

PAGE TABLE
SPACE (8 GB)

Figure 5
Page Table Space

Segment 1 bit field 5 3FE
Segment 2 bit field 5 3FE
Segment 3 bit field 5 3FE
Byte within page 5 3FE 3 8
which result in
VA 5 FFFFFFFD.FF7FDFF0.

This positional correspondence within PT space is pre-
served should a different high-level PTE be chosen for
self-mapping the page tables.

The properties inherent in this self-mapped page
table are compelling.

■ The amount of virtual memory reserved is exactly
the amount required for mapping the page tables,
regardless of page size or page table depth.
Consider the segment-numbered bit fields of a
given virtual address from Figure 2. Concatenated,
these bit fields constitute the virtual page number
(VPN) portion of a given virtual address.
The total size of the PT space needed to map every
VPN is the number of possible VPNs times 8 bytes,
the size of a PTE. The total size of the address
space mapped by that PT space is the number of
possible VPNs times the page size. Factoring
out the VPN multiplier, the difference between
these is the page size divided by 8, which is exactly
the size of the Segment 1 bit field in the vir-
tual address. Hence, all the space mapped by a
single PTE at the highest level of page table is
exactly the size required for mapping all the PTEs
that could ever be needed to map the process’
address space.

■ The mapping of PT space involves simply choos-
ing one of the highest-level PTEs and forcing it to
self-map.

■ No additional system tuning or coding is required
to accommodate a more widely implemented
virtual address width in PT space. By definition of
the self-map effect, the exact amount of virtual
address space required will be available, no more
and no less.

■ It is easy to locate a given PTE. The address of
a PTE becomes an efficient function of the address
that the PTE maps. The function first clears
the byte-within-page bit field of the subject vir-
tual address and then shifts the remaining virtual
address bits such that the Segments 1, 2, and 3 bit
field values (Figure 2) now reside in the corre-
sponding next-lower bit field positions. The func-
tion then writes (and sign extends if necessary)
the vacated Segment 1 field with the index of
the self-mapper PTE. The result is the address
of the PTE that maps the original virtual address.
Note that this algorithm also works for addresses

within PT space, including that of the self-mapper
PTE itself.

■ Process page table residency in virtual memory is
achieved without imposing on the capacity of
shared space. That is, there is no longer a need to
map the process page tables into shared space. Such
a mapping would be redundant and wasteful.

OpenVMS 64-bit Virtual Address Space

With this page table residency strategy in hand, it
became possible to finalize a 64-bit virtual address lay-
out for the OpenVMS operating system. A self-mapper
PTE had to be chosen. Consider again the highest level
of page table in a given process’ page table structure
(Figure 4). The first PTE in that page table maps a sec-
tion of virtual memory that includes P0 and P1 spaces.
This PTE was therefore unavailable for use as a self-
mapper. The last PTE in that page table maps a section
of virtual memory that includes S0/S1 space. This PTE
was also unavailable for self-mapping purposes.

All the intervening high-level PTEs were potential
choices for self-mapping the page tables. To maximize
the size of process-private space, the correct choice
is the next-lower PTE than the one that maps the low-
est address in shared space.

This choice is implemented as a boot-time algo-
rithm. Bootstrap code first determines the size
required for OpenVMS shared space, calculating the
corresponding number of high-level PTEs. A suffi-
cient number of PTEs to map that shared space are
allocated later from the high-order end of a given
process’ highest-level page table page. Then the next-
lower PTE is allocated for self-mapping that process’
page tables. All remaining lower-ordered PTEs are left
available for mapping process-private space. In prac-
tice, nearly all the PTEs are available, which means that
on today’s systems, almost 8 TB of process-private vir-
tual memory is available to a given OpenVMS process.

Figure 6 presents the final 64-bit OpenVMS virtual
address space layout. The portion with the lower
addresses is entirely process-private. The higher-
addressed portion is shared by all process address
spaces. PT space is a region of virtual memory that lies
between the P2 and S2 spaces for any given process
and at the same virtual address for all processes.

Note that PT space itself consists of a process-private
and a shared portion. Again, consider Figure 5. The
highest-level page table page, L1PT, is process-private.
It is pointed to by the PTBR. (When a process’ context
is loaded, or made active, the process’ PTBR value is
loaded from the process’ hardware-privileged context
block into the PTBR register, thereby making current
the page table structure pointed to by that PTBR and
the process-private address space that it maps.)

64 Digital Technical Journal Vol. 8 No. 2 1996

All higher-addressed page tables in PT space are
used to map shared space and are themselves shared.
They are also adjacent to the shared space that they
map. All page tables in PT space that reside at
addresses lower than that of the L1PT are used to map
process-private space. These page tables are process-
private and are adjacent to the process-private space
that they map. Hence, the end of the L1PT marks
a universal boundary between the process-private
portion and the shared portion of the entire virtual
address space, serving to separate even the PTEs that
map those portions. In Figure 6, the line passing
through PT space illustrates this boundary.

A direct consequence of this design is that the
process page tables have been privatized. That is,
the portion of PT space that is process-private is cur-
rently active in virtual memory only when the owning
process itself is currently active on the processor.

Fortunately, the majority of page table references
occur while executing in the context of the owning
process. Such references actually are enhanced by
the privatization of the process page tables because
the mapping function of a virtual address to its PTE
is now more efficient.

Privatization does raise a hurdle for certain pri-
vileged code that previously could access a process’
page tables when executing outside the context of the
owning process. With the page tables resident in
shared space, such references could be made regard-
less of which process is currently active. With priva-
tized page tables, additional access support is needed,
as presented in the next section.

A final commentary is warranted for the separately
maintained system page table. The self-mapped page
table approach to supplying page table residency in
virtual memory includes the PTEs for any virtual

Digital Technical Journal Vol. 8 No. 2 1996 65

P1 SPACE

00000000.00000000

00000000.7FFFFFFF
00000000.80000000

FFFFFFFF.7FFFFFFF
FFFFFFFF.80000000

FFFFFFFF.FFFFFFFF
S0/S1 SPACE

P0 SPACE

S2 SPACE

PAGE TABLE SPACE

P2 SPACE

PROCESS-PRIVATE

SHARED SPACE

Note that this drawing is not to scale.

PROCESSES

Figure 6
OpenVMS Alpha 64-bit Virtual Address Space

addresses, whether they are process-private or shared.
The shared portion of PT space could serve now as the
sole location for shared-space PTEs. Being redundant,
the original SPT is eminently discardable; however,
discarding the SPT would create a massive compatibil-
ity problem for device drivers with their many 32-bit
SPT references. This area is one in which an opportu-
nity exists to preserve a significant degree of privileged
code compatibility.

Key Measures Taken to Maximize
Privileged Code Compatibility

To implement 64-bit virtual address space support, we
altered central sections of the OpenVMS Alpha kernel
and many of its key data structures. We expected that
such changes would require compensating or corre-
sponding source changes in surrounding privileged
components within the kernel, in device drivers, and
in privileged layered products.

For example, the previous discussion seems to indi-
cate that any privileged component that reads or writes
PTEs would now need to use 64-bit-wide pointers
instead of 32-bit pointers. Similarly, all system fork
threads and interrupt service routines could no longer
count on direct access to process-private PTEs with-
out regard to which process happens to be current
at the moment.

A number of factors exacerbated the impact of such
changes. Since the OpenVMS Alpha operating sys-
tem originated from the OpenVMS VAX operating
system, significant portions of the OpenVMS Alpha
operating system and its device drivers are still written
in MACRO-32 code, a compiled language on the
Alpha platform.1 Because MACRO-32 is an assembly-
level style of programming language, we could not
simply change the definitions and declarations of vari-
ous types and rely on recompilation to handle the
move from 32-bit to 64-bit pointers. Finally, there are
well over 3,000 references to PTEs from MACRO-32
code modules in the OpenVMS Alpha source pool.

We were thus faced with the prospect of visiting and
potentially altering each of these 3,000 references.
Moreover, we would need to follow the register life-
times that resulted from each of these references to
ensure that all address calculations and memory refer-
ences were done using 64-bit operations. We expected
that this process would be time-consuming and error
prone and that it would have a significant negative
impact on our completion date.

Once OpenVMS Alpha version 7.0 was available
to users, those with device drivers and privileged code
of their own would need to go through a similar
effort. This would further delay wide use of the
release. For all these reasons, we were well motivated

to minimize the impact on privileged code. The next
four sections discuss techniques that we used to over-
come these obstacles.

Resolving the SPT Problem
A significant number of the PTE references in pri-
vileged code are to PTEs within the SPT. Device
drivers often double-map the user’s I/O buffer into
S0/S1 space by allocating and appropriately initializ-
ing system page table entries (SPTEs). Another situa-
tion in which a driver manipulates SPTEs is in the
substitution of a system buffer for a poorly aligned or
noncontiguous user I/O buffer that prevents the
buffer from being directly used with a particular
device. Such code relies heavily on the system data cell
MMG$GL_SPTBASE, which points to the SPT.

The new page table design completely obviates the
need for a separate SPT. Given an 8-KB page size and
8 bytes per PTE, the entire 2-GB S0/S1 virtual address
space range can be mapped by 2 MB of PTEs within PT
space. Because S0/S1 resides at the highest addressable
end of the 64-bit virtual address space, it is mapped by
the highest 2 MB of PT space. The arcs on the left in
Figure 7 illustrate this mapping. The PTEs in PT space
that map S0/S1 are fully shared by all processes, but
they must be referenced with 64-bit addresses.

This incompatibility is completely hidden by the
creation of a 2-MB “SPT window” over the 2 MB in
PT space (level 3 PTEs) that maps S0/S1 space. The
SPT window is positioned at the highest addressable
end of S0/S1 space. Therefore, an access through the
SPT window only requires a 32-bit S0/S1 address and
can obtain any of the PTEs in PT space that map
S0/S1 space. The arcs on the right in Figure 7 illus-
trate this access path.

The SPT window is set up at system initialization
time and consumes only the 2 KB of PTEs that
are needed to map 2 MB. The system data cell
MMG$GL_SPTBASE now points to the base of the
SPT window, and all existing references to that data cell
continue to function correctly without change.7

Providing Cross-process PTE Access for Direct I/O
The self-mapping of the page tables is an elegant solu-
tion to the page table residency problem imposed by
the preceding design. However, the self-mapped page
tables present significant challenges of their own to the
I/O subsystem and to many device drivers.

Typically, OpenVMS device drivers for mass storage,
network, and other high-performance devices perform
direct memory access (DMA) and what OpenVMS calls
“direct I/O.” These device drivers lock down into
physical memory the virtual pages that contain the
requester’s I/O buffer. The I/O transfer is performed
directly to those pages, after which the buffer pages are
unlocked, hence the term “direct I/O.”

66 Digital Technical Journal Vol. 8 No. 2 1996

The virtual address of the buffer is not adequate for
device drivers because much of the driver code runs in
system context and not in the process context of the
requester. Similarly, a process-specific virtual address is
meaningless to most DMA devices, which typically can
deal only with the physical addresses of the virtual
pages spanned by the buffer.

For these reasons, when the I/O buffer is locked
into memory, the OpenVMS I/O subsystem converts
the virtual address of the requester’s buffer into
(1) the address of the PTE that maps the start of
the buffer and (2) the byte offset within that page to
the first byte of the buffer.

Once the virtual address of the I/O buffer is con-
verted to a PTE address, all references to that buffer
are made using the PTE address. This remains the case
even if this I/O request and I/O buffer are handed off
from one driver to another. For example, the I/O
request may be passed from the shadowing virtual disk
driver to the small computer systems interface (SCSI)
disk class driver to a port driver for a specific SCSI host
adapter. Each of these drivers will rely solely on the
PTE address and the byte offset and not on the virtual
address of the I/O buffer.

Therefore, the number of virtual address bits the
requester originally used to specify the address of

the I/O buffer is irrelevant. What really matters is
the number of address bits that the driver must use
to reference a PTE.

These PTE addresses were always within the page
tables within the balance set slots in shared S0/S1
space. With the introduction of the self-mapped page
tables, a 64-bit address is required for accessing any
PTE in PT space. Furthermore, the desired PTE is not
accessible using this 64-bit address when the driver is
no longer executing in the context of the original
requester process. This is called a cross-process PTE
access problem.

In most cases, this access problem is solved for
direct I/O by copying the PTEs that map the I/O
buffer when the I/O buffer is locked into physical
memory. The PTEs in PT space are accessible at that
point because the requester process context is required
in order to lock the buffer. The PTEs are copied into
the kernel’s heap storage and the 64-bit PT space
address is replaced by the address of the PTE copies.
Because the kernel’s heap storage remains in S0/S1
space, the replacement address is a 32-bit address that
is shared by all processes on the system.

This copy approach works because drivers do not
need to modify the actual PTEs. Typically, this
arrangement works well because the associated PTEs

Digital Technical Journal Vol. 8 No. 2 1996 67

PAGE TABLE SPACE
(8 GB)

S2 (> 6 GB)

PTEs THAT MAP S0/S1 (2 MB)

SPT WINDOW (2 MB)

–

S0/S1 (2 GB)

FFFFFFFF.FFFFFFFF

Figure 7
System Page Table Window

can fit into dedicated space within the I/O request
packet data structure used by the OpenVMS operating
system, and there is no measurable increase in CPU
overhead to copy those PTEs.

If the I/O buffer is so large that its associated PTEs
cannot fit within the I/O request packet, a separate
kernel heap storage packet is allocated to hold the
PTEs. If the I/O buffer is so large that the cost of
copying all the PTEs is noticeable, a direct access path
is created as follows:

■ The L3PTEs that map the I/O buffer are locked
into physical memory.

■ Address space within S0/S1 space is allocated
and mapped over the L3PTEs that were just
locked down.

This establishes a 32-bit addressable shared-space
window over the L3PTEs that map the I/O buffer.

The essential point is that one of these methods is
selected and employed until the I/O is completed and
the buffer is unlocked. Each method provides a 32-bit
PTE address that the rest of the I/O subsystem can use
transparently, as it has been accustomed to doing, with-
out requiring numerous, complex source changes.

Use of Self-identifying Structures
To accommodate 64-bit user virtual addresses, a num-
ber of kernel data structures had to be expanded and
changed. For example, asynchronous system trap
(AST) control blocks, buffered I/O packets, and timer
queue entries all contain various user-provided
addresses and parameters that can now be 64-bit
addresses. These structures are often embedded in
other structures such that a change in one has a ripple
effect to a set of other structures.

If these structures changed unconditionally, many
scattered source changes would have been required.
Yet, at the same time, each of these structures had con-
sumers who had no immediate need for the 64-bit
addressing–related capabilities.

Instead of simply changing each of these structures,
we defined a new 64-bit-capable variant that can coex-
ist with its traditional 32-bit counterpart. The 64-bit
variant’s structures are “self-identifying” because they
can readily be distinguished from their 32-bit counter-
parts by examining a particular field within the struc-
ture itself. Typically, the 32-bit and 64-bit variants can
be intermixed freely within queues and only a limited
set of routines need to be aware of the variant types.

Thus, for example, components that do not need
64-bit ASTs can continue to build 32-bit AST control
blocks and queue them with the SCH$QAST routine.
Similarly, 64-bit AST control blocks can be queued
with the same SCH$QAST routine because the AST
delivery code was enhanced to support either type of
AST control block.

The use of self-identifying structures is also a tech-
nique that was employed to compatibly enhance pub-
lic user-mode interfaces to library routines and the
OpenVMS kernel. This topic is discussed in greater
detail in “The OpenVMS Mixed Pointer Size
Environment.”8

Limiting the Scope of Kernel Changes
Another key tactic that allowed us to minimize the
required source code changes to the OpenVMS kernel
came from the realization that full support of 64-bit
virtual addressing for all processes does not imply or
require exclusive use of 64-bit pointers within the ker-
nel. The portions of the kernel that handled user
addresses would for the most part need to handle
64-bit addresses; however, most kernel data structures
could remain within the 32-bit addressable S0/S1
space without any limit on user functionality. For
example, the kernel heap storage is still located
in S0/S1 space and continues to be 32-bit address-
able. The Record Management Services (RMS)
supports data transfers to and from 64-bit address-
able user buffers, but RMS continues to use 32-bit-
wide pointers for its internal control structures.
We therefore focused our effort on the parts of
the kernel that could benefit from internal use
of 64-bit addresses (see the section Immediate Use
of 64-bit Addressing by the OpenVMS Kernel
for examples) and that needed to change to support
64-bit user virtual addresses.

Privileged Code Example—The Swapper

The OpenVMS working set swapper provides an inter-
esting example of how the 64-bit changes within the
kernel may impact privileged code.

Only a subset of a process’ virtual pages is mapped
to physical memory at any given point in time. The
OpenVMS operating system occasionally swaps this
working set of pages out of memory to secondary stor-
age as a consequence of managing the pool of available
physical memory. The entity responsible for this activ-
ity is a privileged process called the working set swap-
per or swapper, for short. Since it is responsible for
transferring the working set of a process into and out
of memory when necessary, the swapper must have
intimate knowledge of the virtual address space of
a process including that process’ page tables.

Consider the earlier discussion in the section
OpenVMS 64-bit Virtual Address Space about how
the process’ page tables have been privatized as a way
to efficiently provide page table residency in virtual
memory. A consequence of this design is that while the
swapper process is active, the page tables of the process
being swapped are not available in virtual memory.
Yet, the swapper requires access to those page tables to

68 Digital Technical Journal Vol. 8 No. 2 1996

do its job. This is an instance of the cross-process PTE
access problem mentioned earlier.

The swapper is unable to directly access the page
tables of the process being swapped because the swap-
per’s own page tables are currently active in virtual
memory. We solved this access problem by revising the
swapper to temporarily “adopt” the page tables of
the process being swapped. The swapper accomplishes
this by temporarily changing its PTBR contents to
point to the page table structure for the process being
swapped instead of to the swapper’s own page table
structure. This change forces the PT space of the
process being swapped to become active in virtual
memory and therefore available to the swapper as it
prepares the process to be swapped. Note that the
swapper can make this temporary change because
the swapper resides in shared space. The swapper does
not vanish from virtual memory as the PTBR value is
changed. Once the process has been prepared for
swapping, the swapper restores its own PTBR value,
thus relinquishing access to the target process’ PT
space contents.

Thus, it can be seen how privileged code with
intimate knowledge of OpenVMS memory man-
agement mechanisms can be affected by the changes
to support 64-bit virtual memory. Also evident is that
the alterations needed to accommodate the 64-bit
changes are relatively straightforward. Although the
swapper has a higher-than-normal awareness of mem-
ory management internal workings, extending the
swapper to accommodate the 64-bit changes was
not particularly difficult.

Immediate Use of 64-bit Addressing by the
OpenVMS Kernel

Page table residency was certainly the most pressing
issue we faced with regard to the OpenVMS kernel as
it evolved from a 32-bit to a 64-bit-capable operating
system. Once implemented, 64-bit virtual addressing
could be harnessed as an enabling technology for solv-
ing a number of other problems as well. This section
briefly discusses some prominent examples that serve
to illustrate how immediately useful 64-bit addressing
became to the OpenVMS kernel.

Page Frame Number Database and
Very Large Memory
The OpenVMS Alpha operating system maintains a
database for managing individual, physical page frames
of memory, i.e., page frame numbers. This database is
stored in S0/S1 space. The size of this database grows
linearly as the size of the physical memory grows.

Future Alpha systems may include larger memory
configurations as memory technology continues to
evolve. The corresponding growth of the page frame

number database for such systems could consume
an unacceptably large portion of S0/S1 space, which
has a maximum size of 2 GB. This design effectively
restricts the maximum amount of physical memory
that the OpenVMS operating system would be able
to support in the future.

We chose to remove this potential restriction by
relocating the page frame number database from
S0/S1 to 64-bit addressable S2 space. There it can
grow to support any physical memory size being con-
sidered for years to come.

Global Page Table
The OpenVMS operating system maintains a data
structure in S0/S1 space called the global page table
(GPT). This pseudo–page table maps memory objects
called global sections. Multiple processes may map
portions of their respective process-private address
spaces to these global sections to achieve protected
shared memory access for whatever applications they
may be running.

With the advent of P2 space, one can easily anticipate
a need for orders-of-magnitude-greater global section
usage. This usage directly increases the size of the
GPT, potentially reaching the point where the GPT
consumes an unacceptably large portion of S0/S1
space. We chose to forestall this problem by relocating
the GPT from S0/S1 to S2 space. This move allows the
configuration of a GPT that is much larger than any
that could ever be configured in S0/S1 space.

Summary

Although providing 64-bit support was a significant
amount of work, the design of the OpenVMS operat-
ing system was readily scalable such that it could
be achieved practically. First, we established a goal of
strict binary compatibility for nonprivileged applica-
tions. We then designed a superset virtual address
space that extended both process-private and shared
spaces while preserving the 32-bit visible address space
to ensure compatibility. To maximize the available
space for process-private use, we chose an asymmetric
style of address space layout. We privatized the pro-
cess page tables, thereby eliminating their residency
in shared space. The few page table accesses that
occurred from outside the context of the owning
process, which no longer worked after the privatiza-
tion of the page tables, were addressed in various ways.
A variety of ripple effects stemming from this design
were readily solved within the kernel.

Solutions to other scaling problems related to the
kernel were immediately possible with the advent of
64-bit virtual address space. Already mentioned was
the complete removal of the process page tables from
shared space. We also removed the global page table

Digital Technical Journal Vol. 8 No. 2 1996 69

and the page frame number database from 32-bit
addressable to 64-bit addressable shared space. The
immediate net effect of these changes was significantly
more room in S0/S1 space for configuring more
kernel heap storage, more balance slots to be assigned
to greater numbers of memory resident processes, etc.
We further anticipate use of 64-bit addressable shared
space to realize additional benefits of VLM, such as
for caching massive amounts of file system data.

Providing 64-bit addressing capacity was a logical,
evolutionary step for the OpenVMS operating system.
Growing numbers of customers are demanding the
additional virtual memory to help solve their problems
in new ways and to achieve higher performance. This
has been especially fruitful for database applications,
with substantial performance improvements already
proved possible by the use of 64-bit addressing on the
Digital UNIX operating system. Similar results are
expected on the OpenVMS system. With terabytes
of virtual memory and many gigabytes of physical
memory available, entire databases may be loaded into
memory at once. Much of the I/O that otherwise
would be necessary to access the database can be elimi-
nated, thus allowing an application to improve perfor-
mance by orders of magnitude, for example, to reduce
query time from eight hours to five minutes. Such
performance gains were difficult to achieve while
the OpenVMS operating system was constrained to a
32-bit environment. With the advent of 64-bit address-
ing, OpenVMS users now have a powerful enabling
technology available to solve their problems.

Acknowledgments

The work described in this paper was done by mem-
bers of the OpenVMS Alpha Operating System Devel-
opment group. Numerous contributors put in many
long hours to ensure a well-considered design and
a high-quality implementation. The authors particu-
larly wish to acknowledge the following major con-
tributors to this effort: Tom Benson, Richard Bishop,
Walter Blaschuk, Nitin Karkhanis, Andy Kuehnel,
Karen Noel, Phil Norwich, Margie Sherlock, Dave
Wall, and Elinor Woods. Thanks also to members
of the Alpha languages community who provided
extended programming support for a 64-bit environ-
ment; to Wayne Cardoza, who helped shape the earli-
est notions of what could be accomplished; to Beverly
Schultz, who provided strong, early encouragement
for pursuing this project; and to Ron Higgins and
Steve Noyes, for their spirited and unflagging support
to the very end.

The following reviewers also deserve thanks for
the invaluable comments they provided in helping to
prepare this paper: Tom Benson, Cathy Foley, Clair
Grant, Russ Green, Mark Howell, Karen Noel, Margie
Sherlock, and Rod Widdowson.

References and Notes

1. N. Kronenberg, T. Benson, W. Cardoza, R. Jagannathan,
and B. Thomas, “Porting OpenVMS from VAX to Alpha
AXP,” Digital Technical Journal, vol. 4, no. 4 (1992):
111–120.

2. T. Leonard, ed., VAX Architecture Reference Manual
(Bedford, Mass.: Digital Press, 1987).

3. R. Sites and R. Witek, Alpha AXP Architecture Refer-
ence Manual, 2d ed. (Newton, Mass.: Digital Press,
1995).

4. Although an OpenVMS process may refer to P0 or P1
space using either 32-bit or 64-bit pointers, references
to P2 space require 64-bit pointers. Applications may
very well execute with mixed pointer sizes. (See refer-
ence 8 and D. Smith, “Adding 64-bit Pointer Support
to a 32-bit Run-time Library,” Digital Technical
Journal, vol. 8, no. 2 [1996, this issue]: 83–95.) There
is no notion of an application executing in either a 32-bit
mode or a 64-bit mode.

5. Superset system services and language support were
added to facilitate the manipulation of 64-bit address-
able P2 space.8

6. This mechanism has been in place since OpenVMS
Alpha version 1.0 to support virtual PTE fetches by the
translation buffer miss handler in PALcode. (PALcode
is the operating system–specific privileged architecture
library that provides control over interrupts, exceptions,
context switching, etc.3) In effect, this means that the
OpenVMS page tables already existed in two virtual
locations, namely, S0/S1 space and PT space.

7. The SPT window is more precisely only an S0/S1 PTE
window. The PTEs that map S2 space are referenced
using 64-bit pointers to their natural locations in PT
space and are not accessible through the use of this SPT
window. However, because S2 PTEs did not exist prior
to the introduction of S2 space, this limitation is of no
consequence to contexts that are otherwise restricted to
S0/S1 space.

8. T. Benson, K. Noel, and R. Peterson, “The OpenVMS
Mixed Pointer Size Environment,” Digital Technical
Journal, vol. 8, no. 2 (1996, this issue): 72–82.

General References

R. Goldenberg and S. Saravanan, OpenVMS AXP Internals
and Data Structures, Version 1.5 (Newton, Mass.: Digital
Press, 1994).

OpenVMS Alpha Guide to 64-Bit Addressing (Maynard,
Mass.: Digital Equipment Corporation, Order No.
AA-QSBCA-TE, December 1995).

OpenVMS Alpha Guide to Upgrading Privileged-Code
Applications (Maynard, Mass.: Digital Equipment
Corporation, Order No. AA-QSBGA-TE, December 1995).

70 Digital Technical Journal Vol. 8 No. 2 1996

Biographies

Digital Technical Journal Vol. 8 No. 2 1996 71

Michael S. Harvey
Michael Harvey joined Digital in 1978 after receiving his
B.S.C.S. from the University of Vermont. In 1984, as a mem-
ber of the OpenVMS Engineering group, he participated in
new processor support for VAX multiprocessor systems and
helped develop OpenVMS symmetric multiprocessing (SMP)
support for these systems. He received a patent for this work.
Mike was an original member of the RISCy-VAX task force,
which conceived and developed the Alpha architecture.
Mike led the project that ported the OpenVMS Executive
from the VAX to the Alpha platform and subsequently led
the project that designed and implemented 64-bit virtual
addressing support in OpenVMS. This effort led to a num-
ber of patent applications. As a consulting software engi-
neer, Mike is currently working in the area of infrastructure
that supports the Windows NT/OpenVMS Affinity initiative.

Leonard S. Szubowicz
Leonard Szubowicz is a consulting software engineer in
Digital’s OpenVMS Engineering group. Currently the
technical leader for the OpenVMS I/O engineering team,
he joined Digital Software Services in 1983. As a member
of the OpenVMS 64-bit virtual addressing project team,
Lenny had primary responsibility for I/O and driver sup-
port. Prior to that, he was the architect and project leader
for the OpenVMS high-level language device driver proj-
ect, contributed to the port of the OpenVMS operating
system to the Alpha platform, and was project leader for
RMS Journaling. Lenny is a coauthor of Writing OpenVMS
Alpha Device Drivers in C, which was recently published
by Digital Press.

