
The Design of DECmodel for Windows

by Stewart V. Hoover and Gary L. Kratkiewicz

ABSTRACT

The DECmodel for Windows software tool represents a significant
advance in the development of business process models. The
DECmodel tool allows rapid development of models and graphical
representations of business processes by providing a laboratory
environment for testing processes before propagating them into
workflows. Such an approach can significantly reduce the risk
associated with large investments in information technology. The
DECmodel design incorporates knowledge-based, simulation, and
graphical user interface technology on a PC platform based on the
Microsoft Windows operating system. Unique to the design is the
manner in which it separates the model of the business processes
from the views or presentations of the model.

INTRODUCTION

Many approaches have been developed for understanding,
specifying, testing, and validating business processes. In the
late 1980s, Digital began to reengineer some of its most complex
and mission-critical business processes. It soon became apparent
that modeling methodologies and tools were needed to document,
test, and validate the reengineered processes before they were
implemented, as well as to provide a high-level specification for
their design and implementation. Consequently, Digital decided to
provide the business process engineer with tools similar to those
used by architects, mechanical designers, and computer and
software engineers.

The first implementation of Digital's dynamic business modeling
technology, Symbolic Modeling, was developed at Digital's
Artificial Intelligence Technology Center. The technology was
embodied in an application called Symmod, which in 1991 ran only
on a VAXstation system.[1] Symmod's knowledge base and simulation
engine were implemented using the LISP programming language and
the Knowledge Craft product, a frame-based knowledge
representation package with modeling and simulation features.[2]
Because models were written in LISP code, users had to be
computer programmers as well as business consultants. The
application contained a graphical presentation builder and viewer
implemented in the C programming language that used a relational
database for presentation storage. The user had to start the
knowledge base component and the presentation component as
separate processes. A primitive mailbox system was used for
interprocess communication. To serve the needs of nontechnical
business users and to achieve the necessary product quality,

Symmod needed to be completely redesigned and rebuilt.

In early 1991, the Modeling and Visualization Group decided to
build a product version of the Symmod application, which would be
released as the DECmodel tool. The team drafted requirements,
specifications, and an architecture. The DECmodel product was
initially targeted at two platforms: VAXstation workstations
running under the DECwindows operating system and personal
computers (PCs) running under the Windows NT operating system. As
users were interviewed and requirements were accumulated, it
became clear, however, that by far the most important platform
for DECmodel users was the PC platform based on the Windows
operating system. Consequently, the DECmodel development effort
shifted to this platform.

During 1991, the team enhanced the existing version of Symmod so
that it would meet user needs until the release of the product
version for PCs. The most significant enhancement was the
development of an X Window System interface for building and
editing models. A second important enhancement was a graphical
shell program that transparently started up the knowledge base
and presentation components for the user.

In March 1992, Digital officially announced Phase 0 (the strategy
and requirements determination phase) of the DECmodel for Windows
product.

DESIGN AND DEVELOPMENT GOALS

The DECmodel product design team had the following goals:

 o Provide a modeling tool that maps directly to business
 processes

 o Allow the modeling of both the static and the dynamic
 characteristics of the business process

 o Allow multiple views of the business process model by
 separating the model from the presentation of the
 business process during simulation

 o Allow the user to interact with the tool and to make
 decisions while the business process is being simulated
 in order to let the user "test-drive" the business
 process

 o Provide a tool that is easy to use for business
 consultants and that requires no programming

Note that the designers intentionally omitted the following goals
from the DECmodel design:

 o Include resource constraints and queuing

 o Allow the user to perform a statistical analysis of the
 behavior of the business process

By far the most important goal for the DECmodel design was the
first one listed, an obvious mapping between elements of the
model and business processes. The anticipated users of the
DECmodel tool were business analysts and consultants, not system
designers and software engineers. The designers felt that adding
levels of abstractions to a modeling tool would make it less
acceptable to the intended users. A notable corollary to
providing an obvious mapping was modeling both the static and the
dynamic characteristics of the business process.

To engage the user in interacting with the model and test-driving
the business process required a graphical interface that was
separate from the model. This "presentation" layer of the
DECmodel tool provides a layout and graphical appearance that has
the look and feel of the actual business process, hiding the
irrelevant technical details of the model. The presentation
enables the user to step through the business, watching
information and material flows occur, and thus see where the
dependencies and concurrencies exist.

Designers believed that while simulating the business, the user
should be able to interact with the model and thereby select and
test more than one scenario. The DECmodel tool was intended to be
a working scale model of the business, giving the user a sense of
how the business process would work as different choices were
made. The tool, by design, neither predicts congestion and
throughput as a function of resource constraints nor provides
information through statistical reports. The DECmodel product was
designed to provide a slow, deliberate simulation of the
business, not to compress weeks or years of activities into a few
seconds, leaving behind only a statistical summary.

The team's development goals for the DECmodel product were to

 o Provide a tool that runs on a popular hardware platform
 used by business consultants

 o Achieve a short time-to-market, i.e., delivery within one
 year

 o Utilize a widely accepted software base technology (for
 maintainability)

THE DECmodel WORLD VIEW

Every modeling and simulation tool is based on a predefined view
of the world.[3] In the DECmodel world view, a business process
is composed of aggregate centers capable of performing one or
more tasks or work steps. Each aggregation is referred to as a

process, and the tasks that can occur in a process are called
activities. Processes communicate through the exchange of
messages, which are sent by activities and received by another
process or other processes or by the same process that contains
the activity.[4]

This view differs significantly from the one taken by the typical
workflow model in which work steps are directly linked. In the
DECmodel model, an activity that sends a message to a process has
no knowledge of what work steps will occur next. For example,
when a customer (a process) sends an order (a message) to a
supplier (another process), the customer does not know what work
steps (activities) the supplier will initiate when it receives
the order. It is invisible to the customer whether or not the
supplier decides to change its work rules, for instance, by
sending the order to a second source because materials are not
available. Similarly, when the supplier's activities have been
completed and the material that was ordered has been sent to the
customer, the supplier has neither knowledge of nor dependencies
on the work steps that the customer undertakes next. In contrast,
in a workflow model each task is directly linked to another task.
Changes in the supplier's way of doing business force changes in
how the customer's tasks connect to the supplier's tasks. More
succinctly, the DECmodel tool encapsulates the behaviors and work
rules of each individual process in the larger business process.
This difference between the process and workflow models is shown
in Figure 1.

[Figure 1 (The Process Model versus the Workflow Model) is not
available in ASCII format.]

Processes, Activities, and Messages

As described above, the DECmodel model represents a business
process as a collection of smaller encapsulated processes. The
behavior of each process is defined by the activities that it
contains. The DECmodel tool provides three general types of
activities: generating activities, processing activities, and
terminating activities. Generating and terminating activities
represent the boundaries of the model; processing activities
represent the work steps in the business process.

An activity is characterized by (1) a receive rule, which defines
the messages that the activity needs for initiation, (2) a
duration, and (3) a send rule, which defines the messages that
the activity sends out at the end of its duration. Generating
activities have only send rules, and terminating activities have
only receive rules.

Activities can send messages to processes only. The receiving
process makes the message known to every activity that uses the
message in its receive rule. Messages are universal to the model,
and the same message type can be sent by activities in different

processes.

Processes can have state knowledge (attributes) that can be
assigned values as a side effect of an activity being completed.
The activity can use a process attribute value to decide what
messages to send out and where to send them. That is, processes
have a state that can be altered to change the behavior of the
model.

Like processes, messages can contain information, which is stored
in their attributes. When a process receives a message and passes
it on to an activity, information in the message can be used in
both the receive rule and the send rule of the activity.
Additionally, the information in a received message can be copied
into the attributes of any message that an activity sends. In
this way, the DECmodel tool supports information propagation.

The DECmodel representation of business borrows heavily from both
the stochastic-timed Petri net (STPN) model and the object
paradigm found in object-oriented design.[5,6]

The Stochastic-timed Petri Net Model versus the DECmodel Model.
An STPN model represents a system as a collection of places,
transitions, arcs, and tokens. Places contain tokens and act as
inputs to transitions. A transition results in the movement of a
token to another place if an arc exists between the transition
and the place. Before a transition can occur, a token must be
present at each place that is connected to the transition by an
arc. Associated with each transition is an exponentially
distributed random variable that expresses the delay between the
enabling of the transition and the firing of the transition.

The DECmodel model welds the STPN place, transition, and arc
elements into a single object called an activity. The analogous
elements of the STPN and DECmodel models are

STPN DECmodel
---------- ---------------------
Place Activity receive rule
Transition Activity duration
Token Message
Arc Activity send rule
-- Process

The DECmodel model goes beyond the STPN model by

 1. Adding the process object between the activity send
 rules (arcs) and the activity receive rules (places).
 Each process can have multiple activity send rules. As
 the process object receives messages (tokens), it
 dispatches them to the appropriate activity receive rule

 (place).

 2. Allowing more than one type of message (token) to exist.

 3. Storing information in both the processes and the
 messages (tokens).

 4. Using AND, OR, and message-matching receive rules in the
 activity receive rules (places).

 5. Not restricting durations to being exponentially
 distributed random variables.

Like an STPN model, a DECmodel model does not explicitly have
resources but can represent the availability of a resource by
sending a message to a process when the resource is available.

Figure 2 shows the workflow system from Figure 1 as both an STPN
model and a DECmodel model with the process receiving messages
from the activities.

[Figure 2 (The Stochastic-timed Petri Net Model versus the
DECmodel Process-activity Model) is not available in ASCII
format.]

The DECmodel Model and Object-oriented Design. The elements of
object-oriented design that the DECmodel model fully draws upon
are encapsulation of information and the message-method paradigm.
Information is encapsulated within DECmodel objects and is not
available globally. However, an important difference exists
between DECmodel systems and object-oriented systems. In DECmodel
systems, a number of messages may by required to trigger a
behavior; whereas, in classical object-oriented systems, each
message triggers a method.

The DECmodel tool supports polymorphism, in that the same message
can be sent to different processes, which can result in different
behaviors. Developers investigated going beyond standard
polymorphism by using one message to trigger different activities
within the same process. The approach considered was to use
process "filters" to examine the information in a message and
then decide which activity or activities in the process should
receive it. This feature was not completely developed because of
time constraints and a less-than-clear mapping between the
concept and the actual practices in most business. Further, using
activity send rules that utilize the information contained in
messages can provide a similar capability.

The DECmodel tool does not support inheritance, but the
underlying technology of the product does support this feature.
As in the case of nonstandard polymorphism, time-to-market
pressures and the lack of clear evidence that the feature would
be used in business processes drove the decision not to include

inheritance support. Also, the DECmodel product does not
currently support class types beyond the built-in classes of the
process and the three activity types.

Process Hierarchies

To address the goal of having a strong mapping between the model
and real business processes, the DECmodel model supports
processes within processes. Processes can receive messages in two
ways: hierarchical routing and peer-to-peer routing.

In a business process, a message sent to a high-level process
should travel through the process hierarchy to the activity that
is to act upon the message. For example, an activity in the sales
process should be able to send a message to the manufacturing
process and not be concerned that manufacturing contains several
subprocesses. The knowledge of how to relay a message should be
in the receiving process, not the sending process.

In business, however, much communication occurs on a peer-to-peer
basis, with information seldom routed up and down the
organization hierarchy. For example, the results of a marketing
research activity go directly to the manufacturing planning
function without traveling down through the various levels of the
manufacturing organization. In a DECmodel model, as in most
businesses, when an activity is completed, a message can be sent
directly to any process in the business.

The DECmodel design feature that allows processes to receive
messages and then pass them on to subprocesses and activities can
result in multiple message receipts for a single send operation.
That is, one activity can send a single message that is received
by every activity in the model that includes the message in its
receive rule. Modeling experts disagree about how well this
phenomenon maps to real business processes. The DECmodel user can
avoid this effect, if desired, by using uniquely named messages
in the send rules of activities.

The Presentation

The first DECmodel design goal was supported by the modeling
paradigm of processes, activities, and messages. The presentation
aspect of the DECmodel tool supports the goals of a strong
separation between the model and the graphical representation of
the business process and the need to support user interaction and
decisions during model simulation.

The presentation of the model is based on views that contain
networked nodes. Each node in a view can represent zero or more
processes in the model; however, no process can be represented by
more than one node in a single view. This mapping between the
processes in the model and the nodes in a view allows the user to

develop and animate multiple views of the model simultaneously.
For example, one view may show the model at its lowest level of
detail, with each process in the model mapped to a single node.
Another view may show a higher level of mapping, with multiple
processes mapped to the same node. A third view may map processes
based on attributes such as geographic location, the
organizational chart, or technology. The construction of the
views is left to the creativity of the analyst building the
model.

During model simulation, the DECmodel tool uses animation to
show the movement of messages from one process to another. The
user can also view the messages and their attributes.

To accommodate user interaction, the DECmodel tool provides a
menu send rule in the definition of an activity. If an activity
uses the menu send rule, just before the activity fires, a menu
appears that allows the user to make a choice that determines
what messages are to be sent by the activity and which processes
are to receive them. The user is unaware of the actual send rule;
the choice made forces one of a set of send rules to be selected.
The use of menus, animation of messages moving between processes,
and user-controlled stepping through the simulation gives the
user the feeling of test-driving the business process.

ARCHITECTURE AND DEVELOPMENT PROCESS

The overall DECmodel architecture, shown in Figure 3, contains
two layers. The inner layer of the architecture is the internal
engine, which provides the means for representing, storing, and
executing (simulating) models. The internal engine is designed
using ROCK, a frame-based, object-oriented knowledge
representation system, and AMP, a modeling and simulation
frame-class library implemented in ROCK.[7] The outer layer of
the architecture is the user interface, which provides the means
for all user interaction with the DECmodel model and has two
major components: the model builder and the presentation builder.
The user interface is designed as a set of classes specialized
from the Microsoft Foundation Classes. Interaction between the
two layers is achieved with an internal application programming
interface (API).

[Figure 3 (DECmodel Architecture) is not available in ASCII
format.]

This architecture was chosen for both technical and pragmatic
organizational reasons. The partitioning into two layers allowed
the internal engine to be built using state-of-the-art knowledge
representation technology and the user interface to be built
using state-of-the-art graphical user interface technology. The
disadvantages in this separation were the necessity of designing
an internal API and the need to duplicate some data (nominally
stored in the knowledge base) in the user interface.

The partitioning mapped well to the human resources available in
the DECmodel team. The DECmodel engineers had strong skills in
developing LISP, knowledge-based, and X Window System
applications but little experience in developing C++, ROCK, or
Microsoft Windows applications. With the architectural
separation, one team was able to focus on the internal engine
using C++ and ROCK and, therefore, did not have to learn much
about Windows programming. The other team was able to focus on
the user interface using C++ and Windows programming tools and
did not have to learn anything about ROCK. The engineering team
felt that the efficient use of human resources in the development
process overcame the technical disadvantages of the approach.

DECmodel development proceeded with the two teams. Since the bulk
of their development work was completed first, the members of the
knowledge base team also worked on the user interface team
toward the end of the development process.

DESIGN AND IMPLEMENTATION

This section describes the design of the two DECmodel layers: the
internal engine and the user interface.

Internal Engine

The internal engine represents models of dynamic business
processes in a knowledge base and executes these models using
discrete event simulation. This layer provides a set of services
for interacting with the knowledge base. These services are
accessed through the DECmodel tool's internal API. The internal
engine contains the DECmodel knowledge base, simulation engine,
and means of persistent storage. Using the DECmodel methodology
to represent and execute business process models, the internal
engine

 o Represents the structure, attributes, and behavior
 descriptions of the business processes in a knowledge
 base. (This representation is the model.)

 o Represents the structure, attributes, and behavior
 descriptions of the animated visualization of the model
 in a knowledge base. (This representation is the
 presentation.)

 o Represents the connections between the model and the
 presentation in a knowledge base. (This representation is
 the model-presentation mapping.)

 o Represents the dynamic behavior of the business processes
 by allowing for discrete event simulation of the
 knowledge base.

Knowledge Base. The DECmodel knowledge base contains the
frame-based, object-oriented representation of the model, the
presentation, and the connections between them. It also maintains
the model relations, attributes, and methods. The knowledge base
contains both classes and instances. The classes specify DECmodel
objects; sets of instances make up specific models and
presentations. In addition to containing all the information
about model and presentation behavior and structure, the
knowledge base contains all the graphical information used by the
model builder and the presentation builder. This information is
updated in real time.

Knowledge Representation Technology. The DECmodel knowledge base
and simulation engine are implemented in ROCK, a frame-based,
object-oriented knowledge representation system written in the
C++ programming language. ROCK implements the IMKA knowledge
representation technology and is used as a set of API functions
in a C++ programming environment.

ROCK provides useful features such as frames, multiple
inheritance of data and methods, user-defined relationships, and
contexts. The basic unit of knowledge in ROCK is a frame, which
represents an object or a concept. A frame is a collection of
slots that contain the attribute, relationship, and procedural
information about the object or the concept. Attribute slots
store values, relation slots store user-defined links between
frames, and message slots store methods (functions) that are
executed when the frame receives the appropriate message from the
application program. Class frames represent object types or
categories. Instance frames represent particular members of a
class. ROCK requires frame classes to be organized in a class
hierarchy. Attribute slots and message slots can inherit values
and methods from classes at a higher level in the hierarchy. This
mechanism can be used to define default values for frame classes.
Both frame classes and frame instances are objects, and both can
be dynamically created, operated on, and deleted during run time.
With respect to the C++ language, all frames appear to have the
same data type. Slots are objects, whose behavior is defined
independent of the frames.

Portions of the knowledge base are built using AMP, a modeling
and simulation frame-class library implemented in ROCK. AMP
contains objects for representing process models that contain
entity flow, for constructing and running discrete-event
simulations, and for generating, collecting, and reducing
statistical data.

The DECmodel frame classes are subclasses of ROCK and AMP classes
and contain relations, attributes, and methods that describe the
content and behavior of DECmodel objects. Some DECmodel frame
classes are abstract classes used only as a basis for more

specific subclasses; others are used for instantiation of
DECmodel objects. The DECmodel tool contains three types of frame
classes: model objects, presentation objects, and project
objects. A specific DECmodel project is represented within the
knowledge base as a set of model, presentation, and project
instances. These instances are created in the knowledge base by
loading a DECmodel modeling language (DML) file or through
interaction with the model builder or the presentation builder.

Persistent Storage. The DML is a subset of the ROCK frame
definition language and is used by the knowledge base for
persistent storage. A DECmodel project is stored as ASCII text in
three files that contain the model, presentation, and mapping
objects. The language employs ROCK syntax but uses only the frame
classes and slots defined in the DECmodel knowledge base.

The DECmodel tool utilizes the ROCK frame definition interpreter
as the DML interpreter. Since the ROCK interpreter was not
intended to be used for persistent storage, the DECmodel
developers made several minor modifications to obtain the desired
error handling capabilities. The DECmodel tool contains its own
DML code generator.

Simulation Engine. The simulation engine executes a discrete
event simulation of the model in the knowledge base. This
simulation can be performed either interactively or in a batch
mode. The simulation engine was designed to be so robust that a
model can be simulated at any stage of its development,
regardless of inconsistencies or undefined elements.

The simulation engine interacts with the presentation builder to
control simulation, animation, and graphics. The user controls
simulation through the presentation builder. The presentation
builder calls simulation engine API functions to perform the
requested actions, such as starting, stepping through, pausing,
ending, and reinitializing the simulation.

Script Engine and Compiler. Scripts provide a means of
specifying user-defined actions to customize model animation and
to perform special presentation actions during simulation. The
DECmodel tool contains a language for defining scripts, a script
compiler, and a script engine for executing the scripts. Although
the DECmodel team wanted to avoid requiring any programming in
the tool, developers decided that a script language was the only
way to implement these features in the available time frame.

The script language contains functions for

 o Annotating, hiding, showing, flashing, moving,
 highlighting, and scaling presentation icons

 o Playing sounds and sound loops

 o Animating connections between nodes

 o Showing, hiding, and clearing certain kinds of windows

 o Starting other applications

 o Temporarily stopping execution

 o Loading a new project

 o Starting and pausing the simulation

 o Displaying files

 o Displaying a list of DECmodel development team members

Analysis and Reporting Services. The knowledge base contains
services that allow the user to analyze models and presentations
in the knowledge base and to generate reports.

The consistency advisor checks models, presentations, and
mappings for inconsistencies and potential problems at any point
in the model development process. This check is analogous to the
syntax check performed by a compiler. The consistency advisor
check is the primary model-building debugging aid for users.
Inconsistencies in the model do not prevent a model from being
simulated.

The model description report lists the description, messages
sent, and messages received for each activity and process. The
model table report contains the basic model information in a
table format for easy access by another application, database, or
spreadsheet. The simulation summary report contains information
on simulation performance.

Design and Implementation Decisions. The internal engine for the
first DECmodel product release, DECmodel for Windows version 1.0,
was implemented as a Windows dynamic link library (DLL) using the
Windows version of ROCK version 1.0, the Windows version of AMP
version 1.0, and Microsoft C/C++ version 7.0. For DECmodel for
Windows version 1.1, developers ported the internal engine to
Microsoft Visual C++ version 1.0.

Several options existed for implementing the DECmodel knowledge
base. The knowledge base of the Symmod application, the precursor
to the DECmodel product, was implemented in a LISP environment.
The DECmodel engineering team wanted to move to a more standard
programming environment and, therefore, focused on C++ and
C++-based tools. However, a straight C++ implementation would
have required the reimplementation of knowledge representation,

simulation, and modeling technology available in other tools.

Another modeling and simulation technology, the Modeling and
Simulation System (MSS), had been developed for Digital's
Artificial Intelligence Technology Center by the Carnegie Group,
Inc. (CGI).[8] This graphical tool was designed at a lower level
than Symmod. It used a modeling simulation language and was
developed to implement the next version of Symmod. However, the
MSS modeling paradigm was not compatible with that of the
DECmodel tool.

IMKA had also been recently developed by CGI, funded by a
consortium of companies, as a replacement for the Knowledge Craft
product. IMKA's implementation, ROCK, lacked some of the class
libraries included in Knowledge Craft for simulation and process
modeling but ran significantly faster than Knowledge Craft. The
engineering team decided to use ROCK to implement the knowledge
base because of its knowledge representation power and its C++
compatibility. Digital contracted with CGI to port the class
libraries to ROCK. The team, therefore, had a head start in
designing and implementing the internal engine. The portability
of ROCK was also an advantage; switching to the Windows platform
from the DECwindows platform caused no disruption in development.

The original intent of the engineering team was to implement the
DECmodel tool as a single executable file. The knowledge base
contains much global data, however, and restrictions on the
number of data segments required developers to implement the
internal engine as a DLL. This encapsulation of the internal
engine allows it to be used in other applications and enables
easy porting to other platforms. The DECmodel team developed a
set of internal API functions and structures to allow
interactions between the DLL-based internal engine and the
executable-based user interface.

The Symmod application had a modeling language based on LISP for
persistent storage of models and used a relational database for
persistent storage of presentations. Consideration was given to
developing a modeling language specific to the DECmodel tool.
Instead, the engineering team decided to use the ROCK frame
definition language, since it was already completely defined and
debugged and had an interpreter. The team used this language for
persistent storage of both models and presentations to allow easy
sharing of projects between users and to simplify debugging by
users and DECmodel developers.

The knowledge base team was responsible for implementing the
internal API between the user interface and the knowledge base.
This interface was specified in detail early in the project. The
team kept the specification up-to-date throughout the project. It
prepared 19 revisions and produced a final document of more than
200 pages. This specification kept interface problems to a
minimum, thus defusing a potential source of major technical
problems.

The team specified the objects in great detail early in the
project. It also held several internal and external design
reviews. These measures reduced the number of potential design
problems and thus yielded a higher-quality product and a faster
implementation.

User Interface

The user interface provides the means for all user interaction
with the DECmodel tool. It has two major components: the model
builder and the presentation builder.

The user interface is designed as a set of classes specialized
from the Microsoft Foundation Classes. Most of these special
DECmodel user interface classes correspond to frame classes in
the knowledge base; the remainder are necessary for implementing
the user interface. The three main types of user interface
classes -- windows, graphic objects, and dialog boxes -- are used
by both the model builder and the presentation builder.

Window Classes. The user interface contains several types of
window classes: graphics windows, text windows, and a frame
window.

The graphics window classes are all derived from the generic
DECmodel graphics window class. Graphics windows contain graphic
objects, such as boxes or lines. Users act upon these windows
through menu commands or through the Windows messages generated
by the mouse and mouse buttons. The graphics windows are the
model window, the view windows, and the palettes. Menu commands
specific to each graphics window are handled by message handlers
within the window class.

The text window classes are derived from the generic DECmodel
text window class. Text windows are generally read-only and
display various types of textual information, such as
descriptions, the text of files, and clock information. As in the
case of graphics windows, menu commands specific to each text
window are handled by message handlers within the window class.

The one frame window class, i.e., the top window class, is
derived from the CMDIFrameWnd Microsoft Foundation Class and
serves as the frame window for the application. The menu commands
not specific to a particular window are handled by default
message handlers within this window.

Graphics Classes. Graphics window classes use graphic objects to
build models and presentations. These classes implement the
processes, activities, nodes, connections, and annotations
displayed in the Model Editing Window and in the views.

Dialog Box Classes. The DECmodel tool contains a large number of
dialog boxes derived from the CModalDialog Microsoft Foundation
Class. The tool uses these dialog boxes to define the information
and relationships contained in the DECmodel objects.

Menus. The DECmodel tool uses a set of menus individualized to
match the capabilities of the window currently in use. When a
user starts the DECmodel application, the tool presents a reduced
menu that allows the user to start a new project or to load an
existing one. Once a project is in memory, the menu changes as
the user switches between the Model Editing Window, the views,
and the other windows. Menu commands activate message handler
functions within the window classes.

Appearance of the User Interface. Figure 4 shows a small but
typical DECmodel model. The figure displays each process and its
member activities. Note that each of the three activity types is
denoted by a different icon. Lines indicate the potential flow of
messages. Figure 5 shows the DECmodel presentation for the model
that appears in Figure 4. The presentation contains both a view
and the supporting windows, e.g., the simulation clock and the
description windows.

[Figure 4 (Typical DECmodel Model) is not available in ASCII
format.]

[Figure 5 (Typical DECmodel Presentation) is not available in
ASCII format.]

Design and Implementation Decisions. The team implemented the
user interface for DECmodel for Windows version 1.0 using
Microsoft C/C++ version 7.0 and Microsoft Foundation Classes
version 1.0. For DECmodel for Windows version 1.1, developers
ported the user interface to Microsoft Visual C++ version 1.0 and
Microsoft Foundation Classes version 1.5.

As stated at the beginning of the paper, the DECmodel product was
initially targeted at both VAXstation workstations running under
the DECwindows operating system and PCs running under the Windows
NT operating system. Consequently, when developers decided to
focus solely on the PC platform running under the standard
Windows operating system, the user interface development effort
was disrupted. Engineers had done a significant amount of design
work toward achieving a DECwindows implementation.

The DECmodel engineering team considered other class libraries
and user interface implementation packages (such as XVT), but
most were deficient in Windows features or in the look and feel.
Since the Windows operating system was the only platform for the

foreseeable future, the engineering team felt that using
Microsoft Foundation Classes was the best choice. However, they
made this decision after they had performed a significant amount
of development work with one of the tools. Much of the work had
to be redone, which contributed to the schedule delay.

During the design and development of the DECmodel product, the
team debated how graphical to make the user interface, that is,
to what extent dialog boxes should be used. Although the goal was
to make the user interface as graphical as possible, the tight
schedule forced the team to postpone plans for graphical editors
in favor of dialog boxes, which were faster to implement. For
example, the team had initially planned to implement an Activity
Editing Window and had partially developed it. This window was to
provide a complete view of an activity and allow graphical
editing of its information. Schedule constraints required the
team to abandon this plan and to develop a set of dialog boxes
that were not as easy to use but were faster to implement.

The user interface design was not specified or committed to
storyboards in any detail at the beginning of the project,
partially to save time after the disruptions in the development
work. This decision led to more lost time later in the project,
though, because user interface features were designed quickly and
sometimes incompatibly, and consequently required reworking. In
addition, the resulting user interface was not as easy to use as
it could have been if better planned.

External review of the user interface design was not performed
until late in the project. The review yielded some ideas that
would have resulted in a more usable product; however, there was
not enough time left in the schedule to implement them.

DELIVERY

A discussion of the released product and the team's success in
achieving the design and development goals follows.

Release

Digital released version 1.0 of the DECmodel for Windows product
in November 1993 and version 1.1 in April 1994. Version 1.0
contained the basic capabilities for building models and
presentations of business processes; version 1.1 added a set of
minor enhancements and bug fixes. Because of its small, focused
market and the large cost savings that can result from its use,
the DECmodel tool was introduced as a low-volume, high-priced
product. The product includes the software, example models,
documentation, and a week of hands-on training. The DECmodel tool
is an integral part of Digital Consulting's reengineering
practice.

Success of Design Choices

The separation of the model from the presentation is the single
most important element of the product's success. This feature,
along with animation, distinguishes the DECmodel tool from its
competition. Some users have even requested the capability of
building the presentation first and then generating the
corresponding model. Such capability would require considerable
investigation.

The paradigm of process-activity encapsulation is difficult for
some users to become accustomed to. Many still prefer to build a
model using a workflow approach, which the DECmodel tool can
support, rather than by defining each process and its behavior
independently.

The exclusion of resource constraints has limited the application
of the DECmodel tool to system design, thus preventing its use in
modeling system performance. Although the capability was
originally not a product goal, many users would like a future
version of the DECmodel product to provide this feature.

To perform special user-defined actions during the simulation, a
script language was included in the DECmodel tool. This design
feature violated the goal of requiring no programming, and some
users found scripts hard to use. However, many users have
requested that a future DECmodel version provide more script
functions and extend the script language to be more like the
BASIC programming language.

Also, to enhance the use of the DECmodel tool in the design of
business processes, a future version should support classes to
make generic processes available as building blocks of a business
process.

Development Successes and Lessons

The DECmodel engineering team successfully released a software
product on the Microsoft Windows platform, the one most popular
with business consultants. This achievement was significant
because the group of engineers began the project with no PC
experience. The team did not meet its one-year delivery goal, and
the goal slipped to one and one-half years after the Phase 0
announcement. However, this time frame was still extremely short
for developing a complex PC product from scratch.

The product retained the existing Symbolic Modeling paradigm
(i.e., a process-activity-message model and a strong distinction
between model and presentation) and exhibited performance an
order of magnitude better than that of the Symmod product, which
it replaced. The product utilized the most widely accepted modern
programming technology base (C/C++), which simplified

maintainability and reduced the need for special training of
maintainers.

Splitting the development team into two subteams worked well. It
distributed the amount of learning about new technologies
required by the engineers and minimized the overall development
time. Key factors in the success of this approach were the
detailed object and internal API specifications that were kept
up-to-date throughout development and thus provided a reliable
interface between the two parts of the project.

After the product was released, the DECmodel team identified
certain factors that could have made the team and the product
even more successful. The entire engineering team would have
benefited from Windows training at the onset of the project. The
Windows design of the user interface should have been specified
and committed to storyboard in much greater detail much earlier
in the project. In addition, the team should have arranged for
Windows experts to review the design. These changes in the
engineering process would have helped the team produce a cleaner,
easier-to-use, more maintainable user interface and would have
reduced implementation time. The project schedule should have
been created using a bottom-up rather than a top-down process.
The initial one-year schedule was based on an unrealistic,
management-imposed release date. When the engineering team
revised the schedule and calculated a release date based on their
detailed estimates, the team met the new date.

SUMMARY

Modeling and simulating business processes is an important part
of business process reengineering. Digital developed the DECmodel
tool specifically for this type of simulation. Although it
borrows many ideas from other disciplines of modeling and
simulation, as well as from object-oriented design, the DECmodel
product is unique in the way it models business processes,
separates the model from the presentation, and represents the
model as frames in a knowledge base.

ACKNOWLEDGMENTS

The authors would like to acknowledge the following people who
also contributed to the design of the DECmodel product: Ty
Chaney, David Choi, Laurel Drummond, Peter Floss, Amal Kassatly,
Mike Kiskiel, Kip Landingham, and Janet Rothstein.

REFERENCES

1. Symmod User's Guide (Maynard, MA: Digital Equipment
 Corporation, 1990).

2. Knowledge Craft Reference Manual (Pittsburgh, PA: Carnegie
 Group, 1988).

3. S. Hoover and R. Perry, Simulation, A Problem Solving
 Approach (Reading, MA: Addison-Wesley, 1989).

4. DECmodel for Windows: Modeler's Guide (Maynard, MA: Digital
 Equipment Corporation, 1994).

5. J. Peterson, Petri Net Theory and Modeling of Systems
 (Englewood Cliffs, NJ: Prentice-Hall, 1981).

6. G. Booch, Object Oriented Design (Redwood City, CA:
 Benjamin-Cummings, 1991).

7. ROCK Software Functional Specification, Version 2.0
 (Pittsburgh, PA: Carnegie Group, 1991).

8. Modeling and Simulation System User's Guide (Pittsburgh, PA:
 Carnegie Group, 1991).

BIOGRAPHIES

Stewart V. Hoover Employed at Digital Equipment Corporation
between 1984 and 1994, Stew Hoover is currently an independent
consultant specializing in modeling and simulation. Before
joining Digital, he was an associate professor of industrial
engineering and information systems at Northeastern University.
Stew contributed to the development of DECalc-PLUS, Statistical
Process Control Software (SPCS), and the DECwindows version of
Symmod. He has written many papers and articles on simulation and
is coauthor of Simulation, A Problem-Solving Approach, published
by Addison-Wesley in 1989.

Gary L. Kratkiewicz Gary Kratkiewicz is currently a scientist in
the Intelligent Systems R&D Group at Bolt Beranek and Newman Inc.
As a principal engineer in Digital's DECmodel engineering group
from 1991 to 1994, Gary coordinated the architecture and
high-level design specifications, and developed the knowledge
base, script engine, API, and several user interface modules.
Earlier at Digital, he developed an expert system for shipping
and was project leader for a knowledge-based logistics system.
Gary holds an S.B.M.E. from MIT and an M.S. in manufacturing
systems engineering from Stanford University.

TRADEMARKS

The following are trademarks of Digital Equipment Corporation:
DECmodel, DECwindows, Digital, and VAXstation.

Knowledge Craft is a registered trademark of Carnegie Group, Inc.

Microsoft and Visual C++ are registered trademarks and Windows
and Windows NT are trademarks of Microsoft Corporation.

X Window System is a trademark of the Massachusetts Institute of
Technology.

===
Copyright 1995 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

