
Historically on UNIX systems, optimization and pro-
gram analysis tools have been implemented primarily
in the realm of compilers and run-time libraries. Such
implementations have several drawbacks, however.
For example, although the optimizations performed
by compilers are effective, typically, they are limited to
those that can be performed within the scope of a sin-
gle source file. At best, the compiler can optimize the
set of files presented during one compilation run.
Even the most sophisticated systems that save interme-
diate representations usually cannot perform opti-
mizations of calls to routines in system libraries or
other libraries for which no source or intermediate
forms are available.1

The traditional UNIX performance analysis tools,
prof and gprof, require compiler support for inserting
calls to predefined run-time library routines at the
entry to each procedure. The monitor routines allow
more user control over prof and gprof profiling capa-
bilities, but their usage requires modifications to the
application source code. Because these capabilities are
implemented as compilation options, users of the tools
must recompile or, in the case of the monitor routines,
actually modify their applications. For a large applica-
tion, this can be an onerous requirement. Further, if
the application uses libraries for which the source is
unavailable, many of the analysis capabilities are lost or
severely impaired.

By comparison, object modification tools can per-
form arbitrary transformations on the executable
program. The OM object modification tool is a trans-
formation tool that focuses on postlink optimizations.
By performing transformations after the link step, OM
can apply powerful intermodule and interlanguage
optimizations, even to routines in system libraries.

Object transformations also have benefits in the area
of program analysis. Atom, an analysis tool with object
modification, provides a flexible framework for cus-
tomizing the transformation process to analyze a pro-
gram. With Atom, compilation system changes are not
needed to develop specialized types of debugging or
performance analysis tools. Application developers can
create both simple and sophisticated tools to directly
diagnose or debug application-specific performance
problems.

18 Digital Technical Journal Vol. 8 No. 1 1996

Delivering Binary Object
Modification Tools for
Program Analysis and
Optimization

Linda S. Wilson
Craig A. Neth
Michael J. Rickabaugh

Digital has developed two binary object
modification tools for program analysis and
optimization on the Digital UNIX version 4.0
operating system for the Alpha platform. The
technology originated from research performed
at Digital’s Western Research Laboratory. The
OM object modification tool is a transforma-
tion tool that focuses on postlink optimizations.
OM can apply powerful intermodule and inter-
language optimizations, even to routines in sys-
tem libraries. Atom, an analysis tool with object
modification, provides a flexible framework for
customizing the transformation process to ana-
lyze a program. With Atom, compilation system
changes are not needed to create both simple
and sophisticated tools to directly diagnose or
debug application-specific performance prob-
lems. The linker and loader are enhanced to sup-
port Atom. The optimizations OM performs can
be driven from performance data generated
with the Atom-based pixie tool. Applying OM
and Atom to commercial applications provided
performance improvements of up to 15 percent.

The OM and Atom technologies originated from
research performed at Digital’s Western Research
Lab (WRL) in Palo Alto, California.2 The software
was developed into products by the Digital UNIX
Development Environment (DUDE) group at
Digital’s UNIX engineering site in Nashua, New
Hampshire. Both technologies are currently shipping
as supported products on Digital UNIX version 4.0
for the Alpha platform.3

This paper first provides technical overviews for
both OM and Atom. An example Atom tool is
presented to demonstrate how to use the Atom appli-
cation programming interface (API) to develop a cus-
tomized program analysis tool. Because OM and
Atom can be used together to enhance the effective-
ness of optimizations to application programs, the
paper includes an overview regarding the benefits of
profiling-directed optimizations.

Subsequent sections discuss the product develop-
ment and technology transfer process for OM and
Atom and several design decisions that were made.
The paper describes the working relationship between
WRL and DUDE, the utilization of the technology on
Independent Software Vendor (ISV) applications, and
the factors that drove the separate development strate-
gies for the two products. The paper concludes with
a discussion about areas for further investigation and
plans for future enhancements.

Technology Origins

Researchers at WRL investigating postlink optimiza-
tion techniques created OM in 1992.4 Unlike compile-
time optimizers, which operate on a single file, postlink
optimizers can operate on the entire executable pro-
gram. For instance, OM can remove procedures that
were linked into the executable but were never called,
thereby reducing the text space required by the pro-
gram and potentially improving its paging behavior.5

Using the OM technology, the researchers further
discovered that the same binary code modification
techniques needed for optimizations could also be
applied to the area of program instrumentation. In
fact, the processes of instrumenting an existing pro-
gram and generating a new executable could be
encapsulated and a programmable interface provided
to drive the instrumentation and analysis processes.
Atom evolved from this work.6,7

In 1993, WRL researchers Amitabh Srivastava and
Alan Eustace began planning with DUDE engineers
to provide OM and Atom as supported products on
the Digital UNIX operating system. Different product
development and technology transfer strategies were
used for delivering the two technologies. The sec-
tion Product Development Considerations discusses
the methods used and the forces that influenced
the strategies.

Technical Overview of OM

OM performs transformations in three phases. It pro-
duces an intermediate representation, performs opti-
mizations on that representation, and produces an
executable image.

Intermediate Representation
In the first phase, OM reads a specially linked input
file that is produced by the linker, parses the object
code, and produces an intermediate representation
of the instructions in the program. The flow informa-
tion and the program structure are maintained in
this representation.

Optimization
In the optimization phase, OM performs various trans-
formations on the intermediate representation created
in the first phase. These transformations include

■ Text size reductions
■ Data size reductions
■ Instruction and data reorganization to improve

cache behavior
■ Instruction scheduling and peephole optimization
■ User-directed procedure inlining

Text Size Reductions One type of text size reduction
is the elimination of unused routines. Starting at the
entry point of the image, OM examines the instruction
stream for transfer-of-control instructions. OM fol-
lows each transfer of control until it finds all reachable
routines in the image. The remaining routines are
potentially unreachable and are candidates for removal.
Before removing them, OM checks all candidates for
any address references. (Such references will show up
in the relocation entries for the symbols.) If no refer-
ences exist, OM can safely remove the routine. A sec-
ond type of text size reduction is the elimination of
most GP register reloading sequences.8,9

Data Size Reductions Because it operates on the entire
program, OM performs optimizations that compilers
are not able to perform. One instance is with the
addressability of global data. The general instruction
sequence for accessing global data requires the use of
a table of address constants (the .lita section) and code
necessary for maintaining the current position in the
table. Each entry in the address constant table is relo-
cated by the linker. Because OM knows the location of
all global data, it can potentially remove the address
entry while inserting and removing code to more effi-
ciently reference the data directly. Removing as many
of the .lita entries as possible leaves more room in the
data cache (D-cache) for the application’s global data.

Digital Technical Journal Vol. 8 No. 1 1996 19

This optimization is not possible at link time, because
the linker can neither insert nor remove code.

Reorganization of the Image By default, OM reorga-
nizes an image by reordering the routines in the image
as determined by a depth-first search of the routine
order, starting at the main entry point. In the absence
of profiling information, this ordering is usually better
than the linker’s ordering.

In the presence of profiling feedback, OM performs
two more instruction-stream reorderings: (1) reorder-
ing of routines based on basic block counts and
(2) routine ordering based on execution frequency.
OM first reorganizes routines based on the basic block
information collected by a previous run of the image
instrumented with the Atom-based pixie tool. OM lays
the basic blocks to match the program’s likely flow of
control. Branches are aligned to match the hardware
prediction mechanism. As a result, OM packs together
the most commonly executed blocks. After basic block
reorganization, OM then reorders the routines in the
image based on the cumulative basic block counts for
each routine. The reorganized image is ordered in
a way similar to the way the prof tool displays execution
statistics. The reordering performed by OM is superior
to that performed by cord, because cord does not
reorder basic blocks. cord is a UNIX profiling-directed
optimization utility that reorders procedures in an exe-
cutable program to improve cache performance. The
cord(1) reference page on Digital UNIX version 4.0
describes the operation of this utility in more detail.

Elapsed-time Performance The optimizations that
OM performs without profiling feedback can provide
elapsed-time performance improvements of up to
5 percent. The feedback-directed optimizations can
often provide an additional improvement of from 5 to
10 percent in elapsed time, for a total improvement
of up to 15 percent over an image not processed
by OM. Several commercial database programs have
realized elapsed-time performance improvements
ranging from 9 to 11 percent with feedback.

Executable Image
Finally, in the third phase, OM reassembles the trans-
formed intermediate representation into an executable
image. It performs relocation processing to reflect any
changes in data layout or program organization.

Technical Overview of Atom

The Atom tool kit consists of a driver, an instrumenta-
tion engine, and an analysis run-time system. The
Atom engine performs transformations on an exe-
cutable program, converting it to an intermediate
form. The engine then annotates the intermediate
form and generates a new, instrumented program.

20 Digital Technical Journal Vol. 8 No. 1 1996

The Atom engine is programmable. Atom accepts
as input an instrumentation file and an analysis file.
The instrumentation file defines the points at which
the program is to be instrumented and what analysis
routine is to be called at each instrumentation point.
The analysis file (defined later in this section) defines
the analysis routines. Atom allows instrumentation of
a program at a very fine level of granularity. It supports
instrumentation before and after

■ Program execution
■ Shared library loading
■ Procedures
■ Basic blocks
■ Individual instructions

Supporting instrumentation at these points allows
the development of a wide variety of tools, all within
the Atom framework. Examples of these tools are cache
simulators, memory checking tools, and performance
measurement tools. The framework supports the cre-
ation of customized tools and can decrease costs by
simplifying the development of single-use tools.

The instrumentation file is a C language program
that contains calls to the Atom API. The instrumenta-
tion file defines any arguments to be passed to the
analysis routine. Arguments can be register values,
instruction fields, symbol names, addresses, etc. The
instrumentation file is compiled and then linked with
the Atom instrumentation engine to create a tool to
perform the instrumentation on a target program.

The analysis file contains definitions of the routines
that are called from the instrumentation points in the
target program. The analysis routines record events or
process the arguments that are passed from the instru-
mentation points.

By convention, the instrumentation and analysis
files are named with the suffixes inst.c and anal.c,
respectively. Atom is invoked as follows to create an
instrumented executable:

% atom program tool.inst.c tool.anal.c

The atom command is a driver that invokes the
compiler and linker to generate the instrumented
program. The five steps of this process are

1. Compile the instrumentation code.
2. Link the instrumentation code with the Atom

instrumentation engine to create an instrumenta-
tion tool.

3. Compile the analysis code.
4. Link the analysis code with the Atom analysis run-

time system, using the UNIX ld tool with the -r
option so the object may be used as input to
another link.

5. Execute the instrumentation tool on the target
program, providing the linked analysis code as an
argument.

The final step produces an instrumented program
linked with the analysis code. Figure 1 shows the
changes in memory layout between the original pro-
gram and the instrumented program.

An Example Atom Tool for Memory Debugging
The following discussion of an example Atom tool
demonstrates how to use the Atom API to develop a
customized program analysis tool.

A common development problem is locating the
source of a memory overwrite. Figure 2 shows a con-
trived example program in which the loop to initialize
an array exceeds the array boundary and overwrites a

Digital Technical Journal Vol. 8 No. 1 1996 21

Figure 2
Example Program with Memory Overwrite

1 long numbers[8] = {0};
2 long *ptr = numbers; /* This pointer is overwritten */
3
4 main()
5 {
6 int i;
7
8 for(i=0; i<25; i++) /* by this array initialization. */
9 numbers[i] = i;

10 }

READ-ONLY DATA
EXCEPTION DATA

ANALYSIS TEXT

INSTRUMENTED
PROGRAM TEXT

ANALYSIS DATA
UNINITIALIZED
(SET TO 0)

ANALYSIS DATA
INITIALIZED

PROGRAM DATA
INITIALIZED

PROGRAM DATA
UNINITIALIZED

HEAP

STACK

INSTRUMENTED
PROGRAM LAYOUT

PROGRAM
TEXT
ADDRESSES
CHANGED

PROGRAM
DATA
ADDRESSES
UNCHANGED

READ-ONLY DATA
EXCEPTION DATA

PROGRAM TEXT

PROGRAM DATA
INITIALIZED

PROGRAM DATA
UNINITIALIZED

HEAP

STACK

UNINSTRUMENTED
PROGRAM LAYOUT

TEXT START

NEW DATA
START

OLD DATA
START

PROGRAM gp

ANALYSIS gp

LOW
MEMORY

HIGH
MEMORY

Source: A. Srivastava and A. Eustace, “ATOM: A System for Building Customized Program Analysis Tools,”
Proceedings of the SIGPLAN ’94 Conference on Programming Language Design and Implementation,
Orlando, Fla. (June 1994). This paper is also available as Digital’s Western Research Laboratory
(WRL) Research Report 94/2.

Figure 1
Memory Layout of Instrumented Programs

22 Digital Technical Journal Vol. 8 No. 1 1996

pointer variable. In this case, the initialization of the
numbers array defined in line 1 overwrites the con-
tents of the variable ptr defined in line 2. This type of
problem is often difficult and time-consuming to
locate with traditional debugging tools.

Atom can be used to develop a simple tool to locate
the source of the overwrite. The tool would instru-
ment each store instruction in the program and pass
the effective address of the store instruction and the
value being stored to an analysis routine. The analysis
routine would determine if the effective address is the
address being traced and, if so, generate a diagnostic.

The instrumentation and analysis files for the
mem_debug tool are shown in Figure 3.
InstrumentInit() registers the analysis routines with
the Atom instrumentation engine and specifies that
calls to the get_args() and open_log() routines be
inserted before the program begins executing. A call
to the close_log() routine is dictated when the pro-
gram terminates execution. The Atom instrumenta-
tion engine calls InstrumentInit() exactly once.

The Atom instrumentation engine calls the
Instrument() routine once for each executable object
in the program. The routine instruments each store
instruction that is not a stack operation with a call to the
analysis routine mem_store(). Each call to the routine
provides the address of the store instruction, the target
address of the store instruction, the value to be stored,
and the file name, procedure name, and line number.

The open_log() and close_log() analysis routines are
self-explanatory. The messages could have been written
to the standard output, because, in this example, they
would not have interfered with the program output.

The get_args() routine reads the value of the
MEM_DEBUG_ARGS environment variable to obtain the
data address to be traced. The tool could have been
written to accept arguments from the command line
using the -toolargs switch. The instrumentation code
would then pass the arguments to the analysis routine.
In the case of this tool, using the environment variable
to pass the arguments is beneficial because the pro-
gram does not have to be reinstrumented to trace a
new address.

The mem_store() routine is called from each store
instruction site that was instrumented. If the target
address of the store operation does not match the
trace address, the routine simply returns. If there is a
match, a diagnostic is logged that gives information
about the location of the store.

To demonstrate how this tool would be used, sup-
pose one has determined by debugging that the vari-
able ptr is being overwritten. The nm command is
used to determine the address of ptr, as follows:

% nm -B program | grep ptr
0x000001400000c0 G ptr

Instrument the program with the mem_debug tool.

% atom program mem_debug.inst.c
mem_debug.anal.c

Set the MEM_DEBUG_ARGS environment variable with
the address to trace.

% setenv MEM_DEBUG_ARGS 1400000c0

Run the instrumented program,

% program.atom

and view the log file.

% more program.mem_debug.log

Tracing address 0x1400000c0

Address 0x1400000c0 modified with\
value 0x16:

at : 0x1200011c4 Procedure: main\
File: program.c Line: 9

Using this simple Atom tool, the location of a mem-
ory overwrite can be detected quickly. The instru-
mented program executes at nearly normal speed.
Traditional debugging methods to detect such errors
are much more time-consuming.

Other Tools
An area in which Atom capabilities have proven particu-
larly powerful is for hardware modeling and simulation.
Atom has been used as a teaching tool in university
courses to train students on hardware and operating sys-
tem design. Moreover, Digital hardware designers have
developed sophisticated Atom tools to evaluate designs
for new implementations of the Alpha chip.

The Atom tool kit contains 10 example tools that
demonstrate the capabilities of this technology. The
examples include a branch prediction tool, which is
useful for compiler designers, a procedure tracing tool,
which can be useful in following the flow of unfamiliar
code, and a simple cache simulation tool.

Atom Tool Environments
Analysis of certain types of programs can require use of
specially designed Atom tools. For instance, to analyze
a program that uses POSIX threads, an Atom tool to
handle threads must also be designed, because the
analysis routines will be called from the threads in the
application program. Therefore, the analysis routines
need to be reentrant. They may also need to synchro-
nize access to data that is shared among the threads or
manage data for individual threads. The thread man-
agement in the analysis routines adds overhead to the
execution time of the instrumented program; this
overhead is not necessary for a nonthreaded program.
To effectively support both threaded and nonthreaded
programs, two distinct versions of the same Atom tool
need to coexist. Designers developed the concept of
tool environments to address the issues of providing
multiple versions of an Atom tool.

Digital Technical Journal Vol. 8 No. 1 1996 23

Figure 3
Instrumentation and Analysis Code for the mem_debug Tool

/*
* mem_debug_inst.c - Instrumentation for memory debugging tool
*
* This tool instruments every store operation in an application and
* reports when the application writes to a user-specified address.
* The address should be an address in the data segment, not a
* stack address.
*
* Usage: atom program mem_debug.inst.c mem_debug.anal.c
*
*/

#include <string.h>
#include <cmplrs/atom.inst.h>

/*
* Initializations: register analysis routines
* define the analysis routines to call before and after
* program execution
*
* get_args() - reads environment variable MEM_DEBUG_ARGS for address to trace
* open_log() - opens the log file to record overwrites to the specified address
* close_log() - closes the log file at program termination
* mem_store() - checks if a store instruction writes to the specified address
*/

void InstrumentInit(int argc, char **argv)
{

AddCallProto(”get_args()“);
AddCallProto(”open_log(const char *)“);
AddCallProto(”close_log()“);
AddCallProto(”mem_store(VALUE,REGV,long,const char *,const char *,int)“);

AddCallProgram(ProgramBefore, ”get_args“);
AddCallProgram(ProgramBefore, ”open_log“,

basename((char *)GetObjName(GetFirstObj())));
AddCallProgram(ProgramAfter, ”close_log“);

}

/*
* Instrument each object.
*/

Instrument(int argc, char *argv[], Obj *obj)
{

Proc *proc;
Block *block;
Inst *inst;
int base; /* base register of memory reference */

/*
* Search for all of the store instructions into the data area.
*/

for (proc = GetFirstObjProc(obj); proc; proc = GetNextProc(proc)) {
for (block = GetFirstBlock(proc); block; block = GetNextBlock(block)){

for (inst = GetFirstInst(block); inst; inst = GetNextInst(inst)) {
/*
* Instrument memory references. Skip $sp based references
* because they reference the stack, not the data area.
* Memory references are instrumented with a call to the
* mem_store analysis routine. The arguments passed are
* the target address of the store instruction,
* the value to be stored at the target address,
* the PC address of the store instruction in the program,
* the procedure name, file name, and source line for the
* PC address.
*/

24 Digital Technical Journal Vol. 8 No. 1 1996

Figure 3 (continued)

if (IsInstType(inst, InstTypeStore)) {
base = GetInstInfo(inst, InstRB);
if (base != REG_SP) {

AddCallInst(inst, InstBefore, ”mem_store“,
EffAddrValue,
GetInstRegEnum(inst, InstRA),
InstPC(inst),
ProcName(proc),
ProcFileName(proc),
(int)InstLineNo(inst));

}
}

}
}

}
}

/*
* mem_debug.anal.c - analysis routines for memory debugging tool
*
* Usage: setenv MEM_DEBUG_ARGS hex_address before running
* the program.
* Diagnostic output is written to program.mem_debug.log
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>

static FILE *log_file; /* Output file for diagnostics */

static caddr_t trace_addr; /* Address to monitor */

/*
* Create log file for diagnostics.
*/

void
open_log(const char *progname)
{

char name[200];

sprintf(name, ”%s.mem_debug.log“, progname);
log_file = fopen(name, ”w“);

if (!log_file) {
fprintf(stderr, ”mem_debug: Can’t create %s\n“, name);
fflush(stderr);
exit(1);

}

fprintf(log_file, ”Tracing address 0x%p\n\n“, trace_addr);
fflush(log_file);

}

/*
* Close the log file.
*/

void
close_log(void)
{

fclose(log_file);
}

/*
* Get address to trace from the environment.
*/

void
get_args(void)

Digital Technical Journal Vol. 8 No. 1 1996 25

Tool environments accommodate seamless integra-
tion of specialized versions of tools into the Atom tool
kit. They provide a means for extending the Atom kit.
This facility allows the addition of specialized Atom
tools by Digital’s layered product groups or by cus-
tomers, while maintaining a consistent user interface.

The versions of the Atom tools hiprof, pixie, and
Third Degree that support POSIX threads are pro-
vided as a separate environment. hiprof is a perfor-
mance analysis tool that collects data similar to but
with more precision than gprof. pixie is a basic block
profiling tool. Third Degree is a memory leak detec-
tion tool.

The following command invokes the Atom-based
pixie tool for use on a nonthreaded program:

% atom program -tool pixie

The following command invokes the version of the
pixie tool that supports threaded programs:

% atom program -tool pixie -env threads

Tools for other specialized environments can be
provided by defining a new environment name. For
example, Atom tools written to work with a language-
specific run-time environment can be added to the

Atom tool kit by selecting an environment name for
the category of tools. Similarly, tools designed to work
on the kernel could be collected into an environment.

The environment name is used in the names of the
tool’s instrumentation, analysis, and description files.
The description file for a tool provides the names
of the instrumentation and analysis files, as well as spe-
cial instructions for compiling and linking the tool.
For example, the pixie description file for threaded
programs is named pixie.threads.desc. It identifies
the threaded versions of the pixie instrumentation and
analysis files. The Atom driver builds the name of
the description file from the arguments to the -tool and
-env switches on the command line. The contents
of the description file then drive the subsequent steps
of the build process.

Tool environments can be added without modifica-
tion to the base Atom technology, thereby providing
extensibility to the tool kit while maintaining a consis-
tent interface.

Compact Relocations
Atom inserts code into the text of the program, thus
changing the location of routines. Atom requires
that relocation information be retained in the

{
char *addr;
if (!(addr = getenv(”MEM_DEBUG_ARGS“))) {

fprintf(stderr, ”mem_debug: set MEM_DEBUG_ARGS to hex address\n“);
fflush(stderr);
exit(1);

}
trace_addr = (caddr_t) strtoul(addr, 0, 16);

}

/*
* The target address is about to be modified with the given value.
* If this is the address being traced, report the modification.
*/

void
mem_store(

caddr_t target_addr, /* Address being stored into */
unsigned long value, /* Value being stored at target_addr */
caddr_t pc, /* PC of this store instruction */
const char *proc, /* Procedure name */
const char *file, /* File name */
unsigned line) /* Line number */

{
if (target_addr == trace_addr) {

fprintf(log_file, ”Address 0x%p modified with value 0x%lx:\n“,
target_addr, value);

fprintf(log_file, ”\tat : 0x%p “, pc);
if(proc != NULL) {

fprintf(log_file,”Procedure: %s “, proc);
if(file != NULL)

fprintf(log_file,”File: %s Line: %d“, file, line);
}
fprintf(log_file, ”\n“);
fflush(log_file);

}
}

Figure 3 (continued)

26 Digital Technical Journal Vol. 8 No. 1 1996

executable image created by the linker. This allows
Atom to properly perform relocations on the instru-
mented executable.

During the normal process of linking, the relocation
entries stored in object files are eliminated once they
have been resolved. Because it effectively relinks the
executable, Atom must have access to the relocation
information.

Consider, for example, an application that invokes a
function through a statically initialized function pointer
variable, as shown in the following code segment:

void foo(int a, int b)
{
É ...

}

void (*ptr_foo)(int, int) = foo;

void bar()
{
É ...

(*ptr_foo)(1,2);
}

The address of function foo is stored in the memory
location referenced by the ptr_ foo variable. When
Atom instruments this application, the address of
foo will change, and Atom needs to know to update
the contents of the memory location referenced by
ptr_ foo. This is possible only if there is a relocation record
pointing at this memory location. Adding compact relo-
cations to the executable file solves this problem.

Compact relocations are smaller than regular relo-
cations for two reasons. First, the Atom system does
not require all the information in the regular reloca-
tion records in order to instrument an executable.
Atom changes only the layout of the text segment,
so relocation records that describe the data segments
are not needed. Second, the remaining relocations
can often be predicted by analyzing other parts of
the executable file. This property is used to store a
compact form of the remaining relocation records.
Since compact relocation records are represented in a
different form than regular relocations, they are stored
in the .comment section of the object file rather than
in the normal relocation area.

Profiling-directed Optimization

OM and the Atom-based pixie tool can interoperate
using profiling-directed optimization. The Atom-
based pixie tool is a basic block profiler that provides
execution counts for each basic block when the pro-
gram is run. The execution counts are then used as
input to OM for performing optimizations on the exe-
cutable that are driven from actual run-time perfor-
mance data.

As an example, the following steps would be
performed to utilize profiling-directed optimizations
with OM:

1. % cc -non_shared -o program *.o
2. % atom -tool pixie program
3. % program.pixie
4. % cc -non_shared -om

-WL,-om_ireorg_feedback,program *.o

In step 1, a nonshared version of the program
is built. In step 2, the Atom-based pixie tool instru-
ments the program. Step 2 produces program.pixie
and program.Addrs files. Step 3 results in the exe-
cution of the instrumented program to generate a
program.Counts file. This file contains an execution
count for each basic block in the program. The last
step provides the basic block profile as input to OM.
OM rearranges the text segment of the program such
that the most frequently executed basic blocks and
procedures are placed in proximity to each other, thus
improving the instruction cache (I-cache) hit rate.

Product Development Considerations

Bringing the OM and Atom technologies from the lab-
oratory into use on current Digital UNIX production
systems required frequent communication and coordi-
nation between WRL and DUDE engineers working
on opposite coasts of the U.S. The success of both proj-
ects depended upon establishing and maintaining an
atmosphere of cooperation among the engineers at the
two locations. Common goals and criteria for bringing
the technology to product supported the teams during
development and planning work.

Among the product development considerations
for OM and Atom were

1. The products must address a business or customer
requirement.

2. The products must meet customer expectations of
features, usability, quality, and performance.

3. Engineering, quality assurance, and documentation
resources must be identified to ensure that the
products could be enhanced, updated to operate
on new platform releases, and supported through-
out their life cycles.

4. The products must be released at the appropriate
times. Releasing a product too early could result in
high support costs, perhaps at the expense of new
development. Releasing a product too late could
compromise Digital’s ability to leverage the new
technology most effectively.

Product Development and Technology Transfer
Process for OM
As part of their research and development efforts,
WRL engineers applied OM to large applications.
Researchers and Digital engineers at ISV porting labo-
ratories worked together to share information and to
diagnose the performance problems of programs in

Digital Technical Journal Vol. 8 No. 1 1996 27

use on actual production systems, such as relational
database and CAD applications. This cooperative
effort helped engineers determine the types of opti-
mizations that would benefit the broadest range of
applications. In addition, the engineers were able to
identify those optimizations that would be useful
to specific classes of applications and make them
switch-selectable through the OM interface. The per-
formance improvements achieved on ISV applications
enabled OM to meet the criteria for addressing cus-
tomer needs.

Although WRL researchers also applied OM to the
SPEC benchmark suite to measure performance
improvements, the primary focus of the OM tech-
nology development was to provide performance
improvements for applications currently in widespread
use by the Digital UNIX customer base. With the
focus of performance improvements on large cus-
tomer applications, OM satisfied a prominent Digital
business need for inclusion in the Digital UNIX devel-
opment environment.

Engineers discussed the limitation that OM did not
support shared libraries and the programs that used
them. In this respect, the technology would not meet
the expectations of all customers. Many ISV applica-
tions and other performance-sensitive programs, how-
ever, are built nonshared to improve execution times.
Engineers determined that the benefits for this class
of application outweighed this limitation of OM,
and, therefore, the limitation did not prevent moving
forward to develop the prototype into a product.
Developers recognized the risks and support costs
associated with shipping the prototype, yet again
decided that the proven benefits to existing applica-
tions outweighed these factors.

Because of the pressing business and customer
needs for this technology, DUDE and WRL engineer-
ing concurred that OM should be provided as a fully
supported component in Digital UNIX version 3.0.
Full product development commitments from DUDE
engineering, documentation, and quality assurance
could not be made for that release, however. After
discussion, WRL provided technical support and
extensions to OM to address this need. DUDE engi-
neering agreed to provide consulting support to WRL
researchers on object file and symbol table formats and
on evaluations of text and data optimizations.

The next issue the engineers faced was how to inte-
grate OM into the existing development environment.
They evaluated three approaches.

The first approach was to make OM a separate tool
directly accessible to users as /usr/bin/om. Thus, an
application developer could utilize OM as a separate
step during the build process. This approach offered
two advantages. First, it was similar to the approach
used to achieve the present internal use of OM and

would require few additional modifications to the
Digital UNIX development environment. The second
advantage was that Atom and OM could be more
easily merged into one tool since their usage would be
similar. This merging would provide the potential
efficiencies of a single stream of sources for the object
modification technology.

A major disadvantage of this approach was that it
put additional burden on the application developer.
OM requires a specially linked input file produced by
the linker. This intermediate input file is not a com-
plete executable nor is it a pure OMAGIC file.10 This
approach would require customers to add and debug
additional build steps to use OM on their applications.
The WRL and DUDE engineers agreed that the user
complexity of this approach would be a significant bar-
rier to user acceptance of OM.

The second approach was to change the compiler
driver to invoke OM for linking an executable. With
this approach, a switch would be added to the com-
piler driver. If this switch was given, the driver would
call /usr/lib/cmplrs/cc/om instead of the system
linker to do the final link.

This approach had the advantage of reducing the
complexity of the user interface for building an applica-
tion with OM. A developer could specify one switch to
the compiler driver, and the driver would automatically
invoke OM. This would allow a developer to introduce
feedback-directed optimizations into the program by
simply relinking with the profiling information, thus
making OM easier to use and less error-prone.

The disadvantage of this second approach was that
the complex symbol resolution process in the linker
would need to be added to OM. The process of per-
forming symbol resolution on Digital UNIX operating
systems is nontrivial. There are special rules, boundary
conditions, and constraints that the linker must under-
stand. OM was designed to modify an already resolved
executable, and any problems introduced from adding
linker semantics would discourage its use. Also, dupli-
cating linker capabilities in OM would require addi-
tional overhead in maintaining both components.

The advantages and disadvantages of the second
approach motivated the development of a third
approach. The compiler driver could be changed to
invoke OM during a postlink optimization step. As
in the second approach, a switch from the developer
would trigger the invocation of OM; however, OM
would be run after the linker had performed symbol
and library resolution.

The third approach is the one currently used. This
method maintains separation between the linking and
optimization phases. When directed by the -om switch,
ld produces a specially linked object that will be used as
input to OM. The compiler driver supplies this object
as input to OM when the linking is completed.

28 Digital Technical Journal Vol. 8 No. 1 1996

The WRL and DUDE engineers found that this
functional separation also improved the efficiency of
the development efforts between WRL and DUDE.
The separation permitted concurrent WRL develop-
ment on OM and DUDE development on ld, with
minimal interference. This approach allowed more
development time to be dedicated to technical issues
rather than dealing with source management and inte-
gration issues.

DUDE engineers added the OM sources into the
Digital UNIX development pool and integrated
updates from WRL. WRL assumed responsibility for
testing OM prior to providing source updates. As pre-
viously outlined, DUDE engineers integrated support
for OM into the existing development environment
tools for the initial release.

Because of proven performance improvements on
ISV applications, committed engineering efforts by
WRL, and testing activities at both Digital sites, engi-
neers judged the technology mature enough for release
on production systems. Efficient development strate-
gies enabled Digital to rapidly turn this leading-edge
technology into a product that benefits an important
segment of the Digital UNIX customer base.

WRL continued engineering support for OM
through the Digital UNIX version 3.0 and 3.2 releases.
Responsibility for the technology gradually shifted
from WRL to DUDE over the course of these releases.
Currently, DUDE fully supports and enhances OM
while WRL continues to provide consultation on the
technology and input for future improvements.

Product Development and Technology Transfer
Process for Atom
WRL deployed early versions of the Atom tool kit at
internal Digital sites, ISV porting laboratories, and
universities, thus allowing developers to experiment
with and evaluate the Atom API. The early availability
of the tool kit promoted use of the Atom technology.
User feedback and requests for features helped the
engineers to more quickly and effectively develop a
robust technology from the prototype.

Engineers throughout Digital recognized Atom as a
unique and useful technology. Atom’s API, with
instrumentation and analysis capabilities down to the
instruction level, increased the power and diversity of
tools that could be created for software and hardware
development. Hardware development teams used
Atom to simulate the performance of new Alpha
implementations. Software developers created and
shared Atom tools for debugging and measuring pro-
gram performance. The value of the Atom technology
in solving application development problems provided
the business justification for developing the technol-
ogy into a product.

The prototype version of Atom had several
limitations.

■ Like OM, the prototype version of Atom worked
only on nonshared applications. A production
version of Atom would require support for call-
shared programs and shared libraries, since, by
default, programs are built as call-shared programs.
A viable Atom product offering needed to sup-
port these types of programs, in addition to non-
shared programs.

■ Programs needed to be relinked to retain relocation
information before Atom could be used. This addi-
tional build step impaired the usability of Atom.

■ The Atom prototype performed poorly because it
consumed a large amount of memory. Much of the
data collected about an executable for optimization
purposes was not needed for program analysis
transformations.

■ The Atom API required extensive design and devel-
opment to support call-shared programs and
shared libraries.

The engineers decided to allow the OM and Atom
technologies to diverge so that the differing require-
ments for optimization and program analysis could be
more effectively addressed in each component.

Because the cost of supporting a release of the Atom
prototype would have been high, WRL and DUDE
engineering developed a strategy for simultaneously
releasing the Atom prototype while focusing engineer-
ing efforts on developing the production version. An
Atom Advanced Development Kit (ADK) was released
with Digital UNIX version 3.0 as the initial step of the
strategy. The ADK provided customer access to the
technology with limited support. Engineers viewed
the lack of support for shared executable objects as an
acceptable limitation for the Atom ADK but unaccept-
able for the final product.

In addition to allowing WRL and DUDE engineers
to focus on product development, this first strategic step
permitted the engineering teams more time and flexi-
bility to incrementally add support for Atom into other
production components, such as the linker and the
loader. For usability purposes, minor extensions were
made to the loader to allow it to automatically load
instrumented shared libraries produced by Atom tools.

The second step of the strategy was to provide
updated Atom kits to users as development of the soft-
ware progressed. These kits included the source code
for example tools, manuals, and reference pages. The
update kits performed two functions; they supported
users and they provided feedback to the development
teams. DUDE and WRL engineers posted information
internally within Digital when kits were available and
developed a mailing list of Atom users. The Atom user

Digital Technical Journal Vol. 8 No. 1 1996 29

community grew to include universities and several
external customers.

Once the Atom ADK and update strategy were
established, DUDE engineering began to implement
support for Atom in the linker. As mentioned earlier,
Atom inserts text into a program and requires reloca-
tion information to create a correctly instrumented
executable. The Atom prototype required a program
to be linked to retain the relocation information, and
this requirement presented a usability problem for
users. Ideally, Atom would be able to instrument the
executables and shared libraries produced by default
by the linker.

Modifying the linker to retain all traditional reloca-
tion information by default was not acceptable since
the size increase in the executable would have been
prohibitive. In some cases, 40 percent of the object file
consists of relocation records. Engineers did not view
an increase of that magnitude as a viable solution. In
addition, this solution conflicted with the goal of
Digital UNIX version 3.0 to reduce object file size.
As a compromise, DUDE engineering implemented
compact relocation support in the linker. Compact
relocations provided an acceptable solution since they
required far less space than regular relocation records,
typically less than 0.1 percent of the total file size.

Another side effect of using compact relocations as a
solution was that it introduced a dependency between
Atom and ld. All executable objects to be processed by
Atom needed to have been generated with the linker
that contained compact relocation support. There-
fore, to support Atom, layered product libraries and
third-party libraries needed to be relinked with the
compact relocation support.

In Digital UNIX version 3.0, ld was modified to
generate compact relocation information in exe-
cutable objects. This allowed Atom to instrument the
default output of ld. Engineers viewed this capability
as critical to the usability and ultimate success of the
Atom technology. The compact relocation support in
ld was refined and extended over the course of several
Digital UNIX releases as development work with
Atom progressed.

Concurrently, the WRL research team expanded
and began development of the Atom Third Degree
and hiprof tools. WRL engineers also continued with
additions and improvements to a suite of example
Atom tools.

After the release of Digital UNIX version 3.0,
DUDE began design and development of the produc-
tion version of the core Atom technology and the API.
DUDE engineers modified and extended the Atom
API as tool development progressed at WRL. During
peak development periods, engineers discussed design
issues daily by telephone and electronic mail.

The original Atom ADK included the source code
for a number of example Atom tools. Because some
of these tools contained hardware implementation
dependencies, they would require ongoing and long-
term support to remain operational on changing
implementations of the Alpha architecture. For the sec-
ond shipment of the Atom ADK in Digital UNIX ver-
sion 3.2, these high-maintenance tools were removed
and made available through unsupported channels.

Between releases of the ADK on the Digital UNIX
operating system, the engineering teams continued to
deliver update kits. Engineers scheduled delivery of
the update kits to coincide with key milestones in the
software development process. This strategy gave
them more control over the development schedule
and minimized risk. The update kits provided immedi-
ate field test exposure for the evolving Atom software.
The design, development, and kit process was prac-
ticed iteratively over a year to develop the original
ideas into a full product. The Atom update kits were
provided for Digital UNIX version 3.0 and later sys-
tems, since most users did not have access to early ver-
sions of Digital UNIX version 4.0. Providing Atom
kits for use on pre–version 4.0 systems allowed the
software to be exercised in the field on actual applica-
tions prior to its initial release as a supported product.
Although support for earlier operating system versions
added overhead and complexity to the process of pro-
viding the update kits, the engineering teams valued
the abundance of user feedback that the process
yielded. The benefits of user input to the software
development process outweighed the overhead costs.

During Digital UNIX version 4.0 development,
WRL engineers finalized the implementations of the
hiprof and Third Degree tools and transferred the tool
sources to DUDE for further development. The WRL
developers had added support for threaded applica-
tions on pre–version 4.0 Digital UNIX systems.
Because the implementation of threads changed in
version 4.0, DUDE engineers needed to update the
Atom tools accordingly.

DUDE engineers also developed an Atom-based
pixie tool with support for threaded applications. In
fact, the Atom-based pixie tool replaced the original
version of pixie in Digital UNIX version 4.0. The
Atom-based pixie allowed new features such as sup-
port for shared libraries and threads to be more
efficiently added into the product offering. The devel-
opment of an Atom-based pixie tool solved the exten-
sibility problems that were being faced with the
original version of pixie.

WRL engineers also began to use Atom for instru-
menting pre–version 4.0 Digital UNIX kernels, devel-
oping special tools for collecting kernel statistics.
Atom was extended by DUDE engineering as needed
to support instrumentation and analysis of the kernel.

30 Digital Technical Journal Vol. 8 No. 1 1996

The Atom tool kit and example tools were shipped
with Digital UNIX version 4.0. The pixie, hiprof, and
Third Degree tools were shipped with the Software
Development Environment subset of Digital UNIX
version 4.0. Research regarding use of Atom for kernel
instrumentation and analysis continues.

WRL continues to share ideas and consults
with DUDE on the future directions for the Atom
technology.

Conclusions
Developing OM into a product directly from research
proved to be challenging. Problems and issues that
needed to be addressed had to be handled within the
schedule constraints and pressures of a committed
release plan.

In contrast, the ADK method used to deliver the
Atom product allowed the Atom developers to spend
more time on product development issues in an envi-
ronment relatively free from the pressures associated
with daily schedules. The ADK mechanism, however,
probably limited the exposure of Atom technology at
some customer sites.

The close cooperation of engineers from both
research and development was necessary to accom-
plish the goals of the two projects. We believe that a
collaborative development paradigm was key to suc-
cessfully bringing research to product.

Future Directions

This paper describes the evolution of the OM and
Atom technologies through the release of the Digital
UNIX version 4.0 operating system. Digital plans to
investigate many new and improved capabilities, some
intended for future product releases. Plans are under
way to

■ Provide support in OM for call-shared programs
and shared libraries.

■ Support the use of Atom tools on programs opti-
mized with OM.

■ Investigate providing an API to allow program-
mable, customized optimizations to be delivered
through OM.

■ Investigate reuse of instrumented shared libraries
by multiple call-shared programs that have been
instrumented with the same Atom tool.

■ Research support for Atom tools that provide sys-
temwide and per-process analysis of shared libraries.

■ Extend Atom to improve kernel analysis.
■ Simplify the use of the profiling-directed optimiza-

tion facilities of Atom and OM through an
improved interface.

■ Extend the Atom tool kit to provide development
support for thread-safe program analysis tools.

In addition to enhancements to the Atom product,
original Atom-based tools are expected to become avail-
able through the development activities of students and
educators at universities. Internal Digital developers will
continue to develop and share tools as well.

Acknowledgments

Many people contributed to the development of the
OM and Atom products. The following list gives
recognition to those most actively involved. Amitabh
Srivastava led the research and development work at
WRL on OM and Atom and mediated many of the
design discussions on the Atom design. Greg Lueck of
DUDE designed and implemented the production
version of Atom, compact relocations, and the Atom-
based pixie tool. Alan Eustace developed Atom exam-
ple tools, created the first Atom ADK, worked
diligently with users, developed kernel tools, provided
training and documentation on using Atom, and dis-
played eternal optimism. Russell Kao at WRL con-
tributed the hiprof tool with thread support. Jeremy
Dion and Louis Monier at WRL developed Third
Degree and an Atom-based code coverage tool called
tracker. John Williams and Chris Clark of DUDE com-
pleted the process of turning the hiprof, pixie and
Third Degree tools into products. Dick Buttlar pro-
vided documentation on every component. Last but
not least, the authors wish to extend a final thanks to
all the users who contributed feedback to the OM and
Atom development teams.

References

1. F. Chow, M. Himelstein, E. Killian, and L. Weber,
“Engineering a RISC Compiler System,” Proceedings
of COMPCON, San Francisco, Calif. (March 1986):
132–137.

2. Western Research Laboratory, located on the Web at
http://www.research.digital.com/wrl.

3. R. Sites and R. Witek, Alpha AXP Architecture Refer-
ence Manual, 2d ed. (Newton, Mass.: Digital Press,
1995).

4. A. Srivastava and D. Wall, “A Practical System for
Intermodule Code Optimization at Link-time,” Jour-
nal of Programming Languages, vol. 1 (1993):
1–18. Also available as WRL Research Report 92/6
(December 1992).

5. A. Srivastava, “Unreachable Procedures in Object-
oriented Programming,” ACM LOPLAS, vol. 1, no. 4
(December 1992): 355–364. Also available as WRL
Research Report 93/4 (August 1993).

6. A. Eustace and A. Srivastava, “ATOM: A Flexible
Interface for Building High Performance Program
Analysis Tools,” Proceedings of the Winter 1995
USENIX Conference, New Orleans, La. (January
1995). Also available as WRL Technical Note TN-44
(July 1994).

7. A. Srivastava and A. Eustace, “ATOM: A System for
Building Customized Program Analysis Tools,” Pro-
ceedings of the SIGPLAN ’94 Conference on Pro-
gramming Language Design and Implementation,
Orlando, Fla. (June 1994). Also available as WRL
Research Report 94/2 (March 1994).

8. A. Srivastava and D. Wall, “Link-Time Optimization of
Address Calculation on a 64-bit Architecture,” Pro-
ceedings of the SIGPLAN ’94 Conference on Pro-
gramming Language Design and Implementation,
Orlando, Fla. (June 1994). Also available as WRL
Research Report 94/1 (February 1994).

9. Digital UNIX Calling Standard for Alpha Systems,
Order No. AA-PY8AC-TE, Digital UNIX version 4.0
or higher (Maynard, Mass.: Digital Equipment Corpo-
ration, 1996).

10. Digital UNIX Assembly Language Programmer’s
Guide, Order No. AA-PS31C-TE, Digital UNIX ver-
sion 4.0 or higher (Maynard, Mass.: Digital Equip-
ment Corporation, 1996).

General Reference

J. Larus and E. Schnarr, “EEL: Machine-Independent Exe-
cutable Editing,” SIGPLAN Conference on Programming
Language Design and Implementation (June 1995).

Biographies

Digital Technical Journal Vol. 8 No. 1 1996 31

Linda S. Wilson
As a principal software engineer in the Digital UNIX
Development Environment group, Linda Wilson leads
the development of program analysis tools for the Digital
UNIX operating system. In prior positions, she was respon-
sible for the delivery of other development environment
components, including DEC FUSE, the dbx debugger,
and run-time libraries on the ULTRIX and Digital UNIX
operating systems. Linda received a B.S. in computer sci-
ence from the University of Nebraska-Lincoln. Before
joining Digital in 1989, Linda held software engineering
positions at Masscomp in Westford, Massachusetts, and
Texas Instruments in Austin, Texas.

Craig A. Neth
Craig Neth is a principal software engineer in the Digital
UNIX Development Environment group, where he is the
technical leader of link-time tools. In prior positions at
Digital, Craig has worked on the OM object modification
tool and the VAX and DEC COBOL compilers, and led
the development of DEC COBOL versions 1 and 2. Craig
received a B.S. in computer science from Purdue University
in 1984 and an M.S. in computer science from the
University of Illinois in 1986.

Michael J. Rickabaugh
Michael Rickabaugh is a principal software engineer in
the Digital UNIX Development Environment group.
He started his Digital career in 1986 in the SEG/CAD
Engineering group as a software engineer on the DECSIM
logic simulation project. In 1991, Michael transitioned
to the DEC OSF/1 AXP project and was a member of
the original team responsible for delivering the UNIX
development environment on the DEC OSF/1 Alpha
platform. He has since been a technical contributor to
all aspects of the Digital UNIX link-time technology
as well as the creator of the ASAXP assembler for the
Windows NT operating system. Michael received a B.S.
in electrical and computer engineering from Carnegie
Mellon University in 1986.

