Design of the Common
Directory Interface for
DECnet/OSI

Digital has developed the Common Directory
Interface (CDI) as the means by which DECnet/
OSI can now access and manage node name and
address information in multiple directory ser-
vices. CDI comprises libraries for node name-to-
address translation and a tool set for managing
and migrating node information among differ-
ent directory services. The Common Directory
Registration API is layered on top of a set of
directory service wrapper routines to provide an
extensible mechanism for adding new directory
services. CDI gives customers greater flexibility
in choosing a directory service and supports the
new multiprotocol capabilities in DECnet/OSlI,
which support the open systems interconnec-
tion (OSI) standards.

Richard L. Rosenbaum
Stanley I. Goldfarb

The Common Directory Interface (CDI) provides the
ability to store and retrieve DECnet node information
from a variety of directory services. It consists of the
CDI library, which enables multiple directory access,
and the CDI registration tool set, which creates and
maintains node/addressing information in multiple
directory services. CDI was developed for the DECnet/
OSI for OpenVMS operating system version 6.0 and
for the DECnet/OSI for Digital UNIX operating sys-
tem version 3.0.

This paper begins by presenting the product goals
and the background of the CDI design. It then dis-
cusses the structure of the CDI components, the CDI
library, and the CDI registration tool set.

Design Goals

As the interface to DECnet node information from
multiple directory services, CDI was designed to meet
the following goals:

= Give DECnet network administrators and users
a choice of directory services.

= Provide system administrators with an easy-to-use
node registration tool.

= Enable easy and flexible configuration of directory
choices.

= Provide developers of the DECnet protocol soft-
ware with a simple internal interface that hides the
complexities and differences between the various
directory services.

= Provide a common design for both DECnet/OSI
platforms: the OpenVMS and the Digital UNIX
operating systems.

= Interoperate with older, non-CDI systems.
Background

In 1991, Digital updated its DECnet networking
products to include the use of the DECdns distributed
directory service.! DECdns provided a highly scalable,
distributed information source for translating node
names to addresses and addresses to node names.

Digital Technical Journal Vol.8 No.1 1996

59

60

Initially, customer acceptance of this name service was
low for a number of reasons:

= Adoption of this new technology required a signifi-
cant learning curve.

= Significant planning was required before the
DECdns service could be deployed.

= Users of small networks did not need the features of
a distributed naming service—the costs out-
weighed the benefits. These customers requested
a naming service based on local files similar to
the Phase IV DECnet product.

= Customers were deploying a number of other
directory services—in particular the Domain
Name System—for storing host information for
transmission control protocol/internet protocol
(TCP/IP) networks.

= A new comprehensive service, X.500, had the
advantage of being an international standard?

These reasons, together with the need to directly sup-
port TCP/IP host names and addresses, prompted
Digital to incorporate new directory service choices
in a new release of DECnet/OSI software.

CDI: Basic Design

Supporting multiple name services required decisions
to be made concerning naming syntax, multiple
address formats, and local file support. These decisions
affected the design of both the CDI library and the
CDI registration tool set.

Client-based versus Server-based Design

The earliest and most fundamental design decision was
choosing between a client-based or a server-based solu-
tion. With a client-based design, support for the vari-
ous directory services would be accomplished through
a variety of client-based programming libraries. With
a server-based design, a single client library would
communicate with a new “multiheaded” server that
would fan out to the directory servers.

Table 1
Naming Syntax

Since clients outnumber servers, a client-based
approach affects more systems during the upgrade
process. In spite of this drawback, we chose a client-
based solution for the following reasons:

= Implementation of the client-based design would
be less complex than the server design.

= A client-based design did not have the syntax and
protocol translation issues of a server-based design.

= With a server-based solution, client changes would
still be required to support new native naming
syntaxes.

= For small installations, no server would be needed
if node information was stored in a local file: local
file support was not possible with a server-only
approach.

Naming Syntax

One of the most visible complications when support-
ing multiple naming services is the need to recognize
different name syntaxes. Table 1 gives the different
syntaxes for three widely used directory services.

A further complication of supporting different name
syntaxes was the use of an internal DECdns name
format by network management. One of the goals of
the CDI design was to allow management requests
to be exchanged with older, non-CDI systems.

For the initial implementation, CDI continues to
support the internal DECdns format, rather than use
a newer, non-DECdns specific format alongside
the existing one. As a result, CDI is required to map
non-DECdns names onto the DECdns format. For
example, the name hg.xyz.com from the Domain
Name System maps onto the DECdns name
DOMAIN: .hq.xyz.com (actually onto the internal
DECdns form of this name).

Multiple Address Support

Along with the introduction of CDI, a major inno-
vation in this release of DECnet/OSI was direct sup-
port for TCP/IP transports in addition to the existing

Directory Service Example Name

/c=US/O=XYZ/ou=hg/ou=sales/ap=system1/ae=DECnet

DECdns XYZ:.hg.sales.system1
Domain Name System system1.sales.hg.xyz.com
X.500

Notes:

The X.500 service is not supported by the first release of CDI.

The syntax shown for X.500 is commonly used but is not part of a standard.

Digital Technical Journal Vol.8 No.1 1996

support for DECnet Phase IV and OSI. To simplify the
initial implementation, IP addresses are retrieved only
from the Domain Name System (not from DECdns).
However, the design of CDI allows the retrieval of
both kinds of addresses from any supported directory;
for example, OSI addresses can be obtained from the
Domain Name System.**

Support of multiple protocols created another nam-
ing issue. Many customers already have a Domain
Name System in place in their networks. OftenDECnet
systems are also running TCP /IP protocols and are reg-
istered in the Domain Name System, yet these systems
are not running DECnet software over TCP/IP. For
example, a system registered as hq.xyz.com may be
directly reachable with TCP/IP but not with DECnet
over TCP/IP. In this case, it is possible that CDI may
retrieve a valid IP address for a remote system that is
unreachable by the DECnet protocol.

For these reasons, when CDI determines that both
the Domain Name System and the DECdns naming
service (or a local file) are specified in the search path,
it does not stop processing the search path until both
the IP address and the OSI address have been
obtained, or until the end of the list has been reached.
In this way, if the desired remote system is not running
DECnet over TCP/IP, an attempt to connect will be
made through the DECnet protocol, using a connec-
tionless network service (CLNS) OSI address.

Local File Support

Early versions of the DECnet networking product
offered only a local file for node-to-address informa-
tion. The first release of DECnet/OSI replaced the

local file with the DECdns naming service. Unfor-
tunately, administrators of small- and medium-sized
networks found that the benefits of DECdns (scaling
and centralized management) were outweighed by its
additional complexity.

A subsequent version of DECnet/OSI introduced
the Local Naming Option. This allowed approxi-
mately 150 nodes to be stored in a local file, but many
customers found this number to be too small.

CDI supports a very large local file: the supported
limit is 100,000 nodes, but there is no fixed internal
limit. In addition, through the use of the search
path, customers can configure the local file either as
a backup to a distributed service, or as a way to provide
greater performance. Note that both of these qualities
are also provided in a more automated way by theCDI
cache (see the CDI Library Cache section for more
information).

Security Considerations

CDI relies upon the security provided by the underlying
directory services (or in the case of the local file, the file
system). Security of its remote management features
depends on the network management security system.

CDI Libraries: Basic Design

CDI is implemented as shared libraries on both the
Digital UNIX and the OpenVMS operating systems.
At the highest level, the design is identical on both sys-
tems, as shown in Figure 1. Name-to-address transla-
tion requests from the session control layer are passed
through a single entry point in each CDI library.

NETWORK
MANAGEMENT

DECNET/OSI
APPLICATION

DECNET/OSI
APPLICATION

SESSION CONTROL LAYER

COMMON DIRECTORY
INTERFACE LIBRARY

| ——

LOCAL FILE gegTAI\Elm NAME DECDNS FUTURE
INTERFACE INTERFACE INTERFACE INTERFACE...

T

._________7[7_____]%__ ______ J

SYSTEM
SERVER

DOMAIN NAME

DECDNS
SERVER

Figure 1
Block Diagram of the CDI Library

Digital Technical Journal Vol.8 No.1 1996

61

62

Depending upon the search path (described below),
the CDI libraries translate and forward the request to
one or more directory services (or they look up the
information in a local file).

The CDI implementation was considerably more
complex on the OpenVMS operating system than on
the Digital UNIX operating system due to the dif-
fering design of DECnet/OSI on each system. On
the Digital UNIX operating system, the DECnet,/OSI
session control layer consists of a shared library that
is linked with each network application. Name
resolution requests are processed synchronously. On
the OpenVMS operating system, session control is a
component of the NET$ACP process. Since all name
resolution requests are channeled through this single
process, operations must be asynchronous (requests
must block concurrent operations). In addition, since
multiple requests may be simultaneously outstanding,
the library is multithreaded. Asynchronous, multi-
threaded operations on the OpenVMS operating
system are implemented using the asynchronous sys-
tem trap (AST) mechanism. For these reasons, the
CDI implementation on OpenVMS was much larger
and more complex.

CDI Search Path

Another goal was to permit flexibility in determining
a configuration of directory services. The CDI design

achieves this goal in two ways. First, it allows admin-
istrators to select their service(s) of choice and to use
them in any order. The search path is normally created
during network configuration and can be subse-
quently managed cither locally or remotely. Second, it
gives network users the ability to use short, abbrevi-
ated names instead of potentially cumbersome full
names. For example, they can use “system1” instead of
“system1.sales.hq.xyz.com.”

A single mechanism in the CDI library—the CDI
search path—provides these two capabilities. The
secarch path consists of a series of directory
service/name template pairs, as shown in Figure 2a.
When the CDI library is given a name to process, it
scans the search path, replacing the “*” in the name
template with the supplied name. For example, if the
library was searching for the name frodo, it would use
the directory services identified from the names gener-
ated shown in Figure 2b.

During network configuration, a default search
path is automatically configured based upon the local
node name and the administrator-specified directory
services. This search path behavior is similar to a
number of existing TCP/IP host name/address
lookup implementations.

CDI Library Cache
Occasionally, name service lookups can take a long
time to complete (for example, if requests are travers-

Digital Technical Journal Vol.8 No.1 1996

DECdns *

DECdns XYZ:.hg.sales.*

DECdns XYZ:.DNA_Node_synonym.*
Domain *

Domain * sales.hq.xyz.com

(a) Directory Service/Name Template Pairs

frodo (DECdns)
XYZ:.hg.sales.frodo (DECdns)
XYZ:.DNA_Node_synonym.frodo (DECdns)

frodo (Domain)
frodo.sales.hg.xyz.com (Domain)

(b) Address Lookup for Name frodo

Figure 2
Using the CDI Search Path

ing a slow network link, a lookup could take several
seconds). To improve performance, the CDI library
incorporates a single cache that accumulates node
information from all the directory services. Usually,
the cache is consulted before sending a request to
a remote service. However, if session control deter-
mines that cached information is stale—for example,
if connection to a node at a cached address reaches
a node with a different name—it will reissue the call,
requesting that the cache be bypassed.

Each entry in the cache has a creation time stored
with it. The cache itself has a “time-to-live” value that
can be modified by the administrator. If a cache
lookup finds an entry whose lifetime (time since it was
created) is greater than the time-to-live value, the
cache entry is purged.

To prevent a period of low performance immedi-
ately after system start-up, the cache is preserved
across system reboots by periodically checkpointing
it to a disk file. The checkpoint interval is adjustable
by the administrator.

CDI Registration Tool: Basic Design

The CDI registration tool provides functions to create,
modify, rename, display, and delete node name and
address information in any of the supported directory
services. It runs on the major DECnet/OSI platforms,
the OpenVMS and the Digital UNIX operating systems.

The basic requirements for the CDI registration
tool were the same as those for the CDI library. These
three requirements were the need to:

= Support different directory services for storing
node information

= Access cach directory service using the appropriate
application programming interfaces (APIs)

= Store data in each directory service using the
appropriate data types

In addition, the following requirements were spe-
cific to the CDI registration tool:

= Both a forms and console user interface had to
be provided. These had to work identically on all
DECnet/OSI operating system platforms.

= Functions to transfer node information between
the various directory services had to be provided.

= Other applications such as the DECnet/OSI
network control language (NCL) utility and other
namespace management tools had to be able to
access node name management functions.

The directory services supported by the CDI regis-
tration tool are slightly different from those supported
by the CDI library. The CDI registration tool supports
the DECdns, the local file, and the DECnet Phase IV
database services.

The DECnet Phase IV database is supported by the
CDI registration tool to allow administrators to use
old Phase IV node information when populating
the node names and addresses for DECnet/OSI. The
Phase IV database is not supported for node name-to-
address lookup by the CDI library.

Due to its lack of a remote update capability, the
Domain Name System is not supported by the CDI
registration tool. Node name-to-address information
in the Domain Name System is managed using its
native tools. Dynamic updating of the Domain Name
System servers is currently under study by the Internet
Engineering Task Force (IETF) Domain Name
System Working Group.

Application Design

The design of the CDI registration tool uses a client-
based, multilayer approach. It is layered on top of a
specialized API, called the Common Directory
Registration (CDR) API. The CDR API differs from
the API provided by the CDI library in that it presents
a full set of management operations, rather than just
the lookup operations required by DECnet,/OSI.

In this design, the CDI registration tool provides
forms and console user interfaces for node informa-
tion management. It also provides functions beyond
the basic ones provided by the CDR API, such as
exporting from and importing to a directory service.
The function of the CDR APl is to perform all under-
lying node name management operations in a stan-
dardized manner. This layered approach was adopted
to make node name management functions available
to applications other than the CDI registration tool.

The CDR API defines a node definition object. This
contains all the information that is exchanged between
the CDR API and the application and is a canonical,

directory-service-independent data representation of
all information needed by the CDR API to manage
node names and addresses.

To provide an extensible mechanism for adding new
directory services, the CDR API is layered on top of
a set of directory service wrapper routines, one per
supported directory service. Access to these wrapper
routines is provided by a set of entry point tables that
can be extended to support new directory services.
The CDR API is responsible for accepting application
requests and dispatching them to the correct directory
service by means of the appropriate wrapper routine.
The CDR API wrapper routines are described later in
this section.

Figure 3 shows the design of the CDI registration
tool and the CDR APL

CDI Registration Tool User Interface

The forms and the console user interfaces had to
present exactly the same characteristics on both the
OpenVMS and the Digital UNIX operating systems.
Because no high-level software packages at the time
could provide this level of user interface portability, we
developed them for this application.

The console user interface parses commands and
dispatches them to the appropriate user request pro-
cessing routine, using a portable command parser.

The forms user interface obtains input from task-
specific forms and dispatches the function or functions
associated with the form to the appropriate user
request processing routine. The forms processor
was written specifically for this application because
no existing libraries could provide the required level
of portability.

CDI Registration Tool User Request Processing
Each user request maps into a specific request process-
ing function as follows:

= Register. Create a new node name entry in the
directory service.

= Add address. Add address information to a node
name entry.

= Remove address. Remove address information
from a node name entry.

= Modify address. Replace the address information in
anode name entry.

= Update address. Replace the address information in
one or more node name entries, using information
obtained from the nodes themselves (if possible).

= Modify synonym. Replace the node synonym in a
node name entry.

= Rename. Change the name of a node name entry.

= Show. Display the information contained in one or
more node name entries.

Digital Technical Journal Vol.8 No.1 1996

63

64

CDI REGISTRATION TOOL H

FORMS USER INTERFACE
FORMS DEFINITIONS

1
CONSOLE USER INTERFACE
COMMAND TABLES

REQUEST DISPATCHER

REGISTER
PROCESSING

SHOW
PROCESSING

DELETE
PROCESSING

CDR API CALLS CDR API CALLS

CDR API CALLS CDR API CALLS

CDRAPI | | oo dmm e - :
[]
111 1
ENTRY POINT ENTRY POINT ENTRY POINT ENTRY POINT
SHOW REGISTER DELETE
PROCESSING PROCESSING PROCESSING
WRAPPER CALLS WRAPPER CALLS WRAPPER CALLS WRAPPER CALLS

DIRECTORY SERVICE WRAPPER ROUTINE DISPATCHER

DECDNS
WRAPPER ROUTINES

LOCAL FILE
WRAPPER ROUTINES

PHASE IV DATABASE
WRAPPER ROUTINES

T
]

Y
1

DECDNS

LOCAL FILE

DECNET PHASE
IV DATABASE

Figure 3

Block Diagram of the CDI Registration Tool and the CDR API

= Deregister. Delete one or more node name entries
by name, synonym, or address.

= Repair. Fix any detected problems or inconsisten-
cies in the directory service for one or more node
name entries.

= Export. Copy the information for one or more node
name entries from the directory service into a text file
that can be copied between systems, edited if neces-
sary, and imported into any other directory service.

= Import. Use an export text file to register, modify, or
deregister node name entries in a directory service.

The request processing routines perform any required
validation of the user request and translate those
requests to calls into the CDR API. Each request may
map into one or more CDR API calls, depending on the
complexity of the request. For example, register and
deregister requests both map into single CDR API calls,
and export and import requests map into several calls.

Most requests are straightforward in their pro-
cessing requirements. For example, a register request
simply calls the CDR API register entry point. The
CDR API takes care of any complications in processing
the request.

Digital Technical Journal Vol.8 No.1 1996

Some requests can operate over multiple node name
entries. For example, the show request enumerates
the node name entries, retrieves the information con-
tained in each node name entry, and displays the infor-
mation to the user.

An export request is similar to a show request,
except that the resulting information is written to a
text file in a standard format instead of being displayed
to the user. The import request, however, is more
complicated. This request must enumerate and show
the contents of the directory service, and then com-
pare the results with the contents of the text file. Based
on the specific form of the import request, it may then
register new node name entries, update the informa-
tion in existing node name entries, or deregister listed
node name entries.

The export and import requests make use of a text
file to provide maximum flexibility. The use of a text
file allows the information to be copied between dis-
similar platforms such as the OpenVMS and the
Digital UNIX operating systems, and allows the infor-
mation to be manipulated using standard tools such as
batch files, grep, awk, and text editors. This is particu-
larly useful when applying a change to all node entries.

For example, the contents of a directory service could
be exported to a text file, the addresses in the text file
changed to reflect a new routing area, and the results
imported back into the directory to update the exist-
ing information.

The repair function performs a show operation on
all specified node names to determine if any consis-
tency errors are found. This type of error can occur in
directory services that keep multiple physical records
for each logical node name entry. DECdns is one
example of this kind of directory service, because it
uses soft links to map node synonyms and addresses
back to their respective node name entries. If this type
of error is found, the repair function re-registers the
node synonym and address information to correct
these inconsistencies.

The most complicated request is the update request.
This performs a show request for the specified node
names and attempts to use the current addressing
information contained in the node name entry to make
a network management connection to the node itself.
For each node name entry, it steps through the com-
plete set of registered addresses and tries each address
in turn, using both a DECnet Phase IV connect and a
DECnet/OSI connect. If a connect attempt is success-
ful, it uses the appropriate network management
requests to read the true addressing data. It then com-
pares this addressing data to what it found in the direc-
tory service and makes any necessary corrections to the
node name entry. The update operation does not oper-
ate on IP addresses due to the lack of dynamic update
capabilities in the Domain Name System servers.

Before making the CDR API calls, all request process-
ing routines convert the user request data into a node
definition object, which is discussed in the next section.

CDR API Node Definition Object

The node definition object is the only input data pro-
vided to any of the CDR API entry points. It stores the
necessary data for any directory service operation,
using a canonical representation. The node definition
object contains the following:

1. Type of directory service to access

2. Name of the node entry to access (depending on the
operation being performed, it may allow a fully qual-
ified name, a synonym, an address, or wildcards)

3. Synonym name (for DECnet Phase IV access)

4. DECnet Phase IV network service access point
(NSAP) prefix (for use when a Phase IV address is
specified)

5. Address information

6. Directory names used for reverse mapping of
synonym names and addresses back to the fully
qualified node name

The CDR API controls all access to elements within the
node definition object, which further isolates the call-
ing application from the lower-level data structures.

CDR API Entry Points

Each CDR API entry point provides one logical func-
tion to the calling application. Each user request can
translate into one or more CDR API functions. The
functions are

= Register. Create a new node name entry in the
directory service.

= Add address. Add address information to a node
name entry.

= Remove address. Remove address information
from a node name entry.

= Modify address. Replace the address information in
anode name entry.

= Modify synonym. Replace the node synonym in a
node name entry.

= Rename. Change the name of a node name entry.

= Show. Return the information contained in one or
more node name entries.

= Deregister. Delete one or more node name entries
by name, synonym, or address.

= Enumerate. Return a series of node name entries,
one at a time, based on a wildcard specification.

All node information passed to and from the CDR
API is in the form of a node definition object, as
described previously. The CDR API functions validate
the canonical information contained in the node defi-
nition object and dispatch a directory-service-specific
function to handle the request.

CDR API Directory Service Wrapper Routines

Each directory service supported by the CDR API has
an associated set of directory service management
wrapper routines. These routines provide entry points
that are functionally identical to those provided by
the CDR APIL. The CDR API does the initial input
argument validation, and the directory service wrap-
per routines perform the data manipulation in the
underlying directory service.

The CDR API dispatches the appropriate directory
service wrapper routine using a set of entry point tables.
This provides a means to easily extend the CDR API to
include additional directory services in future versions.

CDR API Wrapper Routines for DECdns

In the DECdns name service, each node name entry
contains all the information required to translate a
node name to a synonym or a set of node addresses.
However, no search mechanism exists to allow a

Digital Technical Journal Vol.8 No.1 1996

65

66

lookup of the node name entry based on the synonym
or on an address. For this reason, all functions that cre-
ate, modify, and delete node name entries (register,
modify addresses, modify synonym, rename, and
deregister) must also create, modify, and delete reverse
mapping entries.

Reverse mapping entries are based on a node’s syn-
onym and addresses; they contain pointers to the true
node name entry. These entries are used by the CDI
library lookup functions and by the CDR API display
functions (show and enumerate) to access the node
name entry when given a synonym or address.

The use of reverse mapping entries requires that
multiple directory service entries be created for each
registered node. These must be synchronized by prop-
erly ordering the creation and deletion of the various
entries when registering, modifying, or deregistering
anode name. For example, when registering, the node
name entry is created and its synonym and address val-
ues are set before the reverse mapping entries are cre-
ated and set. Similarly, when deregistering, the reverse
mapping entries are deleted before the node name
entry is deleted. This prevents orphaned reverse map-
ping entries from being created, because they can
always be found by starting from the information con-
tained in the node name entry.

The repair function is provided in case a register or
deregister operation fails before completion. The
repair function corrects the reverse mapping entries by
re-registering all node name entries that show errors.
The CDI registration tool (not the CDR API) provides
this higher-level function.

CDR API Wrapper Routines for the Local Node File
Under the OpenVMS operating system, the local node
name file is implemented using a record management
system (RMS)-indexed file. Under the Digital UNIX
operating system, a DBM-indexed file is used. On
both systems, the file content is essentially the same.

The local node name file contains a series of logical
records, one for each node name entry in the directory
service. Together, these records define each node’s
fully qualified name, its synonym, and its addresses.
This logical record may be looked up using the full
name, the synonym, or any of the node’s addresses.

Each logical record consists of (1) a node definition
physical record, which contains all information related
to the node, and (2) zero or more reverse mapping
physical records, which contain alternate keys for look-
ing up the node definition. Each reverse mapping
record contains only the node name key in its record
data. All the data used to describe the node is con-
tained in the node definition record.

Because multiple records compose a node name
entry, operations that fail to complete can result in

Digital Technical Journal Vol.8 No.1 1996

inconsistencies in the local node file. Fortunately,
these inconsistencies can be resolved using the same
synchronization algorithms as used forDECdns.

CDR API Wrapper Routines for the DECnet Phase IV
Node Database

Access to the DECnet Phase IV node database is pro-
vided primarily to help users migrate their Phase IV
node name data to DECnet/OSI. No access is pro-
vided to this database by the CDI library for
DECnet/OSI applications. Because this database con-
sists of a simple file, with one record per node name
entry, none of the multiple record synchronization
problems exist.

Conclusion

The Common Directory Interface, consisting of
the CDI registration tool set and the CDI library, pro-
vides flexible and extensible directory service access
for DECnet/OSI. Initial customer acceptance of these
new capabilities has been high and future enhance-
ments are being studied.

Acknowledgments

The design and development of the Common
Directory Interface involved the contributions of the
entire directory services and DECnet engineering
teams. We extend our thanks to all the team members,
as well as to product and engineering management for
supporting this project.

References

1. S. Martin, J. McCann, and D. Oran, “Development of
the VAX Distributed Name Service,” Digital Technical
Journal,vol. 1,n0.9 (June 1989): 9-15.

2. P. Mockapetris, “Domain Names—Implementation and
Specification,” RFC 1035, Internet Document (Novem-
ber 1987).

3. CCITT Sixth Plenary Assembly, “The Directory—
Overview of Concepts, Models and Services,” Recom-
mendation X.500 and ISO 9594-1, Data
Communications Networks Directory: Recommen-
dations X.500 to X.521, CCITT Blue Book, vol. xiii.8
(Geneva: International Telecommunications Union,
1989).

4. R. Rosenbaum, “Using the Domain Name System to
Store Arbitrary String Attributes,” RFC 1464, Internet
Document (May 1993).

5. B. Manning and R. Colella, “The Domain Name System
NSAP Resource Records,” RFC 1706, Internet Docu-
ment (October 1994).

Biographies

Richard L. Rosenbaum

Rich Rosenbaum is a software engineering consultant in
the Internet Software Business Unit, where he is focusing
on the application of indexing and collaboration technolo-
gies to the World Wide Web. In his 17 years with Digital,
he has worked on networking products operating on
Digital’s 16-, 32-, 36-, and 64-bit platforms. He is the
co-author of several patents on network software. Rich
obtained a B.S. from the State University of New York

at Stony Brook.

Stanley I. Goldfarb

Stan Goldfarb is a principal software engineer with the
Internet Software Business Unit. Since joining Digital

in 1976, he has contributed to several network and net-
work management projects, including DECnet/RSX,
DECnet-PRO, DECnet-DOS, DECmcc, DECnet/OSI,
and PATHWORKS, and he has co-authored several patents
on network management software. He is currently work-
ing on a Workgroup Web Forum application to provide
electronic mail subscription and distribution services.
Stan holds B.S. and M.S. degrees in computer science
from Worcester Polytechnic Institute and anM.S. in
management from Lesley College.

Digital Technical Journal

Vol. 8 No. 1

1996

67

