
The primary goal for the first release of the TruCluster
system for the Digital UNIX operating system was to
develop a high-performance commercial database
server environment running on a cluster of several
nodes. Database applications often require computing
power and I/O connectivity and bandwidth greater
than that provided by most single systems. In addi-
tion, availability is a key requirement for enterprises
that are dependent on database services for normal
operations. These requirements led us to implement a
cluster of computers that cooperate to provide services
but fail independently. Thus, both performance and
availability are addressed. 

We chose an industry-standard benchmark to gauge
our success in meeting performance goals. The
Transaction Processing Performance Council TPC-C
benchmark is a widely accepted measurement of the
capability of large servers. Our goal was to achieve
industry-leading numbers in excess of 30,000 transac-
tions per minute (tpmC) with a four-node TruCluster
system. 

The TruCluster version 1.0 product provides
reliable, shared access to large amounts of storage,
distributed synchronization for applications, efficient
cluster communication, and application failover. The
focus on database servers does not mean that the
TruCluster system is not suitable for other applica-
tions, but that the inevitable design decisions and
trade-offs for the first product were made with this
goal in mind. Although other aspects of providing 
a single-system view of a cluster are important, they
are secondary objectives and will be phased into the
product over time. 

This paper begins with a brief comparison of com-
puter systems and presents the advantages of clustered
computing. Next, it introduces the TruCluster prod-
uct and describes the design of its key software compo-
nents and their relationship to database applications.
The paper then discusses the design of the MEMORY
CHANNEL interconnect for cluster systems, along
with the design of the low-level software foundation
for cluster synchronization and communication.
Finally, it addresses application failover and hardware
configurations. 

Digital Technical Journal Vol. 8 No. 1 1996 5

Design of the TruCluster
Multicomputer System
for the Digital UNIX
Environment 

Wayne M. Cardoza
Frederick S. Glover
William E. Snaman, Jr.

The TruCluster product from Digital provides 
an available and scalable multicomputer sys-
tem for the UNIX environment. Although it was
designed for general-purpose computing, the
first implementation is directed at the needs 
of large database applications. Services such 
as distributed locking, failover management,
and remote storage access are layered on a 
high-speed cluster interconnect. The initial
implementation uses the MEMORY CHANNEL,
an extremely reliable, high-performance inter-
connect specially designed by Digital for the
cluster system. 



Brief Comparison of Computing Systems

Contemporary computing systems evolved from
centralized, single-node time-sharing systems into sev-
eral distinct styles of multinode computer systems.
Single-node systems provided uniform accessibility 
to resources and services and a single-management
domain. They were limited with respect to scalability,
however, and system failures usually resulted in a com-
plete loss of service to clients of the system. 

Multinode computer systems include symmetric
multiprocessing (SMP) systems and massively parallel
processors (MPPs). They also include network-based
computing systems such as the Open Software
Foundation Distributed Computing Environment
(OSF DCE), Sun Microsystems Inc.’s Open Network
Computing (ONC), and workstation farms.1,2 Each of
these systems addresses one or more of the benefits
associated with clustered computing. 

SMP configurations provide for tightly coupled,
high-performance resource sharing. In their effective
range, SMP systems provide the highest-performance
single-system product for shared-resource applica-
tions. Outside that range, however, both hardware
and software costs increase rapidly as more processors
are added to an SMP system. In addition, SMP avail-
ability characteristics are more closely associated with
those of single systems because an SMP system, by def-
inition, is composed of multiple processors but not
multiple memories or I/O subsystems. 

MPP systems such as the Intel Paragon series were
developed to support complex, high-performance
parallel applications using systems designed with hun-
dreds of processors. The individual processors of an
MPP system were typically assigned to specific tasks,
resulting in fairly special-purpose machines. 

The DCE and ONC technologies provide support
for common naming and access capabilities, user
account management, authentication, and the replica-
tion of certain services for improved availability.
Workstation farms such as the Watson Research Cen-
tral Computer Cluster deliver support for the parallel
execution of applications within multiple computer
environments typically constructed using off-the-shelf
software and hardware.3 ONC, DCE, and farms pro-
vide their services and tools in support of heteroge-
neous, multivendor computing environments with
hundreds of nodes. They are, however, much further
away from realizing the benefits of a single-system view
associated with clustered computing. 

In the continuum of multinode computer systems,
the advantage of the cluster system is its ability to
provide the single-system view and ease of manage-
ment associated with SMP systems and at the same
time supply the failure isolation and scalability of dis-
tributed systems. 

Cluster systems have clear advantages over large-
scale parallel systems on one side and heterogeneous
distributed systems on the other side. Cluster systems
provide many cost and availability advantages over
large parallel systems. They are built of standard build-
ing blocks with no unusual packaging or interconnect
requirements. Their I/O bandwidth and storage con-
nectivity scale well with standard components. They
are inherently more tolerant of failures due to looser
coupling. Parallel or multiprocessor systems should be
thought of as cluster components, not as cluster
replacements. 

Cluster systems have a different set of advantages
over distributed systems. First they are homogeneous
in nature and more limited in size. Cluster systems can
be more efficient when operating in more constrained
environments. Data formats are known; there is a 
single-security domain; failure detection is certain; and
topologies are constrained. Cluster systems also are
likely to have interconnect performance advantages.
Protocols are more specialized; interconnect charac-
teristics are more uniform; and high performance can
be guaranteed. Finally, the vendor-specific nature of
cluster systems allows them to evolve faster than het-
erogeneous distributed systems and will probably
always allow them to have advantages. 

There are numerous examples of general-purpose
clusters supplied by most computer vendors, including
AT&T, Digital, Hewlett-Packard, International Busi-
ness Machines Corporation, Sequent Computer Sys-
tems, Sun Microsystems, and Tandem Computers.
Digital’s OpenVMS cluster system is generally accepted
as the most complete cluster product offering in the
industry, and it achieves many of the single-system
management attributes.4 Much of the functionality of
the OpenVMS cluster system is retained in Digital’s
TruCluster product offerings. 

Structure of the TruCluster System

Digital’s TruCluster multicomputer system is a highly
available and scalable structure of UNIX servers that
preserves many of the benefits of a centralized, single
computer system. The TruCluster product is a collec-
tion of loosely coupled, general-purpose computer
systems connected by a high-performance intercon-
nect. It maintains a single security domain and is man-
aged as a single system. Each cluster node may be 
a uniprocessor or a multiprocessor system executing
the Digital UNIX operating system. Figure 1 shows 
a typical cluster configuration. 

Each cluster member is isolated from software and
hardware faults occurring on other cluster members.
Thus, the TruCluster system does not have the tightly
coupled, “fail together” characteristics of multiproces-
sor systems. Cluster services remain available even
when individual cluster members are temporarily

6 Digital Technical Journal Vol. 8 No. 1 1996



unavailable. Other important availability objectives of
the TruCluster server include quick detection of com-
ponent and member failures, on-line reconfigurations
to accommodate the loss of a failed component, and
continued service while safe operation is possible. 

The TruCluster product supports large, highly
available database systems through several of its key
components. First, the distributed remote disk (DRD)
facility provides reliable, transparent remote access to
all cluster storage from any cluster node. Next, the dis-
tributed lock manager (DLM) enables the elements of
a distributed database system to synchronize activity
on independent cluster nodes. Finally, elements of
Digital’s DECsafe Available Server Environment
(ASE) provide application failover.5 In support of all
these components is the connection manager, which
controls cluster membership and the transition of
nodes in and out of the cluster. Figure 2 is a block dia-
gram showing the relationships between components. 

Each major component is described in the remain-
der of this paper. In addition, we describe the high-
performance MEMORY CHANNEL interconnect
that was designed specifically for the needs of cluster
systems. 

Distributed Remote Disk Subsystem

The distributed remote disk (DRD) subsystem was
developed to support database applications by present-
ing a clusterwide view of disks accessed through the
character or raw device interface. The Oracle Parallel
Server (OPS), which is a parallelized version of the
Oracle database technology, uses the DRD subsystem. 

The DRD subsystem provides a clusterwide name-
space and access mechanism for both physical and log-
ical (logical storage manager or LSM) volumes. The
LSM logical device may be a concatenated, a striped,

or a mirrored volume. DRD devices are accessible
from any cluster member using the DRD device name.
This location independence allows database software
to treat storage as a uniformly accessible cluster
resource and to easily load balance or fail over activity
between cluster nodes. 

Cluster Storage Background 
Disk devices on UNIX systems are commonly accessed
through the UNIX file system and an associated block
device special file. A disk device may also be accessed
through a character device special file or raw device
that provides a direct, unstructured interface to the
device and bypasses the block buffer cache. 

Database management systems and some other
high-performance UNIX applications are often
designed to take advantage of the character device spe-
cial file interfaces to improve performance by avoiding
additional code path length associated with the file sys-
tem cache.6,7 The I/O profile of these systems is char-
acterized by large files, random access to records,
private data caches, and concurrent read-write sharing. 

Overall Design of the DRD 
The DRD subsystem consists of four primary compo-
nents. The remote raw disk (RRD) pseudo-driver redi-
rects DRD access requests to the cluster member
serving the storage device. The server is identified by
information maintained in the DRD device database
(RRDB). Requests to access local DRD devices are
passed through to local device drivers. The block ship-
ping client (BSC) sends requests for access to remote
DRD devices to the appropriate DRD server and
returns responses to the caller. The block shipping
server (BSS) accepts requests from BSC clients, passes
them to its local driver for service, and returns the
results to the calling BSC client. Figure 3 shows the
components of the DRD subsystem. 

The DRD management component supports DRD
device naming, device creation and deletion, device
relocation, and device status requests. During the
DRD device creation process, the special device file
designating the DRD device is created on each cluster
member. In addition, the DRD device number, its cor-
responding physical device number, the network
address of the serving cluster member, and other con-
figuration parameters are passed to the DRD driver,
which updates its local database and communicates
the information to other cluster members. The DRD
driver may be queried for device status and DRD data-
base information. 

Clusterwide Disk Access Model 
During the design of the DRD subsystem, we consid-
ered both shared (multiported) and served disk models.
A multiported disk configuration provides good failure
recovery and load balancing characteristics. On the

Digital Technical Journal Vol. 8 No. 1 1996 7

NODE 0 NODE 1

NODE 2 NODE 3

MEMORY CHANNEL

INTERCONNECT

DISKS

SCSI BUS

DISKS

Figure 1 
Configuration of a Four-node Cluster System



8 Digital Technical Journal Vol. 8 No. 1 1996

DISTRIBUTED DIRECTORY SERVICE

RESOURCE MANAGER RESOURCE MANAGER

COMMUNICATION SERVICES

DECSAFE ASE AVAILABILITY SERVICES

DATABASE INSTANCE DATABASE INSTANCE

DISTRIBUTED LOCK MANAGER

DRD I/O

REDIRECTION

DISTRIBUTED REMOTE DEVICE

DRD BLOCK

SHIPPING

SERVER DATA


MOVER

DRD BLOCK

SHIPPING

CLIENT

DRD I/O

REDIRECTION

DRD BLOCK

SHIPPING

CLIENT

DRD BLOCK

SHIPPING

SERVER

LOCAL DEVICE DRIVERSMEMORY CHANNEL

SERVICES

MEMORY CHANNEL

SERVICES

LOCAL DEVICE DRIVERS

MEMORY CHANNEL BUS

SHARED

STORAGE

NODE C NODE D

AVAILABILITY

MANAGER

CONNECTION

MANAGER

AGENT

STANDBY

CONFIGURATION

MANAGER

RAW DISK

INTERFACE

LOCK

MANAGER

INTERFACE

NODE A 

RAW DISK

INTERFACE

LOCK

MANAGER

INTERFACE

ACTIVE

CONFIGURATION

MANAGER

CONNECTION

MANAGER

AGENT

AVAILABILITY

MANAGER

NODE B 

SHARED SCSI BUS

Figure 2 
Software Components

ACCESS TO /dev/drd/drd5 ACCESS TO /dev/drd/drd5

DRD CLIENT

REMOTE DISK DRIVER

BLOCK SHIPPING

CLIENT

DEVICE DRIVER




DRD DEVICE

DATABASE

LSM

REMOTE DISK DRIVER

BLOCK SHIPPING

SERVER

LSM

DEVICE DRIVER

DRD SERVER

Figure 3 
Distributed Remote Disk Subsystem



other hand, I/O bus contention and hardware queuing
delays from fully connected, shared disk configurations
can limit scalability. In addition, present standard I/O
bus technologies limit configuration distances.8 As a
consequence, we selected a served disk model for the
DRD implementation. With this model, software
queuing alleviates the bus contention and bus queuing
delays. This approach provides improved scalability and
fault isolation as well as flexible storage configura-
tions.9,10 Full connectivity is not required, and extended
machine room cluster configurations can be con-
structed using standard networks and I/O buses. 

The DRD implementation supports clusterwide
access to DRD devices using a software-based emula-
tion of a fully connected disk configuration. Each
device is assigned to a single cluster member at a time.
The member registers the device into the cluster-
wide namespace and serves the device data to other
cluster members. Failure recovery and load-balancing
support are included with the DRD device implemen-
tation. The failure of a node or controller is transpar-
ently masked when another node connected to the
shared bus takes over serving the disk. As an option,
automatic load balancing can move service of the disk
to the node generating the most requests. 

In the TruCluster version 1.0 product, data is
transferred between requesting and serving cluster
members using the high-bandwidth, low-latency
MEMORY CHANNEL interconnect, which also sup-
ports direct memory access (DMA) between the I/O
adapter of the serving node and the main memory of
the requesting node. The overall cluster design, how-
ever, is not dependent on the MEMORY CHANNEL
interconnect, and alternative cluster interconnects will
be supported in future software releases. 

DRD Naming 
The Digital UNIX operating system presently supports
character device special file names for both physical disk
devices and LSM logical volumes and maintains a sepa-
rate device namespace for each. An important DRD
design objective was to develop a clusterwide naming
scheme integrating the physical and logical devices
within the DRD namespace. We considered defining 
a new, single namespace to support all cluster disk
devices. Our research, however, revealed plans to intro-
duce significant changes into the physical device nam-
ing scheme in a future base system release and the
complications of licensing the logical disk technology
from a third party that maintains control over the logi-
cal volume namespace. These issues resulted in defer-
ring a true clusterwide device namespace. 

As an interim approach, we chose to create a sepa-
rate, clusterwide DRD device namespace layered on
the existing physical and logical device naming

schemes. Translations from DRD device names into
the underlying physical and logical devices are main-
tained by the DRD device mapping database on each
cluster node. DRD device “services” are created by 
the cluster administrator using the service registra-
tion facility.11 Each “add Service” management opera-
tion generates a unique service number that is 
used in constructing the DRD device special file name.
This operation also creates the new DRD device
special file on each cluster member. A traditional
UNIX-device-naming convention results in the cre-
ation of DRD special device file names in the form of
/dev/drd/drd{service number}.12

DRD Relocation and Failover 
ASE failover (see the discussion in the section
Application Failover) is used to support DRD failover
and is fully integrated within the cluster product. The
device relocation policy defined during the creation of
a DRD device indicates whether the device may be
reassigned to another cluster member as a result of 
a node or controller failure or a load-balancing opera-
tion. In the event of a cluster member failure, DRD
devices exported by the failed member are reassigned
to an alternate server attached to the same shared I/O
bus. During reassignment, the DRD device databases
are updated on all cluster members and DRD I/O
operations are resumed. Cluster device services may
also be reassigned during a planned relocation, such 
as for load balancing or member removal. Any DRD
operation in progress during a relocation triggered by
a failure will be retried based upon the registered DRD
retry policy. The retry mechanism must revalidate the
database translation map for the target DRD device
because the server binding may have been modified.
Failover is thus transparent to database applications
and allows them to ignore configuration changes. 

Several challenges result from the support of
multiported disk configurations under various failure
scenarios. One of the more difficult problems is distin-
guishing a failed member from a busy member or a
communication fault. The ASE failover mechanism was
designed to maintain data integrity during service
failover, and to ensure that subsequent disk operations
are not honored from a member that has been declared
“down” by the remaining cluster members. This ASE
mechanism, which makes use of small computer sys-
tems interface (SCSI) target mode and device reserva-
tion, was integrated into the TruCluster version 1.0
product and supports the DRD service guarantees. 

Other challenges relate to preserving serialization
guarantees in the case of cluster member failure.
Consider a parallel application that uses locks to serial-
ize access to shared DRD devices. Suppose the applica-
tion is holding a write lock for a given data block and

Digital Technical Journal Vol. 8 No. 1 1996 9



issues an update for that block. Before the update
operation is acknowledged, however, the local mem-
ber fails. The distributed lock manager, which will
have been notified of the member failure, then takes
action to release the lock. A second cooperating appli-
cation executing on another cluster member now
acquires the write lock for that same data block and
issues an update for that block. If the failure had not
occurred, the second application would have had to
wait to acquire a write lock for the data block until the
first application released the lock, presumably after its
write request had completed. This same serialization
must be maintained during failure conditions. Thus, it
is imperative that the write issued by the first (now
failed) application partner not be applied after the
write issued by the second application, even in the
presence of a timing or network retransmission anom-
aly that delays this first write. 

To avoid the reordering scenario just described, 
we employed a solution called a sequence barrier in
which the connection manager increments a sequence
number each time it completes a recovery transition
that results in released locks. The sequence number 
is communicated to each DRD server, which uses 
the sequence number as a barrier to prevent apply-
ing stale writes. This is similar to the immediate com-
mand feature of the Mass Storage Control Protocol
(MSCP) used by OpenVMS cluster systems to provide
similar guarantees. Note that no application changes
are required. 

As another example, client retransmissions of 
DRD protocol requests that are not idempotent can
cause serious consistency problems. Request transac-
tion IDs and DRD server duplicate transaction caches
are employed to avoid undesirable effects of client-
generated retransmissions.13

Cluster member failures are mostly transparent to
applications executing on client member systems.
Nondistributed applications may fail, but they can be
automatically restarted by ASE facilities. DRD devices
exported by a serving member become unavailable for
a small amount of time when the member fails. Cluster
failover activities that must occur before the DRD
service is again available include detecting and verify-
ing the member failure, purging the disk device SCSI
hardware reservation, assigning an alternate server,
establishing the new reservation, and bringing the
device back on-line. A database application serving
data from the DRD device at the time of the failure
may also have registered to have a restart script with 
a recovery phase executed prior to the restart of the
database application. A possible lack of transparency
may result if some client applications are not designed
to accommodate this period of inaccessible DRD ser-
vice. The DRD retry request policy is configurable 
to accommodate applications interacting directly with
a DRD device. 

Distributed Lock Manager

The distributed lock manager (DLM) provides syn-
chronization services appropriate for a highly paral-
lelized distributed database system. Databases can use
locks to control access to distributed copies of data
buffers (caches) or to limit concurrent access to shared
disk devices such as those provided by the DRD sub-
system. Locks can also be used for controlling applica-
tion instance start-up and for detecting application
instance failures. In addition, applications can use the
locking services for their other synchronization needs. 

Even though this is a completely new implementa-
tion, the lock manager borrows from the original
design and concepts introduced in 1984 with the
VAXcluster distributed lock manager.14 These concepts
were used in several recent lock manager implementa-
tions for UNIX by other vendors. In addition, the
Oracle Parallel Server uses a locking application pro-
gramming interface (API) that is conceptually similar
to that offered here. 

Usage of the DLM 
The lock manager provides an API for request-
ing, releasing, and altering locks.15,16 These locks are
requested on abstract names chosen by the applica-
tion. The names represent resources and may be orga-
nized in a hierarchy. When a process requests a lock on
a resource, that request is either granted or denied
based on examination of locks already granted on the
resource. Cooperating components of an application
use this service to achieve mutually exclusive resource
usage. In addition, a mode associated with each lock
request allows traditional levels of sharing such as mul-
tiple readers excluding all writers. 

The API provides optional asynchronous request
completion to allow queuing requests or overlapping
multiple operations for increased performance.
Queuing prevents retry delays, eliminates polling
overhead, and provides a first in, first out (FIFO) fair-
ness mechanism. In addition, asynchronous requests
can be used as the basis of a signaling mechanism to
detect component failures in a distributed system. One
component acquires an exclusive lock on a named
resource. Other components queue incompatible
requests with asynchronous completion specified. If
the lock holder fails or otherwise releases its lock, the
waiting requests are granted. This usage is sometimes
referred to as a “dead man” lock.17

A process can request notification when a lock it
holds is blocking another request. This allows elimina-
tion of many lock calls by effectively caching locks.
When resource contention is low, a lock is acquired
and held until another process is blocked by that lock.
Upon receiving blocking notification, the lock can be
released. When resource contention is high, the lock 
is acquired and released immediately. In addition, this

10 Digital Technical Journal Vol. 8 No. 1 1996



notification mechanism can be used as the basis of a
general signaling mechanism. One component of the
application acquires an exclusive lock on a named
resource with blocking notification specified. Other
components then acquire incompatible locks on that
resource, thus triggering the blocking notification.
This usage is known as a “doorbell” lock.17

The DLM is often used to coordinate access to
resources such as a distributed cache of database
blocks. Multiple copies of the data are held under
compatible locks to permit read but not write access.
When a writer wants an incompatible lock, readers are
notified to downgrade their locks and the writer is
granted the lock. The writer modifies the data before
downgrading its lock. The reader’s lock requests are
again granted, and the reader fetches the latest copy of
the data. A value block can also be associated with each
resource. Its value is obtained when a lock is granted
and can be changed when certain locks are released.
The value block can be used to communicate any use-
ful information, including the latest version number of
cached data protected by the resource. 

Design Goals of the DLM 
The overall design goal of the lock manager was to
provide services for highly scalable database systems.
Thus correctness, robustness, scaling, and speed were
the overriding subgoals of the project. 

Careful attention to design details, rigorous testing,
internal consistency checking, and years of experience
working with the VMS distributed lock manager have
all contributed to ensuring the correctness of the
implementation for the Digital UNIX system. Because
the lock manager provides guarantees about the state
of all locks when either a lock holder or the node upon
which it is running fails, it can ensure the internal lock
state is consistent as far as surviving lock holders are
concerned. This robustness permits the design of
applications that can continue operation when a clus-
ter node fails or is removed for scheduled service. The
choice of a kernel-based service and the use of a mes-
sage protocol also contribute to robustness as dis-
cussed below. 

In terms of performance and scaling, the lock man-
ager is designed for minimal overhead to its users. The
kernel-based service design provides high perfor-
mance by eliminating the context switch overhead
associated with server daemons. The lock manager
uses the kernel-locking features of the Digital UNIX
operating system for good scaling on SMP systems. A
kernel-based service as opposed to a library also allows
the lock manager to make strong guarantees about the
internal consistency state of locks when a lock-holding
process fails. 

The message protocol contributes to cluster scaling
and performance through a scaling property that
maintains a constant cost as nodes are added to the

cluster.14 The message protocol also provides suffi-
ciently loose coupling to allow the lock manager to
maintain internal lock state when a node fails. The use
of messages controls the amount of internal state visi-
ble to other nodes and provides natural checkpoints,
which limit the damage resulting from the failure of 
a cluster node. 

DLM Communication Services 
The DLM session service is a communication layer
that takes advantage of MEMORY CHANNEL fea-
tures such as guaranteed ordering, low error rate, and
low latency. These features allow the protocol to be
very simple with an associated reduction in CPU over-
head. The service provides connection establishment,
delivery and order guarantees, and buffer manage-
ment. The connection manager uses the communi-
cation service to establish a channel for the lock
manager. The lock manager uses the communication
services to communicate between nodes. Because the
service hides the details of the communication mecha-
nism, alternative interconnects can be used without
changes to the lock manager’s core routines. 

The use of the MEMORY CHANNEL interconnect
provides a very low latency communication path for
small messages. This is ideal for the lock manager since
lock messages tend to be very small and the users of
the lock manager are sensitive to latency since they
wait for the lock to be granted before proceeding.
Small messages are sent by simply writing them into
the receiving node’s memory space. No other com-
munication setup needs to be performed. Many net-
work adapters and communication protocols are
biased toward providing high throughput only when
relatively large packets are used. This means that the
performance drops off as the packet size decreases.
Thus, the MEMORY CHANNEL interconnect pro-
vides a better alternative for communicating small,
latency-sensitive packets. 

Connection Manager

The connection manager defines an operating envi-
ronment for the lock manager. The design allows gen-
eralization to other clients; but in the TruCluster
version 1.0 product, the lock manager is the only con-
sumer of the connection manager services. The envi-
ronment hides the details of dynamically changing
configurations. From the perspective of the lock man-
ager, the connection manager manages the addition
and removal of nodes and maintains a communication
path between each node. These services allowed us to
simplify the lock manager design. 

The connection manager treats each node as a mem-
ber of a set of cooperating distributed components. 
It maintains the consistency of the set by admitting
and removing members under controlled conditions. 

Digital Technical Journal Vol. 8 No. 1 1996 11



The connection manager provides configuration-
related event notification and other support services 
to each member of a set. It provides notification when
members are added and removed. It also maintains a
list of current members. The connection manager also
provides notification to clients when unsafe operation
is possible as a result of partitioning. Partitioning exists
when a member of a set is unaware of the existence of
a disjoint set of similar clients. 

The connection manager can be extended in 
client-specific ways to facilitate handling of mem-
bership change events. Extensions are integral, well-
synchronized parts of the membership change
mechanism. The lock manager uses an extension to
distribute a globally consistent directory database and
to coordinate lock database rebuilds. 

The connection manager maintains a fully con-
nected web of communication channels between
members of the set. Membership in the set is contin-
gent upon being able to communicate with all other
members of that set. The use of the communication
channels is entirely under the control of the lock man-
ager or any other client that may use the connection
manager in the future. When a client requests admis-
sion to a set, the connection manager establishes a
communication channel between the new client and
all existing clients. It monitors these connections to
ensure they remain functional. A connection fails
when a communication channel is unusable between 
a pair of clients or when a client at either end of the
channel fails. The connection manager detects these
conditions and reconfigures the set to contain only
fully connected members. 

The combination of a highly available communi-
cation channel, together with set membership and
synchronized membership change responses, allows
optimizations in the lock manager’s message protocol.
The lock manager can send a message to another node
and know that either the message will be delivered or
that the configuration will be altered so that it does
not matter. 

The use of the connection manager greatly sim-
plifies the design and implementation of the lock
manager. The connection manager allows most of 
the logic for handling configuration changes and com-
munication errors to be moved away from main code
paths. This increases mainline performance and simpli-
fies the logic, allowing more emphasis on correct and
efficient operation. 

Memory Channel Interconnect

Cluster performance is critically dependent on the
cluster interconnect. This is due both to the high-
bandwidth requirements of bulk data transport for
DRD and to the low latency required for DLM opera-
tions. Although the cluster architecture allows for any
high-speed interconnect, the initial implementation
supports only the new MEMORY CHANNEL inter-
connect designed specifically for the needs of cluster
systems. This very reliable, high-speed interconnect is
based on a previous interconnect designed by Encore
Computer Corporation.18 It has been significantly
enhanced by Digital to improve data integrity and
provide for higher performance in the future. 

Each cluster node has a MEMORY CHANNEL
interface card that connects to a hub. The hub can be
thought of as a switch that provides either broadcast or
point-to-point connections between nodes. It also
provides ordering guarantees and does a portion of
the error detection. The current implementation is an
eight-node hub, but larger hubs are planned. 

The MEMORY CHANNEL interconnect pro-
vides a 100-megabyte-per-second, memory-mapped
connection to other cluster members. As shown in
Figure 4, cluster members may map transfers from the 
MEMORY CHANNEL interconnect directly into
their memory. The effect is of a write-only window
into the memory of other cluster systems. Transfers
are done with standard memory access instructions
rather than special I/O instructions or device access 

12 Digital Technical Journal Vol. 8 No. 1 1996

PAGE

PAGENORMAL

MEMORY

WRITE

NODE 0

ADDRESS SPACE

PAGE

MEMORY

CHANNEL

TRANSFER

MEMORY CHANNEL

BUS ADDRESS SPACE

NODE 1 MEMORY

MEMORY

CHANNEL

TRANSFER

Figure 4 
Transfers Performed by the MEMORY CHANNEL Interconnect



protocols to avoid the overhead usually present with
these techniques. The use of memory store instruc-
tions results in extremely low latency (two microsec-
onds) and low overhead for a transfer of any length. 

The MEMORY CHANNEL interconnect guaran-
tees essentially no undetected errors (approximately
the same undetected error rate as CPUs or memory),
allowing the elimination of checksums and other
mechanisms that detect software errors. The detected
error rate is also extremely low (on the order of one
error per year per connection). Since recovery code
executes very infrequently, we are assured that rela-
tively simple, brute-force recovery from software
errors is adequate. Using hardware error insertion, we
have tested recovery code at error rates of many per
second. Thus we are confident there are no problems
at the actual rates. 

Low-level MEMORY CHANNEL Software 
Low-level software interfaces are provided to insulate
the next layer of software (e.g., lock manager and dis-
tributed disks) from the details of the MEMORY
CHANNEL implementation. We have taken the
approach of providing a very thin layer to impact per-
formance as little as possible and allow direct use of the
MEMORY CHANNEL interconnect. Higher-level
software then isolates its use of MEMORY CHANNEL
in a transport layer that can later be modified for addi-
tional cluster interconnects. 

The write-only nature of the MEMORY CHANNEL
interconnect leads to some challenges in designing
and implementing software. The only way to see a
copy of data written to the MEMORY CHANNEL
interconnect is to map MEMORY CHANNEL trans-
fers to another region of memory on the same node.
This leads to two very visible programming con-
straints. First, data is read and written from different
addresses. This is not a natural programming style, and
code must be written to treat a location as two vari-
ables, one for read and one for write. Second, the
effect of a write is delayed by the transfer latency. At
two microseconds, this is short but is enough time to
execute hundreds of instructions. Hardware features
are provided to stall until data has been looped back,
but very careful design is necessary to minimize these
stalls and place them correctly. We have had several
subtle problems when an algorithm did not include a
stall and proceeded to read stale data that was soon
overwritten by data in transit. Finding these problems
is especially difficult because much evidence is gone by
the time the problem is observed. For example, con-
sider a linked list that is implemented in a region of
memory mapped to all cluster nodes through the
MEMORY CHANNEL interconnect. If two elements
are inserted on the list without inserting proper waits

for the loopback delay, the effect of the first insert will
not be visible when the second insert is done. This
results in corrupting the list. 

The difficulties just described are most obvious
when dealing with distributed shared memory. Low-
level software intended to support applications is
instead oriented toward a message-passing model.
This is especially apparent in the features provided for
error detection. The primary mechanisms allow either
the receiving or the sending node to check for any
errors over a bounded period of time. This error check
requires a special hardware transaction with each node
and involves a loopback delay. If an error occurs, 
the sender must retransmit all messages and the
receiver must not use any data received in that time.
This mechanism works well with the expected error
rates. However, a shared memory model makes it
extremely difficult to bound the data affected by an
error, unless each modification of a data element 
is separately checked for errors. Since this involves 
a loopback delay, many of the perceived efficiencies 
of shared memory may disappear. This is not to say
that a shared memory model cannot be used. It is just
that error detection and control of concurrent access
must be well-integrated, and node failures require
careful recovery. In addition, the write-only nature of
MEMORY CHANNEL mappings is more suited to
message passing than shared memory due to the
extremely careful programming necessary to handle
delayed loopback at a separate address. 

APIs are provided primarily to manage resources,
control memory mappings, and provide synchroniza-
tion. MEMORY CHANNEL APIs perform the follow-
ing tasks: 

■ Allocation and mapping 
– Allocate or deallocate the MEMORY

CHANNEL address space. 
– Map the MEMORY CHANNEL interconnect

for receive or transmit. 
– Unmap the MEMORY CHANNEL

interconnect. 
■ Spinlock synchronization 

– Create and delete spinlock regions. 
– Acquire and release spinlocks. 

■ Other synchronization 
– Create and delete write acknowledgment

regions. 
– Request write acknowledgment. 
– Create and delete software notification channels. 
– Send notification. 
– Wait for notification. 

■ Error detection and recovery 
– Get current error count. 
– Check for errors. 
– Register for callback on error. 

Digital Technical Journal Vol. 8 No. 1 1996 13



Higher layers of software are responsible for transfer-
ring data, checking for errors, retrying transfers, and
synchronizing their use of MEMORY CHANNEL
address space after it is allocated. 

Synchronization 
Efficient synchronization mechanisms are essential 
for high-performance protocols over a cluster inter-
connect. MEMORY CHANNEL hardware provides
two important synchronization mechanisms: first, an
ordering guarantee that all writes are seen in the same
order on all nodes, including the looped-back write on
the originating node; second, an acknowledgment
request that returns the current error state of all other
nodes. Once the acknowledgment operation is com-
plete, all previous writes are guaranteed either to have
been received by other nodes or reported as a transmit
or receive error on some node. We have implemented
clusterwide software spinlocks based on these guaran-
tees. Spinlocks are used for many purposes, including
internode synchronization of other components and
concurrency control for the clusterwide shared-mem-
ory data structures used by the low-level MEMORY
CHANNEL software. 

A spinlock is structured as an array with one element
for each node. To acquire the spinlock, a node first
bids for it by writing a value to the node’s array ele-
ment. A node wins by seeing its bid looped back by the
MEMORY CHANNEL interconnect without seeing 
a bid from any other node. The ordering guarantees of
the MEMORY CHANNEL ensure that no other node
could have concurrently bid and believed it had won.
Multiple nodes can realize they have lost, but more
than one node cannot win. In case of a conflict, many
different back-off techniques can be used. The win-
ning node then changes its bid value to an own value.
This last step is not necessary for correctness, but it
does help with resolving contention and with various
failure recovery algorithms. All higher-level synchro-
nization is built on combinations of spinlocks, order-
ing guarantees, and error acknowledgments. 

Error Recovery and Node Failures 
Most of the difficult problems in the low-level soft-
ware relate to error recovery and node failures. In spite
of its reliability, errors will occur in the MEMORY
CHANNEL interconnect, and they must be handled
as transparently as possible. Transparency is key to sim-
plifying the communication model seen by higher-
level software. In addition, node failures from
hardware or software faults are more frequent than
MEMORY CHANNEL errors and must be dealt with
even in the most inconvenient portions of the low-
level code. The MEMORY CHANNEL interconnect 
is managed through a collection of distributed data

structures that must be kept consistent. Software locks
are used to synchronize access to these structures, but
errors may leave them in an inconsistent state.
Guaranteed error detection before the release of a lock
allows operations to be redone in case of an error.
Thus, all sequences of MEMORY CHANNEL writes
must be idempotent to take advantage of this straight-
forward error-recovery technique. 

If a node failure occurs, a surviving node must make
all data structures consistent before it releases locks
held by the failed node. To keep this a manageable
task, we have written carefully structured algorithms
to handle each inconsistent state. In general, struc-
tures are changed such that a single atomic write com-
mits a change. If a node fails before this last write, no
recovery is necessary. As an example, consider a data
structure that is completely initialized before being
added to a list. A single write is used to accomplish the
list addition. If a node fails, the last write was either
done or not and, in either case, the list is consistent.
Complications arise when another node has a receive
error on the last write done by a failing node. In this
case, the failed node cannot retry after detecting the
error, so the node with the receive error has a different
view of the list than all other surviving nodes. To
resolve this event, one node must propagate its view of
the list to all other nodes before it releases the lock
held by the failed node. Any node can do this because
each has a self-consistent view of the list. If the node
with the receive error propagates its view, the last ele-
ment added by the failed node is lost. This situation is
no different, however, from having the node fail a few
instructions earlier. The challenge is to design recov-
ery for all these cases and maintain our sanity by mini-
mizing the number of such cases. 

Another interesting problem is maintaining a con-
sistent count of errors across all nodes. This count 
is key to the error protocols of both the low-level
MEMORY CHANNEL software and higher layers
since comparisons of a saved and a current value
bound the period over which data is suspect. The
count may be read on one node, transferred with 
a message, and compared to a current value on
another node. Thus, a consistent value on all nodes 
is critical and must be maintained in the presence of
arbitrary combinations of receive and transmit errors.
(Although errors are very infrequent, they may be cor-
related; so algorithms must work well for error bursts.)
The write acknowledgment, described earlier, guaran-
tees that other nodes have received a write without
error. It is used both to implement a lock protecting
the error count and to guarantee that all nodes have
seen an updated count. Updating the count is a slow
operation due to multiple round-trip delays and long
error time-outs, but it is performed very infrequently. 

14 Digital Technical Journal Vol. 8 No. 1 1996



Future Enhancements to MEMORY CHANNEL
Software 
Fully supported MEMORY CHANNEL APIs are
currently available only to other layers in the UNIX
kernel for two important reasons: First, MEMORY
CHANNEL is a new type of interconnect and we want
to better understand its uses and advantages before
committing to a fully functional API for general use.
Second, many difficult issues of security and resource
limits will affect the final interface. To help Digital 
and its customers gain the necessary experience, a lim-
ited functionality version of a user-level MEMORY
CHANNEL API has been implemented in the version
1.0 product. This interface supports allocation and
mapping of MEMORY CHANNEL space along with
spinlock synchronization. It is oriented toward sup-
port of parallel computation in a cluster, but we also
expect it will serve the needs of many commercial
applications. Once we have a better understanding of
how high-level applications will use the MEMORY
CHANNEL interconnect, we will extend the design
and provide additional APIs oriented toward both
commercial applications and technical computing. 

Application Failover

Digital’s TruCluster multicomputer system is a logical
evolution of the DECsafe Available Server Envi-
ronment (ASE). An ASE system is a multinode con-
figuration with all nodes and all highly available
storage connected to shared SCSI storage buses.
Figure 5 shows an ASE configuration. Software on
each node monitors the status of all nodes and of
shared storage. In case of a failure, the storage and
associated applications are failed over to surviving sys-
tems. Planned application failover is accomplished by
stopping the application on one node and restarting
the application on a surviving node with access to any
storage associated with the application. Application-
specific scripts control failover and usually do not
require application changes. 

In addition to supporting the application failover
mechanisms from ASE, the TruCluster system sup-
ports parallel applications running on multiple cluster
nodes. In case of a failure, the application is not
stopped and restarted. Instead, it may continue to exe-
cute and transparently retain access to storage through
a distributed disk server. In addition, more general
hardware topologies are supported. 

Hardware Configurations

The TruCluster version 1.0 product supports a maxi-
mum of four nodes connected by a high-speed 
MEMORY CHANNEL interconnect. The nodes may
be any Digital UNIX system with a peripheral compo-
nent interconnect (PCI) that supports storage and the
MEMORY CHANNEL interconnect. Highly available
storage is on shared SCSI buses connected to at least
two nodes. Thus, a cluster looks like multiple ASE
systems joined by a cluster interconnect. 

Although the limitation to four nodes is temporary,
we do not intend to support large numbers of nodes.
Ten to twenty nodes on a high-speed interconnect is 
a reasonable target. A cluster is a component of a dis-
tributed system, not a replacement for one. If very
large numbers of nodes are desired, a distributed
system is built with cluster nodes as servers and other
nodes as clients. This allows maintaining a simple
model of a cluster system without having to allow for
many complex topologies. Aside from simplicity, there
are performance advantages from targeting algorithms
for relatively small and simple cluster systems.
Although the number of nodes is intended to be small,
the individual nodes can be high-end multiprocessor
systems. Thus, the overall computing power and the
I/O bandwidth of a cluster are extremely large. 

Conclusions

With the completion of the first release of Digital’s
TruCluster product, we believe we have met our goal
of providing an environment for high-performance
commercial database servers. Both the distributed lock
manager and the remote disk services are meeting
expectations and providing reliable, high-performance
services for parallelized applications. The MEMORY
CHANNEL interconnect is proving to be an excellent
cluster interconnect: Its synchronization and failure
detection are especially compatible with many cluster-
aware components, which are enhanced by its low
latencies and simplified by its elimination of complex
error handling. The error rates have also proven to be
as predicted. With over 100 units in use over the last
year, we have observed only a very small number of
errors other than those attributable to debugging new
versions of the hardware. 

Digital Technical Journal Vol. 8 No. 1 1996 15

NODE 0 NODE 1

DISKS

SCSI BUS 1

SCSI BUS 2

Figure 5 
Typical ASE Configuration



Detailed component performance measurements
are still in progress, but rough comparisons of DRD
against local I/O have shown no significant penalty in
latency or throughput. There is of course additional
CPU cost, but it has not proven to be significant for
real applications. DLM costs are comparable to VMS
and thus meet our goals. Audited TPC-C results with
the Oracle database also validated both our design
approach and the implementation details by showing
that database performance and scaling with additional
cluster nodes meet our expectations. 

The previous best reported TPC-C numbers were
20,918 tpmC on Tandem Computers’ Himalaya
K10000-112 system with the proprietary NonStop
SQL/MP database software. The best reported num-
bers with open database software were 11,456 tpmC
on the Digital AlphaServer 8400 5/350 with Oracle7
version 7.3. A four-node AlphaServer 8400 5/350
cluster with Oracle Parallel Server was recently audited
at 30,390 tpmC. This represents industry-leadership
performance with nonproprietary database software. 

Future Developments

We will continue to evolve the TruCluster product
toward a more scalable, more general computing envi-
ronment. In particular, we will emphasize distributed
file systems, configuration flexibility, management
tools, and a single-system view for both internal and
client applications. Work is under way for a cluster file
system with local node semantics across the cluster sys-
tem. The new cluster file system will not replace DRD
but will complement it, giving applications the choice
of raw access through DRD or full, local-file-system
semantics. We are also lifting the four-node limitation
and allowing more flexibility in cluster interconnect
and storage configurations. A single network address
for the cluster system is a priority. Finally, further steps
in managing a multinode system as a single system will
become even more important as the scale of cluster
systems increases. 

Further in the future is a true single-system view of
cluster systems that will transparently extend all
process control, communication, and synchronization
mechanisms across the entire cluster. An implicit trans-
parency requirement is performance. 

Acknowledgments

In addition to the authors, the following individuals
contributed directly to the cluster components
described in this paper: Tim Burke, Charlie Briggs,
Dave Cherkus, and Maria Vella for DRD; Joe Amato
and Mitch Condylis for DLM; and Ali Rafieymehr for
MEMORY CHANNEL. Hai Huang, Jane Lawler, and

especially project leader Brian Stevens made many
direct and indirect contributions to the project.
Thanks also to Dick Buttlar for his editing assistance. 

References and Notes

1. “Introduction to DCE,” OSF DCE Documentation Set
(Cambridge, Mass.: Open Software Foundation, 1991). 

2. Internet RFCs 1014, 1057, and 1094 describe ONC
XDR, RPC, and NFS protocols, respectively. 

3. G. Pfister, In Search of Clusters (Upper Saddle River,
N.J.: Prentice-Hall, Inc., 1995): 19–26. 

4. N. Kronenberg, H. Levy, and W. Strecker, “VAXclusters:
A Closely-Coupled Distributed System,” ACM Trans-
actions on Computer Systems, vol. 4, no. 2 (May
1986): 130–146. 

5. L. Cohen and J. Williams, “Technical Description of
the DECsafe Available Server Environment,” Digital
Technical Journal, vol. 7, no. 4 (1995): 89–100. 

6. TPC performance numbers for UNIX systems are typi-
cally reported for databases using the character device
interface. 

7. The file system interfaces on the Digital UNIX operat-
ing system are being extended to support direct I/O,
which results in bypassing the block buffer cache and
reducing code path length for those applications that
do not benefit from use of the cache. 

8. A fast wide differential (FWD) SCSI bus is limited to 
a maximum distance of about 25 meters for example. 

9. M. Devarakonda et al., “Evaluation of Design Alterna-
tives for a Cluster File System,” USENIX Conference
Proceedings, USENIX Association, Berkeley, Calif.
(January 1995). 

10. J. Gray and A. Reuter, Transaction Processing—
Concepts and Techniques (San Mateo, Calif.:
Morgan Kaufman Publishers, 1993). 

11. This mechanism is inherited from the DECsafe Avail-
able Server management facility, including the asemgr
interface. 

12. As an example, if the first DRD service created for a
cluster is 1, the DRD device special file name is
/dev/drd/drd1 and its minor device number is also 1. 

13. C. Juszczak, “Improving the Performance and Cor-
rectness of an NFS Server,” USENIX Conference Pro-
ceedings, USENIX Association, San Diego, Calif.
(Winter 1989). 

14. W. Snaman, Jr. and D. Thiel, “The VAX/VMS Distrib-
uted Lock Manager,” Digital Technical Journal, 
vol. 1, no. 5 (September 1987): 29–44. 

15. R. Goldenberg, L. Kenah, and D. Dumas, VAX/VMS
Internals and Data Structures (Bedford, Mass.:
Digital Press, 1991). 

16 Digital Technical Journal Vol. 8 No. 1 1996



16. TruCluster Application Programming Interfaces
Guide (Maynard, Mass.: Digital Equipment Corpora-
tion, Order No. AA-QL8PA-TE, 1996). 

17. T. Rengarajan, P. Spiro, and W. Wright, “High Avail-
ability Mechanisms of VAX DBMS Software,” Digital
Technical Journal, vol. 1, no. 8 (February 1989):
88–98. 

18. Encore 91 Series Technical Summary (Fort Laud-
erdale, Fla.: Encore Computer Corporation, 1991). 

Biographies

Digital Technical Journal Vol. 8 No. 1 1996 17

Wayne M. Cardoza 
Wayne Cardoza is a senior consulting engineer in the
UNIX Engineering Group. He joined Digital in 1979 
and contributed to various areas of the VMS kernel prior 
to joining the UNIX Group to work on the UNIX cluster
product. Wayne was also one of the architects of PRISM, 
an early Digital RISC architecture; he holds several patents
for this work. More recently, he participated in the design
of the Alpha AXP architecture and the OpenVMS port to
Alpha. Before coming to Digital, Wayne was employed by
Bell Laboratories. He received a B.S.E.E. from Southeastern
Massachusetts University and an M.S.E.E. from MIT. 

Frederick S. Glover 
Fred Glover is a software consulting engineer and the tech-
nical director of the Digital UNIX Base Operating System
Group. Since joining the Digital UNIX Group in 1985,
Fred has contributed to the development of networking
services, local and remote file systems, and cluster technol-
ogy. He has served as the chair of the IETF/TSIG Trusted
NFS Working Group, as the chair of the OSF Distributed
File System Working Group, and as Digital’s representative
to the IEEE POSIX 1003.8 Transparent File Access Work-
ing Group. Prior to joining Digital, Fred was employed by
AT&T Bell Laboratories, where his contributions included
co-development of the RMAS network communication
subsystem. He received B.S. and M.S. degrees in computer
science from Ohio State University and conducted his
thesis research in the areas of fault-tolerant distributed
computing and data flow architecture. 

William E. Snaman, Jr. 
Sandy Snaman joined Digital in 1980. He is currently a
consulting software engineer in Digital’s UNIX Software
Group, where he contributed to the TruCluster architec-
ture and design. He and members of his group designed
and implemented cluster components such as the con-
nection manager, lock manager, and various aspects of 
cluster communications. Previously, in the VMS Engineer-
ing Group, he was the project leader for the port of the
VMScluster system to the Alpha platform and the technical
supervisor and project leader for the VAXcluster executive
area. Sandy also teaches MS Windows programming and
C++ at Daniel Webster College. He has a B.S. in computer
science and an M.S. in information systems from the
University of Lowell. 


