
46 Digital Technical Journal Vol. 8 No. 1 1996

Digital has developed the Integrated Directory
Services (IDS) technology to provide a mechanism for
integrating multiple directory services into a single sys-
tem. In this paper, we examine the development of the
IDS infrastructure. We begin by discussing the prob-
lems faced by network directory applications. Next we
describe our design goals, the IDS infrastructure, and
our initial implementation on the PATHWORKS
product. We conclude with a brief discussion of plans
for future development.

Directory Support in Multiple Environments

Although directory services are a powerful mechanism
for distributing and accessing certain kinds of informa-
tion, relatively few applications choose to use them.
Digital’s PATHWORKS application was in need of a
directory for printers and file shares. PATHWORKS is
a network operating system (NOS) integration product
that gives users access to both Microsoft’s LAN
Manager and Novell’s NetWare file and print shares. As
we studied how to incorporate directory support into
PATHWORKS, we came to a better understanding of
the problems faced by directory applications in general.

Networks are growing rapidly, as are the amount
and kind of information that can be accessed through
the network. We were certain that future network
application products would have an even greater need
for a directory, and therefore a general solution was
needed. We then set out to design a system that would
remove the barriers to directory service application
usage and deployment. We resolved the tension
between the product deadline and the time required
to implement the general solution by designing a
complete solution and implementing what was neces-
sary to prove the design and to meet the immediate
needs of the PATHWORKS product.

Existing Directory Services
There are a number of general-purpose directory ser-
vices. Some of the more familiar include X.500,
Novell’s NetWare Directory Service (NDS), the Cell
Directory Service (CDS), and Banyan Systems’

Integrating Multiple
Directory Services

Margaret Olson
Laura E. Holly
Colin Strutt

The Integrated Directory Services (IDS) infra-
structure implements a directory-service-
independent interface. The IDS infrastructure
is used by applications that store and retrieve
information about resources in environments
with either multiple directory services or one
of several directory services. The IDS interface
isolates users and application writers from
the unique requirements of different directory
services by providing a view of a single, logi-
cal directory service through a simple federa-
tion mechanism. To retrieve resources from
the logical directory, IDS determines its phys-
ical location and converts the resource from
a directory-specific to a canonical format.
Extensible schema tables represent the canon-
ical format for each resource and allow IDS to
represent resources created using both the IDS
interfaces and the directory-specific interfaces.

Digital Technical Journal Vol. 8 No. 1 1996 47

StreetTalk.1–4 In the past, directory services were in rel-
atively limited use because most directory services
were tied to either an operating system or a transport
or both. In addition, directory services were con-
nected to a multitude of application programming
interfaces (APIs) that were incompatible and difficult
to use. More recently, directory services have been tied
to network operating systems or applications, rather
than to host operating systems or transports. If any-
thing, the number of “standard” APIs has grown.

In large networks, this complexity has resulted in
the proliferation of directories, often containing over-
lapping information. This makes the network man-
ager’s job difficult, which in turn creates resistance to
directory applications. At the same time, network and
NOS technology has developed to a point where an
ever-increasing amount of information is being shared
on different machines. To give a simple example,
almost every server at Digital’s Littleton site has a con-
nection to the high-volume printer in the copy center,
with a different name on every server. A directory
would simplify users’ access to this single physical
resource by presenting a single name for the printer,
if only the application writer could figure out which
directory service to use and how to use it.

Other Approaches
As discussed later in the Design of the IDS Framework
and Service Providers section, IDS defines both an API
and a service provider interface. Support for any direc-
tory service can be provided by writing a service
provider module. Microsoft’s OLE Directory Services
(OLE DS) takes a similar approach to IDS, with a more
limited initial implementation.5 Although the current
IDS implementation runs under Microsoft Windows, it
was designed to port to other systems. OLE DS depends
on features of the Windows operating systems.

The X/Open Federated Naming (XFN) specification
was not complete at the time we were designing IDS,
and it did not include either a service provider interface
or a reference implementation.6 We did examine the
XFN draft and designed the IDS interface to be com-
patible with XFN, with a view toward supporting the
XFN API in the future. Supporting the XFN interfaces
on top of IDS would be a relatively straightforward
task, and we have considered doing this.

The PATHWORKS Application
In the NOS environment, each NOS has its own
directory or pseudo-directory. NetWare version 3
implements the Bindery; NetWare 4 implements
NDS.7 The various implementations of Microsoft’s
LAN Manager protocols provide a virtual directory
based on information maintained by its domain con-
trollers. In a multiple NOS environment, the user is

presented with multiple information sources from the
multiple directories. Even worse, the user may be
faced with multiple information sources even in a sin-
gle NOS environment, since there may be multiple
NetWare Binderies or LAN Manager domains.

Multiple NOS environments do not, in and of them-
selves, cause complexity and confusion. Problems arise
when people within a single environment want to share
resources across multiple environments. For example,
consider a common local area network (LAN) configu-
ration where NetWare is installed on the clients and
servers for one department and Microsoft’s LAN
Manager (contained within products such as
Microsoft’s Windows for Workgroups, Windows 95,
and Windows NT operating systems, or the LAN
Server product from International Business Machines
Corporation) is installed on the clients and servers for
another department. If each department’s resources,
users, and administration personnel are kept distinct,
there is no problem. However, any desire to allow
users to share resources between departments, or to
have common administration over the departments
introduces administrative and user problems. If a
printer is to be shared by the two departments, it must
be administered twice: once in the NetWare environ-
ment and once in the LAN Manager environment.
Users in the two departments use different names for
the same printer. Later NOS implementations, such as
Digital’s PATHWORKS version 5.0 or the networking
software built into Microsoft’s Windows 95 that pro-
vides support for multiple NOS protocols, do nothing
to manage the multiplicity of names for the same net-
work resource.

As we were contemplating the set of capabilities
we needed to design for the next generation of
PATHWORKS client products, we realized that solv-
ing the connectivity problem implied in a multiple
NOS environment was not enough. User access and
administrator control of NOS resources needed to be
considerably simpler.

As we looked at the problems in larger networks,
we saw the need for the ability to provide more sophis-
ticated means to locate NOS resources. Typically,
NOS client software provides the means to browse
the network to locate a resource. However, browsing
requires the user to know the location of the resource,
specifically the name of the server, and to be able to
choose the resource on the server by recognizing
something about the resource name or a resource
description provided by the administrator. What was
needed was a design that allows a user to search, as
well as browse, for a resource based on various attrib-
utes describing the resource.

Finally, existing NOS environments have a fairly lim-
ited view of the set of resources that can be referenced.

provides the directory service. In a few cases, a cus-
tomer might wish or even need to store information
about different resources in different directory services.

Ability to Access Existing Data
A great deal of information currently exists in
application-specific directory services and in NOS-
specific directory services. A relatively large number
of applications also use the native interfaces to store
information in the NOS directories. Allowing users
to access this information directly through IDS was
critical. We expressly wanted to avoid the need to
duplicate directory information in separate, incompat-
ible systems.

Ability to Join Disparate Namespaces into a Single,
Logical Namespace
Many directory services are aimed at a specific applica-
tion or a set of applications. For example, current
X.500 deployments contain mostly people informa-
tion such as names, phone numbers, and electronic
mail addresses. (Note: X.500 is an extremely flexible
directory service that can be used to store almost any
kind of information, but for historical reasons most
deployments contain people information.) NOS direc-
tories contain information about NOS resources such
as printers. Consequently, many user environments
have multiple directory services, each of which con-
tains critical business information. To access this exist-
ing data and present it to the user in a meaningful way,
these multiple directory namespaces must be joined
into a single, logical namespace.

Removal of Barriers to Successful Deployment of
a WAN Directory
Hierarchical directory services generally require that
the naming hierarchy be designed before the directory
is deployed. Since the hierarchy consists of names,
and names are sensitive and political entities, this can
be an extremely difficult task. Organizations also
change over time, further complicating the problem of
designing a name hierarchy.8

Organizations that successfully deploy directory ser-
vices do so from the bottom up. The NOS directories
are deployed precisely because they avoid the prob-
lems inherent in a name hierarchy. An administrator
can set up a Novell 3.x Bindery for a local organization
without worrying about how the name of one group
relates to the names of all the other groups. The
downside to the NOS directories is that they have
a limited ability to scale beyond a LAN. With IDS, we
wanted to provide a framework that would grow with
the user’s environment. A user could start with a local
directory but incorporate that directory into an enter-
prise or global directory when the time was appropri-
ate, without affecting the end users or the applications.

48 Digital Technical Journal Vol. 8 No. 1 1996

Both NetWare and various LAN Manager implemen-
tations provide support for printers and file shares.
We wanted to be able to extend the types of resources
that could be referenced and managed from the new
directory capability that we were designing.

Thus we embarked on a design for the facility we
initially called IDS, for Integrated Directory Services.
The PATHWORKS version 6.0 implementation was
eventually called Directory Assistant. We refer to this
technology as IDS throughout this paper.

Design Goals

As we looked at the requirements of the PATHWORKS
product, we found that many of those requirements
could technically be met with any directory service that
was integrated into the PATHWORKS applications and
tool sets. PATHWORKS required the ability to

■ Give a single name to resources that can be accessed
by means of multiple servers or protocols

■ Insulate end users from changes in the way
resources are allocated among the servers

■ Manage resources in an NOS-independent manner

We could not simply pick a directory service and
integrate it into PATHWORKS, because we could not
require that all customers deploy a particular directory
service at their site. The PATHWORKS product is
both NOS- and transport-independent; introducing
such a dependence was unacceptable. We quickly real-
ized that these were the requirements that kept many
other applications from using directory services.

Our assumption was that many network applica-
tions would use directory services if they could, but
that few of them could assume or require a particular
directory service. Working from that assumption, we
selected the following design requirements for IDS:

■ Directory service independence
■ Ability to access existing data
■ Ability to join disparate namespaces into a single,

logical namespace
■ Removal of barriers to successful deployment of

a wide area network (WAN) directory
■ Ability to hide directory name syntax
■ Support of search
■ Support of application-specific directory entries

Directory Service Independence
Customers must be able to choose the directory service
in which they store resource information. Some cus-
tomers have a preferred directory service, which they
want to continue to use. Other customers, who are not
using a particular directory service, prefer that Digital

Digital Technical Journal Vol. 8 No. 1 1996 49

Ability to Hide Directory Name Syntax
The syntax of the names in hierarchical directory ser-
vices varies not only from one directory service to
another, but in some cases from one implementation
of a single directory service to another. The syntax for
Domain Name System names is ordered the same as a
postal mail address, that is, from the most-specific
component.9,10 For example, a machine at Digital
might be bigAlpha.digital.com. The X.500 name
order is usually (depending on the implementation)
the reverse. The corresponding X.500 name might
be: c5us;o5Digital;cn5bigAlpha. Particularly in the
X.500 case, different systems and applications also
accept different separator characters.

Together, the IDS designers have much experience
with a number of directory services and their name
syntaxes. Users and applications developers alike have
been quick to point out the problems with directory
names. These names are cumbersome, confusing, or
just plain inconvenient to type. The separator charac-
ters within a directory name may have special mean-
ings on some operating systems.

Because of these limitations, we decided that a name
syntax specific to IDS would detract from the value of
the solution. An application using IDS may choose to
present its own syntax, one that is suitable to its partic-
ular environment and preferences. The API takes the
object name and the context, as described in the
Contexts section. The service provider module uses
these to construct the name in the native name syntax.

Support of Search
Users need to locate resources in a number of ways.
The most familiar method is to locate resources
by knowing their name; this is often referred to as
a white pages lookup, named after the printed U.S.
telephone directory of alphabetically ordered names.
Searching for resources based upon information about
the resources is referred to as a yellow pages lookup,
named after the printed U.S. telephone directory
organized by business category. To support yellow
pages lookup, resources must be retrievable from the
directory service based on their attributes. For a
printer, this might include the type of printer, the loca-
tion of the printer, whether it supports color or not,
who is responsible for maintaining the printer, and
other information. IDS needed to support both yellow
pages and white pages lookups.

Support of Application-specific Directory Entries
We saw a need to support two kinds of extensibility:
the ability for an application to create new kinds of
directory entries, and the ability for a customer to add
attributes or other descriptive information to the
directory entries created by PATHWORKS or other

applications. By providing applications with the capa-
bility to create new kinds of directory entries, the IDS
designers allowed IDS to be used by any application,
regardless of its requirements. By allowing the addi-
tion of attributes to existing directory entries, we
allowed customers to easily add information that is
specific to their organization to application objects.
For example, a customer might add a specific code,
such as an asset identification tag, to all printer direc-
tory entries.

Design of the IDS Framework and Service
Providers

IDS is an object-based system that consists of a frame-
work and a set of service providers. For clarity, we fur-
ther divided the framework into an API and a service
provider interface (SPI). The API consists of a subset
of the framework’s objects and their public virtual
methods. The SPI is a generalized, directory-service-
independent interface (described in detail later in this
section). The SPI objects define the abstract interface
to the directory service. We use the term service
provider to refer to any directory service that provides
IDS storage. The service providers interact with the
framework through the SPI.

Framework
The framework performs three major functions:

■ It specifies the IDS directory-independent
operations.

■ It dispatches operations to directory-specific
modules for execution.

■ It verifies that all IDS objects and operations do
not violate the IDS schema.

Figure 1 illustrates the structure of IDS. When an
application makes an API call, the framework examines
the name information and calls the appropriate service
provider. The service provider then makes the call to
the appropriate native directory service client. When
the directory client returns the results, the service
provider converts the results into the IDS canonical
form. The design supports junctions from one direc-
tory service to another, in that the result returned
to the framework by the service provider may be only
a reference to an object in another directory service.

The abstract interface to the directory service
ensures that IDS provides applications with a consistent
level of functionality without regard to which directory
service a customer has in his or her environment.

Because the words “object” and “object class” are
overloaded and overused in the industry, we define the
words “resource” and “resource class” to denote
objects represented in IDS. A resource is a directory

50 Digital Technical Journal Vol. 8 No. 1 1996

entry; it is a directory service object that represents
some network object. A resource class is the definition
of that type of directory entry. For example, the direc-
tory entry that describes a specific printer is an IDS
resource, and the IDS class that describes every printer
entry is a resource class.

The framework provides extensibility by defining
C++ object classes that allow for the creation and
manipulation of resources, attributes, and attribute
values in a type-independent manner. The type inde-
pendence allows both applications and the framework
itself to manipulate IDS attributes and attribute values
without knowing their types. As long as the new types
are built on top of existing IDS system types, applica-
tion writers may define new IDS types without modi-
fying the service providers.

The framework dispatches directory operations to
the appropriate service provider and maintains overall
system state and integrity. It maintains a list of the
service providers that are currently available and
shows the errors encountered in any failed loads.
This allows the system to continue to operate, albeit
in a degraded state, even though one of the service
providers may be malfunctioning.

Before we discuss the design of the SPI, we describe
the framework’s objects.

IDS Entry The fundamental IDS object is the canoni-
cal representation of a directory entry, the IDS entry.

The IDS entry is an abstract object. To create a
resource class, applications define a resource type and
derive it from the IDS entry. IDS entry objects are cre-
ated and manipulated through the API and translated
into the appropriate native directory format by the ser-
vice providers. Derivatives of the IDS entry may define
additional methods, but they may not override the
IDS entry methods. The IDS entry methods are part
of the framework.

The IDS entry methods fall into one of two
categories: those which manipulate the attributes and
values contained in the IDS entry in a type-indepen-
dent manner, and those which perform operations on
the directory. Each IDS entry, each attribute, and each
attribute value contains a type. For convenience, deriv-
atives of the IDS entry may define additional methods
that manipulate certain attributes or values directly.
For example, a derivation that defines a printer might
define a method to set the description attribute. The
implementation of this method would call the general
IDS entry attribute and value manipulation method
to set the value of the appropriate attribute.

As shown in Figure 2, the IDS entry contains identi-
fying information and the attributes and attribute
values that describe the resource. The context identi-
fies the service provider that performs directory opera-
tions on this entry and the location within that
directory service in which this entry is stored. The
resource type defines the kind of resource that this
entry represents. The resource name is the name by
which applications and users refer to the entry.

The attributes of the entry are contained in a set.
Each attribute in turn contains the value or list of val-
ues associated with the attribute.

Contexts The context is an object that uniquely iden-
tifies a particular location in a particular namespace.
The IDS context is very similar in concept to the XFN
context.6 All contexts contain the type identifier for
the directory service and an internal name. The type
identifier is used by the IDS framework to dispatch
operations to the appropriate service provider. The
internal name is the location within the directory ser-
vice described by this context. The internal name is
represented in the native syntax of the underlying
directory service. The service provider is responsible
for setting and maintaining this internal name. (See
Figure 2.)

Attributes and Attribute Values The type of an
attribute defines the data type of its value or values.
The attribute value object is a canonical representation
of an actual attribute value. The attribute value object
defines a set of methods for accessing and manipulat-
ing values. For each data type supported in IDS, there
is a corresponding attribute value derivation in the

APPLICATION PROGRAMMING INTERFACE

SERVICE PROVIDER INTERFACE

FRAMEWORK

SERVICE

PROVIDER

NATIVE

DIRECTORY

CLIENT

SERVICE

PROVIDER

NATIVE

DIRECTORY

CLIENT

SERVICE

PROVIDER

NATIVE

DIRECTORY

CLIENT

NATIVE

DIRECTORY

SERVER

NATIVE

DIRECTORY

SERVER

NATIVE

DIRECTORY

SERVER

IDS

Figure 1
Structure of the Integrated Directory Services

sequence after the prefix was a UUID. UUIDs are
fixed-length structures generated from time stamps
and Ethernet addresses, and therefore arbitrary infor-
mation such as an OID cannot be encoded in them.
UUIDs are also easier for application writers to gener-
ate because numerous systems ship with tools to
generate them.

Certain directory services, for example X.500, have
external type definitions for the directory entries. It
is possible to define a generic entry and then map
arbitrary values into that entry, but IDS entries would
not be meaningful when viewed with the native direc-
tory management tools. We felt that this was unac-
ceptable, because it would make the management of
IDS entries in the namespace much more difficult.
Some systems use UUIDs to represent the type infor-
mation. We chose to use UUIDs since they are both
easy to generate and can be used in both UUID and
OID class definition systems. The use of OIDs would
require UUIDs to be generated for UUID-based
systems and mappings to be maintained.

Digital Technical Journal Vol. 8 No. 1 1996 51

IDS framework. This allows applications, and the IDS
framework itself, to manipulate attribute values with-
out knowing their types. The service providers, on the
other hand, use the type information to translate from
the IDS data formats to their native data formats.

Types To allow customers and third parties to identify
their own IDS resources, the IDS type mechanism
must uniquely identify objects. The two identifiers we
considered using were universal unique identifiers
(UUIDs) as defined by the Open Software Foundation
Distributed Computing Environment (OSF DCE) and
object identifiers (OIDs) as defined by the open sys-
tems interconnection (OSI) standards.11,12 Some direc-
tory services identify attributes with OIDs, while others
use UUIDs. For applications defining new resources,
we wanted to avoid the necessity to obtain both an
OID and a UUID. It is possible to encode a UUID in
an OID, but the reverse is not true.

We could encode a UUID in an OID by registering
an OID prefix. The prefix would indicate that the

RESOURCE TYPE

RESOURCE NAME

CONTEXT

IDS_PRINTER

SERVICE PROVIDER TYPE: LDAP

LOCATION WITHIN SP: o=dec;ou=lkg

NIST GROUP PRINTER

ATTRIBUTE VALUE DATA TYPE

ATTRIBUTE VALUE

ATTRIBUTE VALUE DATA TYPE

ATTRIBUTE VALUE

ATTRIBUTE VALUE DATA TYPE

ATTRIBUTE VALUE

ATTRIBUTE VALUE LIST

ATTRIBUTE 1

ATTRIBUTE TYPE

ATTRIBUTE 2

ATTRIBUTE N

ATTRIBUTE SET

IDS-ATTR-MAINTAINER

IDS-TYPE-STRING

JANE DOE

Figure 2
IDS Entry

Communities An IDS community is both an adminis-
trative grouping mechanism and a logical location for
IDS resources. When people interact with the IDS sys-
tem, they see a community as the organizing principle.
The administrator controls the boundaries and mem-
bership of an IDS community. Typically, a community
represents either a particular location such as a build-
ing or a functional grouping such as a work group.

Initially, we considered a supercontext to join multi-
ple directories into a single logical directory. This
supercontext would have contained multiple contexts,
one for each type of resource supported by IDS. We
eventually subsumed the supercontext into a commu-
nity and called it a resource context list. An IDS com-
munity is stored as a special object in the directory.
Each community’s resource context list describes the
directories that make up the community. The resource
context list is the federation mechanism by which IDS
determines where resources of each type are stored.
Each entry in the resource context list is a pair of
resource type and context. As users and applications
operate on entries in a community, the IDS framework

(through IDS entry and community methods) inspects
the resource type and the community to determine the
context. Figure 3 illustrates an IDS community.

One of the problems we anticipated was that large
organizations would naturally tend to have many IDS
communities: How would the user identify these? We
considered an additional hierarchy in which commu-
nities would be members of other communities. Our
usability consultants emphasized that users should not
have to browse a hierarchy to access resources. In
response, we developed the concepts of the local and
the home community. The local community is associ-
ated with the machine a user is currently using—it
represents a physical location. The home community
is the one with which the user is associated or belongs.
We envisioned that the home community would be
the same as the local community at the user’s normal
place of work, but there is no requirement inherent in
the design that things be organized this way. For
example, if a user is associated with the community at
her work site and the machine she uses is also located
at that work site, both her local community and

52 Digital Technical Journal Vol. 8 No. 1 1996

Svc Provider Type = F7801DB7-F675-11CD-A8C2-08002B187D1A (ODBC)

External Name = IDS_Group Community

Internal Name = E:\\tuxedo\idsodbc\idsdbdir.mdb

Svc Provider Private = NULL

Svc Provider Type = EFF4B840-EC52-11CD-9E5E-08002BBA95CA (CDS)

External Name = ids_cell.lkg.dec.com

Internal Name = ids_cell.lkg.dec.com

Svc Provider Private = NULL

Svc Provider Type = C723E850-A1A6-10AB-A699-08002B361FC1 (LDAP)

External Name = c=us;o=dec;ou=IDS_Group Community

Internal Name = c=us;o=dec;ou=IDS_Group Community

Svc Provider Private = YUMMY, 386, TCP/IP

COMMUNITY

RESOURCE CONTEXT LIST

RESOURCE CONTEXT

OBJECT TYPE

CONTEXT

COMMUNITY

DEFAULT

CONTEXT

RESOURCE

CONTEXT

CONTEXT

OBJECT

TYPE PRINTERS

FILE SYSTEMS

RESOURCE CONTEXT LIST

KEY:

Figure 3
IDS Community

the former, and in any case the schema methodologies
are unique to each directory service.

From the point of view of the native directory ser-
vice, IDS is the application. To properly convert the
data, the service providers must know what it is. The
service providers use the schema to determine the cor-
rect attribute and value types to use when constructing
the IDS entry of a particular type.

The schema describes resource types, attribute
types, and attribute value data types. Logically, the
schema is a set of tables, one for each service provider,
which maps the native name or type to the IDS name
or type. These tables are read by the IDS schema com-
ponent when IDS is initialized. Because these tables
are external to the system, they can be modified by
users or applications.

There is one limitation on the extension of the
schema: New attribute and resource types can be
defined, but they must be composed from the prede-
fined IDS attribute value types that the service
providers can support. The service providers would
have to be modified to support additional attribute
value data types. This limitation is not as severe as it
at first appears. A rich set of data types is defined in
the existing directory services, and a relatively small set
is in common usage. By defining the IDS data types to
encompass the set of data types defined by existing
directory services, we have reduced this limitation to
a theoretical rather than a practical problem.

As a consequence of the use of schema, applications
must specify the resource type for any IDS operation.
This is a limitation that in principle does not exist in
other directory systems. After some consideration, we
concluded that few useful operations can be performed
on an object whose type is unknown. To perform an
operation on objects of all types, the schema can be
interrogated for the list of all supported IDS object
types, and the operation is then iterated over each type.

The System Object The system object loads and
initializes the service providers. On initialization, the
system object constructs a list of the available service
providers from those defined in a local configuration
file.

The system object constructs and maintains the list
of known communities. The system object obtains this
list using the following mechanisms:

■ Inspect a well-known location (if one exists) to see
if it contains a cache of known communities.

■ For each service provider, call the discover method
to ask the service provider for its list of known
communities.

■ If the system object is initializing for the first time,
prompt the user to create a community.

Digital Technical Journal Vol. 8 No. 1 1996 53

her home community represent this work site. If this
user works at another work site and uses a different
machine, her home community remains the same, but
her local community reflects the community where
the new machine resides. The concepts of local and
home communities do not reduce the number of
communities, but they do provide a direct method by
which users can access the communities that contain
the resources they most frequently use. The local and
home communities are a convenience; users and appli-
cations are in no way restricted to those communities.

Search Support Searching is handled by the search
object. The search object contains a community (or
list of communities), a resource type, and an attribute
filter. The attribute filter supports both equality and
comparison matching of attribute values and allows
callers to construct complex requests by concatenating
comparisons together in a series of Boolean opera-
tions. For example, a caller could construct a filter
that returned all printer objects that (((are located
on Floor2) OR (are located on Floor3)) AND (sup-
port color printing)). Combined with the local and
home community support, filters allow applications
and users to express ideas such as “print this at the
closest printer that supports color, two-sided printing,
and then transmit it to any facsimile machine in my
home community.”

The search object’s default filter returns all objects of
the resource type in the local community. The search
object resolves the community to a context and passes
it to the service provider. The service provider con-
structs a list of matching IDS entry objects to return to
the user. In IDS, the search object supports browsing.

The search object has methods that display a dialog
and construct filters based on user input. When
designing the system, we debated whether it was bet-
ter for the search object to contain both the filter and
the search dialogs or whether the filter construction
belonged in the IDS entry. We chose to keep the
search dialogs separate from the IDS entry. Experience
with implementing resources derived from the IDS
entry has shown this to be an error. Currently it is nec-
essary to derive from two objects, IDS entry and the
search object, to implement a resource that has a
resource-specific search dialog. We will be modifying
the search and IDS entry objects so that the construc-
tion of the filters and the dialog that constructs the
filters are IDS entry methods.

Schema The service providers translate between the
native directory object and the IDS entry. In general,
directory service entries are not self-describing. In
existing directory services, either a schema or the
application is expected to know the directory-specific
format of the data. The latter is more common than

54 Digital Technical Journal Vol. 8 No. 1 1996

Application Programming Interface
As mentioned previously, we divided the framework
into an API and a service provider interface (SPI). The
API consists of the search object methods, the IDS
entry methods, the attribute object and value object
methods, and the system object methods necessary to
access communities.

Service Provider Interface
The SPI specifies the interface between the IDS frame-
work and the native directory services. It defines the
semantics for all operations that may be performed on
IDS information regardless of which directory service
stores the information. The SPI effectively insulates
both the IDS framework and the IDS applications
from the unique syntax and requirements of different
directory services.

A directory-specific module, called a service provider
library, provides a directory-service-specific implemen-
tation of all SPI operations and translates resource infor-
mation back and forth between the IDS entry and
the service-provider-specific format. A service provider
library must be implemented for each directory service
to be supported by IDS. Any directory service or infor-
mation repository system that can provide the IDS SPI
semantics may be an IDS service provider.

SPI Semantics The IDS SPI defines the following
main operations: create, read, search, modify, discover,
and delete. All SPI operations specify the name of the
IDS community upon which to operate. Each IDS
community maintains a list of contexts that specify
in which service provider IDS resources of a particular
type are stored and in what location within the service
provider. The SPI uses this community name to
retrieve the context information that directs the oper-
ation to the correct service provider library. With the
exception of the delete operation, which requires an
explicitly set context (to be sure that an explicitly
located object is selected for deletion), if the caller
does not set the community name, the local commu-
nity is assumed.

The create, delete, modify, and read functions all
operate on a single IDS resource at a time. Each,
therefore, provides an IDS entry object to identify
and/or describe the resource.

The create operation creates a new IDS resource in
the directory. The create operation specifies the type of
IDS resource to be created, the resource’s name, and
the IDS attributes and values associated with the
resource. On a successful create operation, the service
provider constructs a unique directory-specific name for
the new IDS resource and stores this name in the
object’s IDS entry. The service provider subsequently
may use this name to find the object more quickly rather
than constructing it from the name, resource type, and
context information contained in the IDS entry.

Before constructing the resource in the directory,
the operation validates the IDS entry against the
schema to ensure that it does not violate the schema.
For example, attempting to create a resource without
a required attribute value pair violates the schema and
is flagged as an error. Conversely, the delete operation
removes the IDS resource from the directory.

The modify operation updates the attribute and
values associated with the resource in the directory.
The modify operation supports the following update
directives:

■ Add a new attribute and value.
■ Add a new value to an existing attribute.
■ Replace a value of an existing attribute.
■ Delete an attribute and its associated values.
■ Delete a value from an existing attribute.

Each modify directive is verified against the schema
before being applied to the directory.

A read operation retrieves a uniquely specified
IDS resource from the directory, translates it into
IDS entry format, and returns the IDS entry to
the caller. The read function is typically used to com-
pare the directory format of an IDS resource to one
maintained in memory by an application, or to process
IDS resources returned from a search operation one
at a time.

The search function identifies and returns IDS
resources that match the characteristics specified by
the caller. To bound the scope of the search, the caller
specifies the following search characteristics: resource
type, community name or names to be searched, and
a filter containing attributes and associated values or
value ranges.

The discover operation is called by the IDS system
object to find all communities known to a given ser-
vice provider. Service providers for directory services
that support a server solicitation and advertisement
network protocol implement a discover function. In
these directories, servers advertise their presence in
response to network solicitation requests. The dis-
cover method uses the directory’s native solicitation
and advertisement protocol to discover local directory
servers and then issues the appropriate operations to
the server to determine if it has defined any IDS com-
munities. Service providers that do not have a solicita-
tion and advertisement protocol can implement an
alternative discovery mechanism such as retrieving the
community information from a file or provide no dis-
covery mechanism.

Construction of the System: Directory, Session, and
IDS Entry Objects The SPI is constructed of three
framework objects: the directory object, the session
object, and the directory operation methods of the
IDS entry object. The directory object is responsible

Digital Technical Journal Vol. 8 No. 1 1996 55

for service provider initialization and termination,
maintenance of session objects, and community dis-
covery. Each service provider exports one directory
object to the IDS framework. The session object
implements all the directory operations on a service
provider. Session objects are obtained from the service
provider by means of the directory object. The IDS
entry directory operation methods determine the con-
text if it has not been set, obtain a session object from
the proper directory, and dispatch the operation to the
associated service provider through the session object.
For efficiency, session objects may be cached by the
service providers.

Implementation Considerations

Once we had established our basic approach, we
turned our attention to implementation decisions.

Client versus Server
Our first consideration was whether to implement this
technology as software executing on a server system or
as software executing on a client system. The server
solution had a number of attractive qualities: it would
not be necessary to have all the native directory clients
on all the desktops, and potentially complex pro-
cessing would occur on an appropriate platform.
However, we identified two problems with the server
solution. The first concerned security. To access the
directory service on behalf of a particular user, we
would have to impersonate that client user on the
server machine. Although this can be done without
exposing security holes, doing so adds another layer of
complexity to the problem. The second problem with
the server solution was that it required the customer
to find a machine for and deploy a server prior to get-
ting started with the system. One of the design goals
was to remove barriers to directory deployment, and
we were concerned that a server solution would add
a barrier. We saw a need for both client- and server-
based solutions, and since the client solution was sim-
pler to implement, we chose to start there.

Security
The IDS interfaces leave security to the underlying
directory services; we did not attempt to abstract a
general-purpose, access control or authentication
interface. The primary reason for this was a conviction
that the vast majority of current directory information
is world read, and therefore a complex access control
interface was not necessary. An access control and
authentication layer that was directory-service-
independent would have added significantly to the
complexity of the project, and we chose to postpone
this problem. IDS does pass requests directly to the
native directory-service client; IDS does not alter
or impersonate the user’s identity. In that sense, it

perfectly preserves the security inherent in the under-
lying directory services.

Filter Implementation
The implementation of the IDS attribute filter is based
on the string filter as defined in RFC 1777.13 The
Lightweight Directory Access Protocol (LDAP) string
filter provided a convenient internal representation,
and we would be able to reuse the LDAP parsing and
processing code that we had developed as part of an
earlier product. We considered using SQL to construct
IDS attribute filters, but chose not to do this for imple-
mentation convenience.

Service Provider Considerations
Initially, we thought that developing a directory-
service-independent interface would not be difficult.
Most of the required operations such as read and write
are straightforward and obvious. The implementation
of such an interface, however, proved to be difficult
because the underlying directory services have, in some
cases, very different native capabilities and semantics.
We chose to implement service provider libraries for
the following three types of service providers:

■ Open Database Connect (ODBC)-compliant
database

■ X.500-based directory using the LDAP
■ DCE CDS

These service providers are representative of the types
of directories that exist today. Table 1 highlights some
of the differences among the three directories. As
this table illustrates, not all directories can natively
support the semantics described by the IDS SPI.
In these situations, we have followed three alterna-
tives: (1) the service provider library implements the
functionality, (2) the IDS framework implements
the functionality, or (3) in a small number of cases, the
service provider cannot implement the functionality
and remains less functional.

Some operations cannot be supported natively by
only one or a small handful of directory services. For
these operations, we require the service provider devel-
opers to implement (or emulate as best they can) the
functionality in the specific service provider library for
that directory. For functions that a number of service
providers cannot support or that are sufficiently diffi-
cult to implement, we provide a common implementa-
tion or emulation in the IDS framework that service
provider libraries can call. For example, CDS does not
natively support an attribute-based search mechanism.
Rather than attempt to implement a CDS search capa-
bility, we chose to provide an IDS framework “prune”
function that applies an IDS filter to a list of IDS entries
and returns only those entries that satisfy all conditions
of the filter. Service providers such as CDS can then

56 Digital Technical Journal Vol. 8 No. 1 1996

emulate the IDS search function by enumerating all
resources of a particular type and then call the prune
function to pare down the list of resources.

The IDS schema implementation is another example
of a common capability we have provided for all service
providers to use. Not all service providers support
object, schema and, of those that do, fewer still can sup-
port user extension of the schema. We chose to allow
user extensibility and implemented a service-provider-
independent schema interface and mechanism.

In a few instances, we determined that it would be
too expensive in terms of implementation time to pro-
vide a service-provider-specific or an IDS-framework
implementation of an SPI-mandated function. In
these cases, we allowed the service provider to remain
noncompliant. For example, a call to initiate a session
to a service provider specifies user name and password
arguments. For those directories that support user
name and password security mechanisms, we preserve
that functionality. For directories such as the ODBC
service provider that do not support these security
mechanisms, however, we provide no additional secu-
rity measures. The cost to implement and deploy such
a security mechanism outweighs the gain of having the
additional features.

In addition, we found that not all directories pro-
vide the same semantics for a particular operation. For
example, when updating a resource, service providers
handle existence checking of resource attributes differ-
ently. If requested to add an attribute value to an
attribute that does not yet exist, one service provider
returns an error, while another implicitly creates the
attribute. We worked around problems of this type by
carefully specifying the semantics and error conditions
of all SPI operations. Service providers that do not
natively support these SPI semantics must implement
whatever additional functionality is required to do
so. For example, the CDS service provider required
additional functions that determined and flagged
whether or not a particular attribute existed.

In addition to all errors that are specific to service
providers, we return an error that is independent
of any IDS framework service provider. This adds
another level of consistency across our service-
provider implementations.

Current Applications

As with any foundation technology, the proof of its
viability lies with the applications that employ it. In the
PATHWORKS product, we currently have three appli-
cations that use IDS:

■ Network Connect
■ IDS Administration
■ Resource Synchronizer

The Network Connect application finds and con-
nects users’ printers and file shares. It provides a user
interface that allows users to browse or search for file
shares or printers. Through Network Connect, users
can refer to resources by their logical name or their
attributes. A single physical printer, with queues on
several machines or several NOS systems, is presented
to users as a single printer. Network Connect uses the
IDS API to access the IDS search capabilities and
to translate a printer or file share’s IDS name to its
network-specific name to connect to the resource.
Network Connect may be accessed through the
Windows version 3.1 Print Manager and File Manager
utilities and through the PATHWORKS Network
Connect utility.

The IDS Administration utility (IDS Admin) allows
a network administrator to manage IDS resources
and communities. IDS Admin is integrated into the
Digital ManageWORKS Workgroup Administrator
for Windows software product.14 Admin creates, mod-
ifies, and deletes resources and communities. It
also allows users to browse IDS resources and commu-
nities in the ManageWORKS hierarchy and to search
for IDS resources.

Table 1
Differences among the ODBC, X.500, and CDS Directories

Functionality ODBC X.500 CDS

Distributed directory service No Yes Yes
Hierarchical organization of directory information No Yes Yes
Attribute-based search Yes Yes No
Attribute value-based search Yes Yes No
Native schema support Yes Yes No
User can extend IDS schema No Yes No
Transactional semantics Yes No No
Tolerant of intermittent connectivity No Yes Yes
Provides security mechanism on connections No Yes Yes

Wexler. We would also like to thank the members of
the Directory Task Force, Dah Ming Chiu, Dennis
Giokas, and William Nichols.

References

1. CCITT Recommendation X.501 (1992) and
Information Technology —Open Systems Inter-
connection—The Directory: Models, ISO/IEC
9594-2: 1992 (Geneva: International Organization
for Standardization/International Electrotechnical
Commission, 1992).

2. “Naming Concepts” in Using NetWare Services for
NLMs (Provo, Utah: Novell, Inc., 1993).

3. AES/Distributed Computing—Directory Services
(Cambridge, Mass.: Open Software Foundation,
1993).

4. “StreetTalk Naming Service” in ENS Administrator’s
Planning Guide (Westborough, Mass.: Banyan
Systems, Inc., 1992).

5. “Microsoft Directory Services Strategy,” a white
paper from the Business Systems Technology Series
(Redmond, Wash.: Microsoft Corporation, 1995).

6. X/Open CAE Specification, Federated Naming: The
XFN Specification (Reading, U.K.: X/Open Com-
pany Ltd., 1995).

7. “Bindery Services” in NetWare System Interface:
Technical Overview (Provo, Utah: Novell, Inc.,
1990).

8. S. Radicati, “Implementing the DIT” in X.500 Direc-
tory Services: Technology and Deployment (New
York: Van Nostrand Reinhold, 1994).

9. P. Mockapetris, “Domain Names—Concepts and
Facilities,” Internet Engineering Task Force, RFC
1034 (November 1987).

10. P. Mockapetris, “Domain Names—Implementation
and Specification,” Internet Engineering Task Force,
RFC 1035 (November 1987).

11. AES/Distributed Computing—Remote Procedure
Call, Appendix A (Cambridge, Mass.: Open Software
Foundation, 1993).

12. CCITT Recommendation 208 (1992) and Informa-
tion Technology —Open Systems Interconnection—
Abstract Syntax Notation One (ASN.1) ISO/IEC
8824-2:1992 (Geneva: International Organization for
Standardization/International Electrotechnical Com-
mission, 1992).

13. W. Yeong, T. Howes, and S. Hardcastle-Kille, “X.500
Lightweight Directory Access Protocol,” Internet
Engineering Task Force, RFC 1777 (March 1995).

14. D. Giokas and J. Rokicki, “The Design of Manage-
WORKS: A User Interface Framework,” Digital Tech-
nical Journal, vol. 6, no. 4 (Fall 1994): 63–74.

Digital Technical Journal Vol. 8 No. 1 1996 57

An administrator can manage IDS resources manu-
ally through the ManageWORKS user interface or can
rely on information provided through the semiauto-
matic resource collection utilities called the Resource
Gatherer and Resource Synchronizer. The Resource
Gatherer periodically collects information about
network LAN Manager and NetWare printers and file
shares. The Resource Synchronizer utility processes
the gathered information, updating the directory. It
also eliminates duplicate entries and discards informa-
tion the administrator wishes to ignore. The gatherer
and synchronizer allow the directory to be kept up-to-
date, even if resources are added or removed through
the native NOS interfaces.

Future Work

In the future, we plan to improve the IDS extensibility
mechanisms. Currently, a local copy of the schema
exists on every client. Propagating the changes to each
client will become a problem as users and applications
extend the schema. We are considering storing either
the schema or a pointer to the schema in the directory.

The current IDS implementation runs on both
the Windows version 3.1 and version 3.11 operating
systems. We are currently porting it to Windows 95
and investigating ports to other operating systems,
such as UNIX.

The implementation does not support the entire
IDS design: Although resource context lists are imple-
mented, there is no reasonable way for a user or
administrator to create them. The user interface work
for these features in the IDS Admin application has not
yet been completed.

Summary

IDS provides a mechanism for integrating multiple
directory services into a single system. It is predicated
on the ability to define a common set of directory oper-
ations and on the type information. The implementa-
tion of three very different service providers—CDS,
X.500, and ODBC—indicates that we succeeded in
defining the directory operations. The use of IDS in the
PATHWORKS product shows that it does address the
practical aspects of the problem of integrating multiple
directories into a single, logical directory service.

Acknowledgments

We would like to thank the many past and present
members of the IDS team who contributed to the
design and implementation of the product. Special
thanks to Konstantinos Baryiames, Anthony
Hinxman, David Magid, Tracy Teng, and Tamar

58 Digital Technical Journal Vol. 8 No. 1 1996

Biographies

Margaret Olson
Margaret Olson is a consulting software engineer in the
Network Software Group. She was the project and tech-
nical leader for the IDS development project. For the last
six years, she has had technical leadership roles in Digital’s
Directory Services Group. Before joining Digital in 1989,
she worked in the networking and distributed computing
areas at Apollo Computer. She received a B.A. (Sigma Xi)
from Wellesley College in 1981. She published a paper on
network licensing in 1988.

Laura E. Holly
Laura Holly is a principal engineer with the Network
Software Group. She was a key technical contributor to
the IDS development effort. Laura has previously con-
tributed to the areas of DCE, distributed system, and
knowledge-based system development. She joined Digital
in 1985 after receiving an A.B. (high honors) from Smith
College. Laura holds a patent and has published several
papers in the area of knowledge-based systems.

Colin Strutt
Colin Strutt is a consulting software engineer and technical
director for Teaming Software in the Network Software
Group, where he is helping to define new PC-based soft-
ware products. Previously, he has held technical leadership
roles in directories, network management, and terminal
server development, and before that led product develop-
ments in Ethernet servers and DECnet. He joined Digital
in 1980 from British Airways in the U.K. He received a
B.A. (honours) in 1972 and a Ph.D. in 1978, both in com-
puter science from the University of Essex, U.K. He is a
member of BCS and ACM. He has two patents issued and
several patents pending and has published extensively, par-
ticularly on management technology.

