The Desi gn of DECnodel for W ndows

by Stewart V. Hoover and Gary L. Kratkiew cz

ABSTRACT

The DECnodel for Wndows software tool represents a significant
advance in the devel opnent of business process nodels. The
DECmmodel tool allows rapid devel opnent of nodels and graphica
representations of business processes by providing a | aboratory
environnent for testing processes before propagating theminto
wor kf l ows. Such an approach can significantly reduce the risk
associated with large investnents in information technol ogy. The
DECmodel design i ncorporates know edge- based, sinulation, and
graphi cal user interface technology on a PC pl atform based on the
M crosoft W ndows operating system Unique to the design is the
manner in which it separates the nodel of the business processes
fromthe views or presentations of the nodel.

| NTRODUCTI ON

Many approaches have been devel oped for understanding,

speci fying, testing, and validating business processes. In the

| ate 1980s, Digital began to reengi neer sone of its nost conpl ex
and m ssion-critical business processes. It soon becane apparent
t hat nodel i ng net hodol ogi es and tools were needed to docunent,
test, and validate the reengi neered processes before they were

i mpl emented, as well as to provide a high-level specification for
their design and inplenentation. Consequently, Digital decided to
provi de the business process engineer with tools simlar to those
used by architects, mechani cal designers, and conputer and

sof tware engi neers.

The first inplenmentation of Digital's dynam ¢ business nodeling

t echnol ogy, Synbolic Mdeling, was devel oped at Digital's
Artificial Intelligence Technol ogy Center. The technol ogy was
enbodied in an application called Symmod, which in 1991 ran only
on a VAXstation system[1l] Symmod's know edge base and simnul ation
engi ne were inplenmented using the LISP programr ng | anguage and
the Know edge Craft product, a frame-based know edge
representati on package with nodeling and sinulation features.[2]
Because nodels were witten in LI SP code, users had to be
conmput er programmers as well as business consultants. The
application contained a graphical presentation builder and viewer
i mpl emented in the C progranmm ng | anguage that used a relationa
dat abase for presentation storage. The user had to start the
know edge base conponent and the presentation conponent as
separate processes. A primtive mail box system was used for

i nterprocess conmuni cation. To serve the needs of nontechnica
busi ness users and to achi eve the necessary product quality,

Symmod needed to be conpletely redesigned and rebuilt.

In early 1991, the Mdeling and Visualization G oup decided to
build a product version of the Symmod application, which would be
rel eased as the DECnopdel tool. The team drafted requirenents,
speci fications, and an architecture. The DECnodel product was
initially targeted at two platfornms: VAXstation workstations
runni ng under the DECw ndows operating system and persona
conmputers (PCs) running under the Wndows NT operating system As
users were interviewed and requirenents were accunul ated, it
becanme cl ear, however, that by far the nost inportant platform
for DEChodel users was the PC pl atform based on the W ndows
operating system Consequently, the DECmodel devel opnment effort
shifted to this platform

During 1991, the team enhanced the existing version of Symmpd so
that it would neet user needs until the release of the product
version for PCs. The npbst significant enhancement was the

devel opnent of an X W ndow Systeminterface for building and
editing nodels. A second inportant enhancenment was a graphica
shell programthat transparently started up the know edge base
and presentation conmponents for the user

In March 1992, Digital officially announced Phase 0 (the strategy
and requirenments determ nation phase) of the DECnodel for W ndows
product .

DESI GN AND DEVELOPMENT GOALS

The DECnodel product design team had the follow ng goals:

o] Provi de a nodeling tool that maps directly to business
processes

o] Al l ow t he nodeling of both the static and the dynanic
characteristics of the business process

o] Al low nultiple views of the business process nodel by
separating the nodel fromthe presentation of the
busi ness process during simulation

o] Al l ow the user to interact with the tool and to nake
deci sions while the business process is being sinmulated
in order to let the user "test-drive" the business
process

o] Provide a tool that is easy to use for business
consul tants and that requires no programr ng

Note that the designers intentionally omitted the follow ng goals
fromthe DECnodel design:

o] I ncl ude resource constraints and queui ng

o] Al l ow the user to performa statistical analysis of the
behavi or of the business process

By far the nost inportant goal for the DECnpdel design was the
first one |listed, an obvi ous mappi ng between el ements of the
nodel and busi ness processes. The anticipated users of the
DECmodel tool were business anal ysts and consultants, not system
desi gners and software engi neers. The designers felt that adding
| evel s of abstractions to a nodeling tool would nmake it |ess
acceptable to the intended users. A notable corollary to
provi di ng an obvi ous mappi ng was nodeling both the static and the
dynam ¢ characteristics of the business process.

To engage the user in interacting with the nodel and test-driving
t he busi ness process required a graphical interface that was
separate fromthe nodel. This "presentation" |ayer of the
DECmodel tool provides a | ayout and graphical appearance that has
the 1 ook and feel of the actual business process, hiding the
irrelevant technical details of the nodel. The presentation
enabl es the user to step through the business, watching
informati on and material flows occur, and thus see where the
dependenci es and concurrenci es exist.

Desi gners believed that while sinulating the business, the user
shoul d be able to interact with the nodel and thereby sel ect and
test nore than one scenario. The DECnodel tool was intended to be
a working scale nodel of the business, giving the user a sense of
how t he busi ness process would work as different choices were
made. The tool, by design, neither predicts congestion and

t hroughput as a function of resource constraints nor provides

i nformati on through statistical reports. The DECnhodel product was
designed to provide a slow, deliberate sinmulation of the

busi ness, not to conpress weeks or years of activities into a few
seconds, |eaving behind only a statistical sunmmary.

The team s devel opnent goals for the DECrodel product were to

o] Provide a tool that runs on a popular hardware platform
used by business consultants

o] Achi eve a short time-to-market, i.e., delivery within one
year

o] Uilize a widely accepted software base technol ogy (for
mai nt ai nabi | ity)

THE DECnodel WORLD VI EW

Every nodeling and sinulation tool is based on a predefined view
of the world.[3] In the DECrodel world view, a business process
is conposed of aggregate centers capable of perform ng one or
nore tasks or work steps. Each aggregation is referred to as a

process, and the tasks that can occur in a process are called
activities. Processes conmunicate through the exchange of
nmessages, which are sent by activities and recei ved by anot her
process or other processes or by the same process that contains
the activity.[4]

This view differs significantly fromthe one taken by the typica
wor kf I ow nmodel in which work steps are directly |linked. In the
DECmodel nodel, an activity that sends a nessage to a process has
no know edge of what work steps will occur next. For exanple,
when a custoner (a process) sends an order (a nessage) to a
suppl i er (another process), the custoner does not know what work
steps (activities) the supplier will initiate when it receives
the order. It is invisible to the customer whether or not the
suppl i er decides to change its work rules, for instance, by
sending the order to a second source because materials are not
available. Simlarly, when the supplier's activities have been
conpleted and the material that was ordered has been sent to the
custoner, the supplier has neither know edge of nor dependencies
on the work steps that the custoner undertakes next. In contrast,
in a workfl ow nodel each task is directly |inked to another task.
Changes in the supplier's way of doing business force changes in
how the custoner's tasks connect to the supplier's tasks. Mre
succinctly, the DECmodel tool encapsul ates the behaviors and work
rul es of each individual process in the |arger business process.
This difference between the process and workfl ow nodel s is shown
in Figure 1.

[Figure 1 (The Process Model versus the Workflow Model) is not
available in ASCI| format.]

Processes, Activities, and Messages

As descri bed above, the DECnhopdel npdel represents a business
process as a collection of smaller encapsul ated processes. The
behavi or of each process is defined by the activities that it
contai ns. The DECnhodel tool provides three general types of
activities: generating activities, processing activities, and
term nating activities. Generating and term nating activities
represent the boundaries of the nodel; processing activities
represent the work steps in the business process.

An activity is characterized by (1) a receive rule, which defines
the nessages that the activity needs for initiation, (2) a
duration, and (3) a send rule, which defines the nessages that
the activity sends out at the end of its duration. Generating
activities have only send rules, and terminating activities have
only receive rules.

Activities can send nessages to processes only. The receivVing
process makes the nessage known to every activity that uses the
nmessage in its receive rule. Messages are universal to the nodel,
and the sanme nessage type can be sent by activities in different

processes.

Processes can have state know edge (attributes) that can be
assigned values as a side effect of an activity being conpl et ed.
The activity can use a process attribute value to deci de what
nmessages to send out and where to send them That is, processes
have a state that can be altered to change the behavi or of the
nodel .

Li ke processes, nmessages can contain information, which is stored
in their attributes. When a process receives a nessage and passes
it on to an activity, information in the nmessage can be used in
both the receive rule and the send rule of the activity.
Additionally, the information in a received nessage can be copied
into the attributes of any nessage that an activity sends. In
this way, the DECnodel tool supports information propagation.

The DECnodel representation of business borrows heavily from both
the stochastic-tinmed Petri net (STPN) nodel and the object
par adi gm found in object-oriented design.[5, 6]

The Stochastic-tined Petri Net Mdel versus the DECnodel Model
An STPN nodel represents a systemas a collection of places,
transitions, arcs, and tokens. Places contain tokens and act as
inputs to transitions. Atransition results in the novenent of a
token to another place if an arc exists between the transition
and the place. Before a transition can occur, a token nust be
present at each place that is connected to the transition by an
arc. Associated with each transition is an exponentially

di stributed random vari abl e that expresses the delay between the
enabling of the transition and the firing of the transition.

The DECnodel nodel welds the STPN place, transition, and arc
el enments into a single object called an activity. The anal ogous
el ements of the STPN and DECnodel nodels are

STPN DECnode

Pl ace Activity receive rule
Transition Activity duration
Token Message

Arc Activity send rule

-- Process

The DECnodel nodel goes beyond the STPN nodel by

1. Adding the process object between the activity send
rules (arcs) and the activity receive rules (places).
Each process can have multiple activity send rules. As
the process object receives nessages (tokens), it
di spatches themto the appropriate activity receive rule

(pl ace) .
2. Allowing nore than one type of nmessage (token) to exist.

3. Storing information in both the processes and the
nmessages (tokens).

4. Using AND, OR, and nessage-matching receive rules in the
activity receive rules (places).

5. Not restricting durations to being exponentially
di stributed random vari abl es.

Li ke an STPN nodel, a DECnodel nodel does not explicitly have
resources but can represent the availability of a resource by
sendi ng a nessage to a process when the resource is avail abl e.

Figure 2 shows the workflow system fromFigure 1 as both an STPN
nodel and a DECnodel nodel with the process receiving nessages
fromthe activities.

[Figure 2 (The Stochastic-tined Petri Net Model versus the
DECmodel Process-activity Model) is not available in ASCl
format.]

The DECnodel Model and Object-oriented Design. The el ements of
obj ect-oriented design that the DECrodel nodel fully draws upon
are encapsul ation of information and the nessage-net hod paradi gm
Information is encapsul ated within DECmodel objects and is not
avail abl e gl obally. However, an inportant difference exists

bet ween DECnopdel systenms and object-oriented systens. |n DECnode
systenms, a nunber of nmessages nmay by required to trigger a

behavi or; whereas, in classical object-oriented systems, each
nmessage triggers a nethod.

The DECnodel tool supports polynorphism in that the same nessage
can be sent to different processes, which can result in different
behavi ors. Devel opers investigated goi ng beyond standard

pol ynor phi sm by using one nessage to trigger different activities
wi thin the same process. The approach considered was to use
process "filters" to examine the information in a nessage and

t hen deci de which activity or activities in the process should
receive it. This feature was not conpletely devel oped because of
time constraints and a | ess-than-cl ear nmappi ng between the
concept and the actual practices in nmost business. Further, using
activity send rules that utilize the information contained in
nmessages can provide a sinmilar capability.

The DECnodel tool does not support inheritance, but the
underlying technol ogy of the product does support this feature.
As in the case of nonstandard pol ynorphi sm tine-to-narket
pressures and the lack of clear evidence that the feature would
be used in business processes drove the decision not to include

i nheritance support. Also, the DECnhodel product does not
currently support class types beyond the built-in classes of the
process and the three activity types.

Process Hierarchies

To address the goal of having a strong napping between the node
and real business processes, the DEChrodel nodel supports
processes within processes. Processes can receive nmessages in two
ways: hierarchical routing and peer-to-peer routing.

In a business process, a nessage sent to a high-level process
shoul d travel through the process hierarchy to the activity that
is to act upon the nessage. For exanple, an activity in the sales
process should be able to send a nmessage to the nmanufacturing
process and not be concerned that manufacturing contains severa
subprocesses. The know edge of how to relay a nmessage shoul d be
in the receiving process, not the sending process.

I n business, however, much conmuni cati on occurs on a peer-to-peer
basis, with information seldomrouted up and down the

organi zati on hierarchy. For exanple, the results of a marketing
research activity go directly to the manufacturing planning
function without traveling down through the various |evels of the
manuf acturi ng organi zation. In a DEChodel nodel, as in nost

busi nesses, when an activity is conpleted, a nmessage can be sent
directly to any process in the business.

The DECnodel design feature that allows processes to receive
nmessages and then pass themon to subprocesses and activities can
result in multiple nessage receipts for a single send operation
That is, one activity can send a single nessage that is received
by every activity in the nodel that includes the nessage in its
receive rule. Mdeling experts disagree about how well this
phenonmenon maps to real business processes. The DECnopdel user can
avoid this effect, if desired, by using uniquely nanmed nessages
in the send rules of activities.

The Presentation

The first DECnodel design goal was supported by the nodeling

par adi gm of processes, activities, and nessages. The presentation
aspect of the DECnhodel tool supports the goals of a strong
separati on between the nodel and the graphical representation of
t he busi ness process and the need to support user interaction and
deci si ons during nodel sinmulation.

The presentation of the nodel is based on views that contain

net wor ked nodes. Each node in a view can represent zero or nore
processes in the nodel; however, no process can be represented by
nore than one node in a single view This nmapping between the
processes in the nodel and the nodes in a view allows the user to

devel op and animate nultiple views of the nodel sinultaneously.
For exanple, one view may show the nodel at its | owest |evel of
detail, with each process in the nodel mapped to a single node.
Anot her view may show a hi gher | evel of mapping, with nultiple
processes mapped to the same node. A third view may map processes
based on attributes such as geographic |ocation, the

organi zational chart, or technol ogy. The construction of the
views is left to the creativity of the analyst building the
nodel .

During nodel sinulation, the DEChbdel tool uses animation to
show the nmovenent of nessages from one process to another. The
user can also view the nessages and their attributes.

To accommpdat e user interaction, the DECnodel tool provides a
menu send rule in the definition of an activity. If an activity
uses the nenu send rule, just before the activity fires, a nenu
appears that allows the user to nake a choice that determ nes
what nmessages are to be sent by the activity and which processes
are to receive them The user is unaware of the actual send rule;
the choi ce made forces one of a set of send rules to be sel ected.
The use of nenus, animation of nessages noving between processes,
and user-controll ed stepping through the sinmulation gives the
user the feeling of test-driving the business process.

ARCHI TECTURE AND DEVELOPMENT PROCESS

The overal|l DECnodel architecture, shown in Figure 3, contains
two | ayers. The inner layer of the architecture is the interna
engi ne, which provides the neans for representing, storing, and
executing (simulating) nodels. The internal engine is designed
usi ng ROCK, a frane-based, object-oriented know edge
representation system and AMP, a nodeling and sinmulation
frame-class library inplenented in ROCK.[7] The outer |ayer of
the architecture is the user interface, which provides the neans
for all user interaction with the DECrodel npbdel and has two
maj or components: the nmodel buil der and the presentation builder
The user interface is designed as a set of classes specialized
fromthe Mcrosoft Foundation Cl asses. Interaction between the
two |layers is achieved with an internal application programrng
interface (API).

[Figure 3 (DECnodel Architecture) is not available in ASCI
format.]

This architecture was chosen for both technical and pragmatic
organi zati onal reasons. The partitioning into two |layers all owed
the internal engine to be built using state-of-the-art know edge
representation technol ogy and the user interface to be built
usi ng state-of-the-art graphical user interface technol ogy. The
di sadvantages in this separation were the necessity of designing
an internal APl and the need to duplicate sonme data (nonminally
stored in the know edge base) in the user interface.

The partitioning mapped well to the human resources available in
t he DEChodel team The DECnodel engineers had strong skills in
devel opi ng LI SP, know edge-based, and X W ndow System
applications but little experience in devel opi ng C++, ROCK, or

M crosoft W ndows applications. Wth the architectura
separation, one teamwas able to focus on the internal engine
usi ng C++ and ROCK and, therefore, did not have to | earn much
about W ndows programr ng. The other team was able to focus on
the user interface using C++ and W ndows programm ng tools and
did not have to | earn anything about ROCK. The engi neering team
felt that the efficient use of human resources in the devel opnent
process overcanme the technical disadvantages of the approach

DECmodel devel oprment proceeded with the two teanms. Since the bul k
of their devel opnment work was conpleted first, the nenbers of the
know edge base team al so worked on the user interface team
toward the end of the devel opnent process.

DESI GN AND | MPLEMENTATI ON

This section describes the design of the two DECmodel | ayers: the
i nternal engine and the user interface.

I nternal Engine

The internal engine represents nodels of dynani c business
processes in a know edge base and executes these nodel s using

di screte event simulation. This |ayer provides a set of services
for interacting with the know edge base. These services are
accessed through the DEChodel tool's internal API. The interna
engi ne contains the DECnodel know edge base, sinulation engine,
and neans of persistent storage. Using the DEChrodel nethodol ogy
to represent and execute business process nodels, the interna
engi ne

o] Represents the structure, attributes, and behavi or
descriptions of the business processes in a know edge
base. (This representation is the nodel.)

o] Represents the structure, attributes, and behavi or
descriptions of the animated visualization of the node
in a know edge base. (This representation is the
presentation.)

o] Represents the connections between the nodel and the
presentation in a know edge base. (This representation is
t he nodel - presentati on mappi ng.)

o] Represents the dynani c behavi or of the business processes
by allowi ng for discrete event simulation of the
know edge base.

Knowl edge Base. The DECnmpdel know edge base contains the
frame-based, object-oriented representation of the nodel, the
presentation, and the connections between them It al so nmaintains
the nodel relations, attributes, and nethods. The know edge base
contains both classes and instances. The cl asses specify DECnpde
obj ects; sets of instances nmeke up specific nodels and
presentations. In addition to containing all the information
about nodel and presentation behavior and structure, the

know edge base contains all the graphical information used by the
nodel builder and the presentation builder. This information is
updated in real tine.

Know edge Representation Technol ogy. The DECmodel know edge base
and sinmulation engine are inplenmented in ROCK, a frame-based,

obj ect-oriented know edge representati on systemwitten in the
C++ programmi ng | anguage. ROCK i nplenents the | MKA know edge
representation technology and is used as a set of API functions
in a C++ progranm ng environment.

ROCK provi des useful features such as franmes, nultiple

i nheritance of data and nethods, user-defined rel ati onships, and
contexts. The basic unit of know edge in ROCK is a frame, which
represents an object or a concept. A frane is a collection of
slots that contain the attribute, relationship, and procedura

i nformati on about the object or the concept. Attribute slots
store values, relation slots store user-defined Iinks between
frames, and nessage slots store methods (functions) that are
execut ed when the frame receives the appropriate nessage fromthe
application program Class franes represent object types or
categories. Instance franes represent particular nenbers of a
class. ROCK requires frane classes to be organized in a class

hi erarchy. Attribute slots and nmessage slots can inherit val ues
and nmethods from cl asses at a higher level in the hierarchy. This
mechani sm can be used to define default values for frame cl asses.
Both frame classes and frame instances are objects, and both can
be dynami cally created, operated on, and deleted during run tinmne.
Wth respect to the C++ | anguage, all frames appear to have the
sanme data type. Slots are objects, whose behavior is defined

i ndependent of the franes.

Portions of the know edge base are built using AMP, a nodeling
and sinulation frane-class library inplemented in ROCK. AW
contains objects for representing process nodels that contain
entity flow, for constructing and running di screte-event
simul ati ons, and for generating, collecting, and reducing
statistical data.

The DECnodel franme classes are subcl asses of ROCK and AMP cl asses
and contain relations, attributes, and nmethods that describe the
content and behavi or of DECnodel objects. Some DECnodel frane

cl asses are abstract classes used only as a basis for nore

speci fic subcl asses; others are used for instantiation of

DECmodel obj ects. The DECnhodel tool contains three types of franme
cl asses: nodel objects, presentation objects, and project

obj ects. A specific DECnodel project is represented within the
know edge base as a set of nodel, presentation, and project

i nstances. These instances are created in the know edge base by

| oadi ng a DECnodel nodeling | anguage (DM.) file or through
interaction with the nodel builder or the presentation builder

Persistent Storage. The DML is a subset of the ROCK frane
definition | anguage and is used by the know edge base for

persi stent storage. A DECnhodel project is stored as ASCI| text in
three files that contain the nodel, presentation, and mapping

obj ects. The | anguage enpl oys ROCK syntax but uses only the franme
cl asses and slots defined in the DEChrodel know edge base.

The DECnodel tool utilizes the ROCK frane definition interpreter
as the DML interpreter. Since the ROCK interpreter was not

i ntended to be used for persistent storage, the DECnpde

devel opers made several minor nodifications to obtain the desired
error handling capabilities. The DECnodel tool contains its own
DML code generator.

Si mul ati on Engine. The sinulation engine executes a discrete
event sinulation of the nodel in the know edge base. This

simul ati on can be performed either interactively or in a batch
node. The simulation engi ne was designed to be so robust that a
nodel can be sinulated at any stage of its devel opnment,

regardl ess of inconsistencies or undefined el enents.

The sinmul ation engine interacts with the presentation builder to
control sinmulation, aninmation, and graphics. The user controls
simul ati on through the presentation builder. The presentation
buil der calls sinulation engine API functions to performthe
requested actions, such as starting, stepping through, pausing,
ending, and reinitializing the sinmulation

Script Engine and Conpiler. Scripts provide a neans of

speci fying user-defined actions to custom ze nodel animation and
to perform special presentation actions during sinulation. The
DECmodel tool contains a | anguage for defining scripts, a script
conpiler, and a script engine for executing the scripts. Although
t he DECnhodel team wanted to avoid requiring any progranmng in
the tool, devel opers decided that a script |anguage was the only
way to inplenment these features in the available tinme frane.

The script |anguage contains functions for

o] Annot ati ng, hiding, showi ng, flashing, noving,
hi ghli ghting, and scaling presentation icons

o] Pl ayi ng sounds and sound | oops

o] Ani mati ng connecti ons between nodes

o] Showi ng, hiding, and clearing certain kinds of w ndows
o] Starting other applications

o] Tenporarily stopping execution

o] Loadi ng a new proj ect

o] Starting and pausing the sinulation

o] Di splaying files

o] Di splaying a |ist of DECmodel devel opnent team nenbers

Anal ysi s and Reporting Services. The know edge base contains
services that allow the user to analyze nodels and presentations
in the know edge base and to generate reports.

The consi stency advi sor checks nodel s, presentations, and

mappi ngs for inconsistencies and potential problenms at any point
in the nodel devel oprment process. This check is anal ogous to the
syntax check performed by a conpiler. The consi stency advisor
check is the primry nodel -buil di ng debuggi ng aid for users.

I nconsi stencies in the nodel do not prevent a nodel from being
si mul at ed.

The nodel description report |lists the description, nessages
sent, and nessages received for each activity and process. The
nodel table report contains the basic nodel information in a
table format for easy access by another application, database, or
spreadsheet. The sinulation summary report contains information
on sinul ation perfornmnce.

Design and I npl enentation Decisions. The internal engine for the
first DECnodel product rel ease, DECnhodel for Wndows version 1.0,
was i nplemented as a Wndows dynanmic link |ibrary (DLL) using the
W ndows version of ROCK version 1.0, the Wndows version of AWM
version 1.0, and Mcrosoft C/ C++ version 7.0. For DECnopdel for

W ndows version 1.1, developers ported the internal engine to

M crosoft Visual C++ version 1.0.

Several options existed for inplenmenting the DEChodel know edge
base. The know edge base of the Symmod application, the precursor
to the DECnodel product, was inplenmented in a LISP environnent.
The DECnodel engineering team wanted to nove to a nore standard
programm ng environnent and, therefore, focused on C++ and
C++-based tools. However, a straight C++ inplenmentati on would
have required the reinplenmentati on of know edge representation,

si mul ati on, and nodeling technol ogy available in other tools.

Anot her nodeling and sinul ation technol ogy, the Mdeling and

Si mul ati on System (MSS), had been devel oped for Digital's
Artificial Intelligence Technology Center by the Carnegie G oup,
Inc. (CA).[8] This graphical tool was designed at a | ower |eve
than Symmod. It used a nodeling simulation | anguage and was
devel oped to inplenent the next version of Symmod. However, the
MSS nodel i ng paradi gm was not conpatible with that of the
DECnodel t ool

| MKA had al so been recently devel oped by CA, funded by a
consortium of conpanies, as a replacenent for the Know edge Craft
product. | MKA' s inplenentation, ROCK, |acked sonme of the class
libraries included in Know edge Craft for sinulation and process
nodel ing but ran significantly faster than Know edge Craft. The
engi neering team decided to use ROCK to inplenent the know edge
base because of its know edge representati on power and its C++
conpatibility. Digital contracted with CG to port the class
libraries to ROCK. The team therefore, had a head start in
designing and inplementing the internal engine. The portability
of ROCK was al so an advantage; switching to the Wndows platform
fromthe DECwW ndows platform caused no disruption in devel opnent.

The original intent of the engineering teamwas to inplenent the
DECmodel tool as a single executable file. The know edge base
contai ns nuch gl obal data, however, and restrictions on the
nunber of data segments required devel opers to inplenment the
internal engine as a DLL. This encapsul ation of the interna
engine allows it to be used in other applications and enabl es
easy porting to other platforns. The DEChodel team devel oped a
set of internal APl functions and structures to allow

i nteracti ons between the DLL-based internal engine and the
execut abl e-based user interface.

The Symod application had a nodel i ng | anguage based on LI SP for
persi stent storage of nodels and used a rel ational database for
persi stent storage of presentations. Consideration was given to
devel opi ng a nodeling | anguage specific to the DECnodel tool

I nstead, the engineering team decided to use the ROCK frane
definition | anguage, since it was already conpletely defined and
debugged and had an interpreter. The team used this |anguage for
persi stent storage of both nodels and presentations to allow easy
sharing of projects between users and to sinplify debuggi ng by
users and DECnodel devel opers.

The knowl edge base team was responsi ble for inplenenting the

i nternal APl between the user interface and the know edge base.
This interface was specified in detail early in the project. The
team kept the specification up-to-date throughout the project. It
prepared 19 revisions and produced a final docunment of nore than
200 pages. This specification kept interface problens to a

m ni mum thus defusing a potential source of major technica

probl ens.

The team specified the objects in great detail early in the
project. It also held several internal and external design
reviews. These neasures reduced the nunber of potential design
probl ems and thus yielded a higher-quality product and a faster
i mpl ement ati on.

User Interface

The user interface provides the neans for all user interaction
with the DECnhodel tool. It has two ngjor conmponents: the nodel
bui |l der and the presentation buil der.

The user interface is designed as a set of classes specialized
fromthe Mcrosoft Foundation Cl asses. Mst of these special
DECmodel user interface classes correspond to frame classes in

t he know edge base; the remmi nder are necessary for inplenmenting
the user interface. The three main types of user interface

cl asses -- w ndows, graphic objects, and di al og boxes -- are used
by both the nodel builder and the presentation buil der.

W ndow Cl asses. The user interface contains several types of
wi ndow cl asses: graphics wi ndows, text w ndows, and a frane
wi ndow.

The graphi cs wi ndow cl asses are all derived fromthe generic
DECrmmodel graphi cs wi ndow cl ass. Graphi cs wi ndows contain graphic
obj ects, such as boxes or lines. Users act upon these w ndows

t hrough nenu commands or through the W ndows nessages generated
by the npbuse and nouse buttons. The graphics wi ndows are the
nodel w ndow, the view wi ndows, and the palettes. Menu conmands
specific to each graphics wi ndow are handl ed by nessage handl ers
wi thin the wi ndow cl ass.

The text wi ndow classes are derived fromthe generic DECnhodel
text wi ndow class. Text w ndows are generally read-only and

di spl ay various types of textual information, such as
descriptions, the text of files, and clock information. As in the
case of graphics w ndows, nenu commands specific to each text

wi ndow are handl ed by nessage handl ers within the w ndow cl ass.

The one frame wi ndow class, i.e., the top wi ndow class, is
derived fromthe CMDI FrameWhd M crosoft Foundati on Cl ass and
serves as the frame wi ndow for the application. The nenu commands
not specific to a particular w ndow are handl ed by default
nmessage handlers within this w ndow.

Graphics Classes. Graphics wi ndow cl asses use graphic objects to
buil d nmodel s and presentations. These cl asses inplenent the
processes, activities, nodes, connections, and annotations

di spl ayed in the Mddel Editing Wndow and in the views.

Di al og Box Cl asses. The DECnopdel tool contains a |arge nunber of
di al og boxes derived fromthe CMdal Di al og M crosoft Foundation
Cl ass. The tool uses these dial og boxes to define the information
and rel ationshi ps contained in the DEChrodel objects.

Menus. The DECnpdel tool uses a set of menus individualized to
mat ch the capabilities of the window currently in use. Wen a
user starts the DECnodel application, the tool presents a reduced
menu that allows the user to start a new project or to |load an
exi sting one. Once a project is in nmenory, the nenu changes as
the user switches between the Mddel Editing Wndow, the views,
and the other wi ndows. Menu conmands activate nmessage handl er
functions within the wi ndow cl asses.

Appearance of the User Interface. Figure 4 shows a small but
typi cal DECnodel nodel. The figure displays each process and its
menber activities. Note that each of the three activity types is
denoted by a different icon. Lines indicate the potential flow of
nmessages. Figure 5 shows the DECnopdel presentation for the node
that appears in Figure 4. The presentation contains both a view
and the supporting wi ndows, e.g., the simulation clock and the
description wi ndows.

[Figure 4 (Typical DECmodel Mbdel) is not available in ASCl
format.]

[Figure 5 (Typi cal DECodel Presentation) is not available in
ASClI | format.]

Design and I npl enmentation Decisions. The teaminplenmented the
user interface for DECmodel for Wndows version 1.0 using

M crosoft C/ C++ version 7.0 and M crosoft Foundation Cl asses
version 1.0. For DECnodel for Wndows version 1.1, devel opers
ported the user interface to Mcrosoft Visual C++ version 1.0 and
M crosoft Foundation Cl asses version 1.5.

As stated at the begi nning of the paper, the DECnhodel product was
initially targeted at both VAXstation workstations running under
t he DECw ndows operating system and PCs runni ng under the W ndows
NT operating system Consequently, when devel opers decided to
focus solely on the PC platformrunni ng under the standard

W ndows operating system the user interface devel opnent effort
was di srupted. Engi neers had done a significant amunt of design
wor k toward achi eving a DECw ndows i npl enent ati on

The DECnodel engineering team considered other class libraries
and user interface inplenentation packages (such as XVT), but
nost were deficient in Wndows features or in the | ook and feel
Since the Wndows operating systemwas the only platformfor the

foreseeable future, the engineering teamfelt that using

M crosoft Foundation Cl asses was the best choice. However, they
made this decision after they had perforned a significant anount
of devel opment work with one of the tools. Mich of the work had
to be redone, which contributed to the schedul e del ay.

During the design and devel opment of the DECnodel product, the

t eam debat ed how graphical to make the user interface, that is,
to what extent dial og boxes should be used. Although the goal was
to make the user interface as graphical as possible, the tight
schedul e forced the teamto postpone plans for graphical editors
in favor of dial og boxes, which were faster to inplement. For
exanple, the teamhad initially planned to inplenment an Activity
Edi ti ng Wndow and had partially developed it. This w ndow was to
provi de a conplete view of an activity and all ow graphica

editing of its information. Schedul e constraints required the
team to abandon this plan and to develop a set of dial og boxes
that were not as easy to use but were faster to inplement.

The user interface design was not specified or commtted to
storyboards in any detail at the begi nning of the project,
partially to save tinme after the disruptions in the devel opnent
work. This decision led to nore lost tinme later in the project,

t hough, because user interface features were designed quickly and
sonmetines inconpatibly, and consequently required reworking. In
addition, the resulting user interface was not as easy to use as
it could have been if better planned.

External review of the user interface design was not perforned
until late in the project. The review yielded sone ideas that
woul d have resulted in a nore usable product; however, there was
not enough tinme left in the schedule to inplenment them

DELI VERY

A di scussion of the rel eased product and the teaml s success in
achi eving the design and devel opnent goals foll ows.

Rel ease

Digital released version 1.0 of the DECnodel for Wndows product
in Novenber 1993 and version 1.1 in April 1994. Version 1.0
cont ai ned the basic capabilities for building nodels and
presentati ons of business processes; version 1.1 added a set of
m nor enhancenents and bug fixes. Because of its small, focused
mar ket and the |arge cost savings that can result fromits use,
t he DECnhodel tool was introduced as a | owvol urme, high-priced
product. The product includes the software, exanple nodels,
docunent ati on, and a week of hands-on training. The DECnodel too
is an integral part of Digital Consulting s reengineering
practice.

Success of Design Choices

The separation of the nodel fromthe presentation is the single
nost inportant elenment of the product's success. This feature,
al ong with ani mation, distinguishes the DECnodel tool fromits
conpetition. Some users have even requested the capability of
buil ding the presentation first and then generating the
correspondi ng nmodel . Such capability woul d require considerable
i nvestigation.

The paradi gm of process-activity encapsulation is difficult for
some users to becone accustonmed to. Many still prefer to build a
nodel using a workfl ow approach, which the DECnhodel tool can
support, rather than by defining each process and its behavi or

i ndependent|y.

The exclusion of resource constraints has limted the application
of the DECrmodel tool to system design, thus preventing its use in
nodel i ng system performance. Al though the capability was
originally not a product goal, many users would like a future
version of the DECnodel product to provide this feature.

To perform special user-defined actions during the simulation, a
script | anguage was included in the DECnpodel tool. This design
feature violated the goal of requiring no programr ng, and sone
users found scripts hard to use. However, nany users have
requested that a future DEChodel version provide nore script
functions and extend the script |anguage to be nore like the
BASI C programmi ng | anguage.

Al so, to enhance the use of the DECnodel tool in the design of
busi ness processes, a future version should support classes to
make generic processes avail able as building bl ocks of a business
process.

Devel opnent Successes and Lessons

The DECnodel engineering team successfully rel eased a software
product on the Mcrosoft Wndows platform the one nopst popul ar
Wi th business consultants. This achi evenment was significant
because the group of engineers began the project with no PC
experience. The team did not neet its one-year delivery goal, and
the goal slipped to one and one-half years after the Phase 0
announcenent. However, this tine frame was still extrenely short
for devel opi ng a conpl ex PC product from scratch

The product retained the existing Synbolic Mdeling paradi gm
(i.e., a process-activity-nessage nodel and a strong distinction
bet ween nodel and presentation) and exhibited performance an
order of nmagnitude better than that of the Symmod product, which
it replaced. The product utilized the npst wi dely accepted nodern
programm ng technol ogy base (C/ C++), which sinplified

mai ntai nability and reduced the need for special training of
mai nt ai ners.

Splitting the devel opnment teaminto two subteans worked well. It
di stributed the amount of | earning about new technol ogi es
required by the engineers and mninmzed the overall devel opnent
time. Key factors in the success of this approach were the
detail ed object and internal APl specifications that were kept
up-to-date throughout devel opment and thus provided a reliable
interface between the two parts of the project.

After the product was rel eased, the DEChodel teamidentified
certain factors that could have nade the team and the product
even nore successful. The entire engineering team woul d have
benefited from Wndows training at the onset of the project. The
W ndows design of the user interface should have been specified
and committed to storyboard in nmuch greater detail nuch earlier
in the project. In addition, the team shoul d have arranged for

W ndows experts to review the design. These changes in the

engi neering process woul d have hel ped the team produce a cl eaner
easi er-to-use, nore nmaintai nable user interface and woul d have
reduced i nplenentation tinme. The project schedul e shoul d have
been created using a bottomup rather than a top-down process.
The initial one-year schedul e was based on an unrealistic,
managenent - i nposed rel ease date. When the engi neering team

revi sed the schedule and cal cul ated a rel ease date based on their
detail ed estimates, the team nmet the new date.

SUMVARY

Model i ng and sinul ati ng busi ness processes is an inportant part
of business process reengi neering. Digital devel oped the DECnpde
tool specifically for this type of sinulation. Although it
borrows many ideas from ot her disciplines of nodeling and

simul ation, as well as from object-oriented design, the DECnode
product is unique in the way it nodel s busi ness processes,
separates the nodel fromthe presentation, and represents the
nodel as frames in a know edge base.

ACKNOW.EDGVENTS

The authors would |ike to acknowl edge the foll owi ng peopl e who
al so contributed to the design of the DEChodel product: Ty
Chaney, David Choi, Laurel Drunmond, Peter Floss, Amal Kassatly,
M ke Ki skiel, Kip Landingham and Janet Rothstein.

REFERENCES

1. Symmod User's CGuide (Maynard, MA: Digital Equi pnment
Cor poration, 1990).

2. Know edge Craft Reference Manual (Pittsburgh, PA: Carnegie
Group, 1988).

3. S. Hoover and R Perry, Sinulation, A Problem Solving
Approach (Readi ng, MA: Addi son-Wesl ey, 1989).

4. DECmodel for Wndows: Model er's Guide (Maynard, MA: Digital
Equi pment Cor poration, 1994).

5. J. Peterson, Petri Net Theory and Modeling of Systens
(Englewood Cliffs, NJ: Prentice-Hall, 1981).

6. G Booch, Object Oiented Design (Redwod City, CA:
Benj am n- Cunmi ngs, 1991).

7. ROCK Software Functional Specification, Version 2.0
(Pittsburgh, PA: Carnegie Goup, 1991).

8. Modeling and Simulation System User's Guide (Pittsburgh, PA:
Carnegi e Group, 1991).

Bl OGRAPHI ES

Stewart V. Hoover Enployed at Digital Equi pment Corporation

bet ween 1984 and 1994, Stew Hoover is currently an independent
consul tant specializing in nodeling and simnul ation. Before
joining Digital, he was an associ ate professor of industrial

engi neering and information systenms at Northeastern University.
Stew contributed to the devel opnment of DECal c- PLUS, Statistical
Process Control Software (SPCS), and the DECw ndows version of
Symmod. He has written many papers and articles on sinulation and
i s coauthor of Sinulation, A Problem Solving Approach, published
by Addi son-Wesley in 1989.

Gary L. Kratkiewicz Gary Kratkiewicz is currently a scientist in
the Intelligent Systems R& Group at Bolt Beranek and Newmran | nc.
As a principal engineer in Digital's DECnhobdel engineering group
from 1991 to 1994, Gary coordinated the architecture and

hi gh-1evel design specifications, and devel oped the know edge
base, script engine, APlI, and several user interface nodul es.
Earlier at Digital, he devel oped an expert system for shipping
and was project |eader for a know edge-based | ogi stics system
Gary holds an SB.ME fromMT and an MS. in nmanufacturing
systenms engi neering from Stanford University.

TRADEMARKS

The following are trademarks of Digital Equi pnent Corporation:
DECmodel , DECwi ndows, Digital, and VAXstation.

Know edge Craft is a registered trademark of Carnegie Group, Inc.

M crosoft and Visual C++ are registered trademarks and W ndows
and W ndows NT are trademarks of M crosoft Corporation

X W ndow Systemis a trademark of the Massachusetts Institute of
Technol ogy.

Copyright 1995 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi prment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permtted. All rights reserved.

