
Policy Resolution in Workflow Management Systems

by Christoph J. Bussler

ABSTRACT

One crucial function of a workflow management system (WFMS) is to
assign tasks to users who are eligible to carry them out. Except
in simple workflow scenarios, roles such as secretary and manager
are not a sufficient basis for determining eligibility.
Additionally, WFMSs are deployed not only in group settings by
small companies but also worldwide by large enterprises. Since
local laws and business policies have to be followed, task
assignment policies for the same task generally differ from
country to country and, therefore, must be specified locally. The
Policy Resolution Architecture (PRA) model provides more
generality and expressiveness than role models do and at the same
time supports the independent specification of task assignment
policies in different parts of an enterprise. PRA can be used to
model arbitrary organization structures and to define realistic
task assignment (eligibility) rules by means of precisely defined
organizational policies. Thus, PRA provides real-world
organizations with a precise, simple means of expressing their
complex task assignment policies.

INTRODUCTION

A workflow management system (WFMS) is a software system that
manages the flow of work between participants or users according
to formal specifications of business processes called workflows.
A workflow specifies tasks to be performed and their execution
order. Additionally, a workflow specification defines the
internal flow of data between tasks as well as all applications
required to carry out the tasks. For example, a travel expense
reimbursement workflow specifies the tasks of filling, checking
and signing a form, and reimbursing an amount. This workflow
specifies that the form must be signed before an amount is
reimbursed. The workflow specification also defines the flow of
the expense form between tasks and the required spreadsheet
application. Finally, for each task of a workflow, some rule has
to be in place that specifies the users who are eligible to carry
out the task. This set of eligible users is determined at run
time, and the task is subsequently assigned to them.

One of the key issues in successfully deploying WFMSs in an
enterprise is the correct assignment of a given task to eligible
users. An eligible user is one who is capable of and responsible
for carrying out an assigned task. This distinction is important
because not every user who is capable of performing a task is
necessarily responsible for it. The successful completion of a

task, however, often requires that crucial, irreversible
decisions be made by a person who is responsible for the task.
Making the right decisions and then carefully and responsibly
carrying out the task is essential to conducting business
successfully.

The criteria used to determine an eligible user for a task are
manifold. A user must have a specific set of capabilities to be
able to carry out the task. Additionally, the position of a user
in the organization hierarchy and/or the reporting structure of
the organization can determine if the user is responsible for the
task. Furthermore, limits placed on a user's decision-making
authority can affect eligibility. For example, not every
salesperson is authorized to accept an order that leads to a
significant increase in manufacturing output. Such an order
requires special attention and internal coordination by a senior
sales representative. When cost-optimized task assignments are
made, the experience of the user as well as the user's skill set
has to be taken into consideration. Highly experienced users are
in most cases expensive resources, but usually they can complete
tasks faster than users with average experience. Although users
with either level of experience may have sufficient experience to
carry out a specific task, if deadlines are involved or extreme
caution with respect to quality is necessary, a highly
experienced user might be appropriate. In such cases, the
additional cost would be justified.

The previous discussion demonstrates the necessity of a precise
definition of eligible users for a given task. Such a definition,
i.e., set of task assignment rules, should contain all the
criteria used to determine eligible users for the task. Early in
the development of Digital's ObjectFlow WFMS product, the concept
of roles was considered sufficient to model the assignment of
tasks to users.[1] However, an analysis of distributed
enterprise-wide production workflows clearly showed that using
roles as the only assignment mechanism has limited value in
determining eligibility.[2] The need for a far more expressive,
general, and flexible approach became obvious. The analysis also
revealed that workflows are often reused in different parts of an
enterprise. A prominent example is the travel expense
reimbursement workflow, which is discussed throughout this paper.
Although a workflow is reused, however, the task assignment
policies may differ greatly in the various parts of an
enterprise. This difference is due to the need to adhere to local
laws and/or to business-related deviations from the general
rules.

Based on the requirements derived from several case studies of
complex workflows, the Policy Resolution Architecture (PRA) was
developed to provide a comprehensive way of specifying task
assignment rules.[2] To support the fact that different parts of
an organization may require different assignment rules, PRA and
its implementation were designed as separate components. PRA
incorporates three major elements and thus provides

 o Concepts that enable the modeling of any organization
 structure (not just roles and groups) without prescribing
 structures that are application dependent.

 o Task assignment rules as entities in themselves, separate
 from a workflow specification. This makes it possible for
 each of the different parts of an enterprise to have its
 own set of task assignment rules for the same workflow.

 o A language that enables the explicit specification of
 organization schemas and task assignment rules.
 Specifications are processed by a component called the
 policy resolution engine during workflow execution.

Before explaining PRA in detail and providing the rationale for
its development, the paper introduces the key concepts of
workflow management. This introduction presents a seemingly
simple workflow that specifies travel expense reimbursement,
which is later used to introduce the design objectives of PRA.
Note that a real travel expense reimbursement workflow for
production is by far more complex than the example used in this
paper. A large distributed enterprise endeavors to reuse the same
workflow in all of its parts because reuse facilitates
administration and leverages the development investment. At the
same time, such an enterprise probably sponsors numerous business
trips, which makes the travel expense reimbursement workflow an
excellent candidate to use as an example.

WORKFLOW MANAGEMENT

This section introduces a model of workflow management. The
discussion begins with a survey of preliminary work. The survey
suggests the motivation for workflow management and enumerates
some areas in which workflow management is deployed. The key
concepts of the workflow model are then used to model a workflow
example, i.e., the travel expense reimbursement workflow. The
section concludes with a definition of workflow management
systems.

Historical Survey

Looking back in history reveals that workflow management has many
roots. The most important are office automation, software process
management, manufacturing, and transaction processing. The
following short survey of achieved results is given to help the
reader understand the motivation for workflow management. The
discussion also explains the choice of workflow management
concepts. The list of previous and related works indicates the
range of literature that exists.

Office Automation. One of the primary roots of workflow
management is undoubtedly office automation. Early research led
to the development of models and tools to support office workers.
[3-9] What emerged were not only desktop applications that
imitate concepts such as in basket, out basket, forms, and
documents but also models of the procedures that the office
workers follow while doing their jobs.[10,11] Furthermore,
systems were developed that execute the office procedures to
actively manage the flow of work within offices.[12,13]

Software Process Modeling. A second major root of workflow
management is software process modeling and execution.[14-25] The
focus of research in this area is the automated support of
software development processes. Concepts comprise process models
like the waterfall model or the spiral model, deliverable code,
installation and operation manuals, requirements documents, and
test cases.[26,27]

Manufacturing. Traditionally, formalized procedures that are
executed repeatedly are inherent to manufacturing, another root
of workflow management. Manufacturing involves not only
production processes but also preproduction procedures starting
from, for example, the release of computer-aided design (CAD)
drawings to the preparation of shop floor schedules.[28-31]

Transaction Processing. Another important area that influenced
the development of workflow management is transaction processing.
After the concept of atomicity, consistency, isolation, and
durability (ACID) transactions was developed, researchers
proposed more advanced transaction models for processing several
interdependent tasks that must be transactional and recoverable.
[32-39]

Coordination Theory, Enterprise Modeling, and Speech Act Theory.
Another area of research that contributed to the idea of workflow
management is coordination theory.[40,41] This area looks at
processes as one form of coordination and tries to apply
interdisciplinary research results to it. The research area of
enterprise modeling focuses on the modeling of the whole
multifaceted enterprise.[42-49] Enterprise activities are one
part of an enterprise that drives the enterprise processes. The
speech act theory is an attempt to model the conversation between
humans.[50] Some research follows the direction that a workflow
is an interwoven chain of speech acts.[51]

Early Application-independent Approaches. In addition to the
application-specific roots of workflow management, early
approaches that modeled processes independent of application
areas provided motivation for workflow management.[52-54]

The term process appears in all the areas of work mentioned
above. Also, all these research areas deal with data, e.g.,
documents, CAD drawings, and orders. Most approaches have some
notion of subject or agent. The question arose among researchers,
Does each area need its own definition of terms, modeling
language, and execution mechanism, or is it possible to provide
general concepts that need to be customized only for a specific
area of application? This question triggered the development of
the concept of workflow, whose goal it is to serve as the general
and customizable concept.

Workflow Management Concepts

After the specific application semantics (e.g., documents, office
workers, release procedures, and CAD drawings) have been
abstracted, the basic concepts of workflow management can be
distilled from the various approaches mentioned above. Although
workflow management is independent of specific application
semantics, it does support all the application areas cited. It
provides an integrated set of underlying concepts that can be
customized to model the semantics of each application area.
Workflow management is analogous to relational database systems.
Such systems know how to model and implement tables and how to
process queries; however, they do not know about the specific
concepts of an application area that are implemented by
user-defined tables, e.g., addresses and orders.

The following list introduces the basic concepts of workflow
management by enumerating the major aspects that make up a
workflow specification:[14]

 o Functional aspect. The functional aspect describes what
 has to be done, without saying how, by whom, and with
 which data. The functional aspect provides two concepts:
 elementary workflows and composite workflows. Elementary
 workflows are tasks that can be carried out by one
 person, program, or machine. For brevity, elementary
 workflows are called steps. Composite workflows bundle
 either elementary workflows or other composite workflows
 to higher-level tasks. In this way, a reuse hierarchy is
 built, since the bundled workflows may very well stand by
 themselves. Generally, these higher-level tasks can no
 longer be achieved by a single person, program, or
 machine but require several such entities. A workflow
 that bundles other workflows references them. As a naming
 convention, a workflow that is referenced by some other
 workflow is called a subworkflow. The referencing
 workflow is called the superworkflow. The topmost
 workflow of a reuse hierarchy is called the top-level
 workflow.

 o Behavioral aspect. The behavioral aspect describes the

 execution order of the subworkflows of a workflow.
 Constructs that describe the order include sequence,
 conditional branching, parallel branching, and the
 looping and/or joining of parallel or conditional
 execution paths.

 o Informational aspect. The informational aspect is
 twofold: first, it describes the local variables of a
 workflow and the external data referenced; second, it
 describes the flow of data from subworkflow to
 subworkflow.

 o Organizational aspect. The organizational aspect
 describes who is eligible to carry out a step. The "who"
 can be a human (e.g., an office worker), a program (e.g.,
 a compiler in a software process), or a machine (e.g., a
 cell in a shop floor). The term user was chosen to
 represent all three. Most available WFMSs offer the
 concept of roles to model the organizational aspect. A
 role usually groups a set of users. At run time, tasks
 are assigned to roles and all users grouped by these
 roles are assigned the task. Although this method of task
 assignment is adequate for certain workflows such as
 departmental workflows, as shown later in the section
 Task Assignment in a Travel Expense Reimbursement
 Workflow, roles are not sufficient to handle workflows
 that are deployed in an enterprise-wide or international
 setting.

The literature discusses additional aspects, e.g., a historical
aspect and a technological aspect.[55] The historical aspect is
used to specify the kind of information to be stored in a
historical database during the execution of a workflow, e.g.,
starting times or values of variables. Instead of having the
default strategy of saving all data, the workflow specifies in
the historical aspect only the important data that must be
stored. The technological aspect allows the definition of which
application program or programs are available to carry out a
step. At run time, these application programs are made available
to the user. In principle, it is not possible to enumerate all
necessary aspects completely in advance. Depending on the
application area to be modeled, additional aspects might appear
and require support.

The paper now shows how the key concepts of workflow management
can be applied, i.e., customized, to model a specific workflow
type. The example used is a sample travel expense reimbursement
workflow.

Travel Expense Reimbursement Workflow

Figure 1 shows the graphical representation of a simplified
workflow for the reimbursement of travel expenses. (Examples of

workflow language can be found in the literature.[55,56]) The
workflow consists of four steps: (1) fill, (2) check, (3) sign,
and (4) reimburse. The graphical representation shows the
functional aspect (task structure) as ovals and the behavioral
aspect (control flow) as solid arrows. The informational aspect
(data flow) is displayed as forms; dotted arrows indicate the
direction of the flow of data. The organizational aspect is
omitted since the paper will focus later on this topic. The
technological aspect is represented by icons of the software
applications that are available to carry out the steps. The
historical aspect is represented by icons that symbolize logs in
which information must be recorded.

[Figure 1 (Travel Expense Reimbursement Workflow) is not
available in ASCII format.]

Step 1 of the travel expense reimbursement workflow, the fill
step, enables a user to enter the relevant expenses incurred
during a business trip into an electronic travel expense form.
After a user has finished entering the data, validation must take
place. The check step enables a user to look at the contents of
the travel expense form. This user is prompted to validate the
contents but cannot change entries. If the user who checks the
form detects an error, the form is sent back to the user who
initially filled it out, with a note that explains the reason for
rejection. Otherwise, the form is forwarded to the next user who
has to sign the form to approve the amount. After the sign step
is complete, the amount can be reimbursed. The last step,
reimburse, enables a user to add the amount spent to the next
paycheck of the user who requested reimbursement.

This sample workflow is intentionally kept simple because
beginning with the next section, the paper focuses solely on task
assignment rules. In a real organizational setting, the workflow
would involve more steps and additional execution paths. For
example, a user who has to sign the form might detect an error.
In this case, as in the check step, the form would be sent back
to the user who initially filled it out.

Workflow Management Systems

Managing the flow of work among users is done by a software
system called a workflow management system (WFMS). A WFMS
contains all the specifications of the workflow types (e.g., a
travel expense reimbursement or a capital equipment order) that
are modeled and released for production. If a user issues a
request to start a workflow (e.g., if, after a business trip, a
traveler starts a travel expense reimbursement workflow), the
WFMS creates an instance of the requested workflow type. Of
course, more than one instance of the same workflow type can
exist simultaneously. A WFMS assigns the steps of a workflow to
users according to the specified order of the behavioral,
functional, and organizational aspects.

In general, a WFMS performs the following actions to execute a
workflow instance:

 o Determine the next steps to be executed.

 o Determine the eligible users for these steps.

 o Assign steps to eligible users.

 o Wait for the result of each step.

 o Transfer the result back to the step's superworkflow and
 record the step as complete.

The WFMS repeats these actions until all steps of a workflow are
executed.[55,57-59] This list of actions has to be slightly
modified if, in addition to steps, a workflow contains composite
workflows in its list of subworkflows. In this case, the
subworkflow is not assigned to users and the list of actions is
applied to each of the subworkflows.

Each user who can potentially be involved in a workflow is
connected to a WFMS by a private worklist, which is a graphical
representation of a list of steps assigned to the user. Each
entry in a user's worklist represents a task the user is eligible
to carry out. A user can participate in more than one workflow at
the same time. Normally, the user is free to choose from the
worklist any item on which to start. In well-designed systems,
the WFMS automatically starts the application programs that the
user will require to accomplish the work. In this way, the user
can begin work immediately.

Almost all prototype implementations or product developments
allow the modeling of the four main aspects described previously.
The list of workflow management systems is growing rapidly, and
references to relevant literature are readily
available.[37,57-64] References to literature that describes the
deployment of workflow management systems in an application area
are rare, however.[51,61,65-67]

The reminder of the paper focuses on the organizational aspect of
workflow management. The paper discusses the derivation of the
requirements that concepts of this aspect must meet and then
introduces PRA as the model whose concepts address the
requirements. An analysis of the travel expense reimbursement
workflow illustrates some of these requirements. Additional
requirements are also described to provide a more complete set.

TASK ASSIGNMENT IN A TRAVEL EXPENSE REIMBURSEMENT WORKFLOW

The requirements that must be fulfilled by the concepts of the
organizational aspect were derived from the travel expense

reimbursement workflow example, the author's project work
experiences, and Marshak's "Characteristics of a Workflow
System -- Mind Your P's and R's."[68] The following list
describes task assignment rules for each step of the travel
expense reimbursement workflow:

 o Fill. The fill step can be executed by anyone in an
 organization who has the potential to travel. This
 assignment rule enables an employee to fill in a travel
 expense reimbursement form after a business trip. (An
 employee who did not travel can also fill in a form and
 claim expenses; however, the check and sign steps are
 intended to detect such misbehavior and to reject the
 form.) The user who fills in the form is referred to as
 the applicant and is known at run time.

 o Check. The check step must be executed by a user who is
 able to play the role of secretary. To be able to
 validate the contents of the form, a user in this role is
 expected to know how a travel expense reimbursement form
 is structured and how to correctly fill in the form. This
 user is also expected to know the destination and the
 travel dates, and if the travel actually took place. Not
 all secretaries in an enterprise have this knowledge, but
 the secretary of the applicant's manager can be expected
 to know the information. This secretary usually plans the
 trip and often the meetings of the traveler. If the user
 who is able to play the role of secretary determines that
 the contents of the travel expense reimbursement form are
 sound, the form is forwarded to the next step; otherwise
 it is sent back to the applicant.

 The overall task assignment rule is therefore: Everyone
 who is able to play the role of secretary and reports to
 the same manager as the applicant is eligible to execute
 the check step. (Note that the term manager means a user
 who is able to play the role of manager.)

 o Sign. The sign step has to be executed by a manager of
 the applicant because the manager normally has to approve
 spending by subordinates. Usually, there is only one user
 to whom the applicant reports and who is able to play the
 role of manager. If there are two such users, either can
 be responsible for signing the form and only one has to
 sign it.

 The overall task assignment rule is: Everyone who is able
 to play the role of manager and to whom the applicant
 reports is eligible to execute the sign step.

 o Reimburse. The reimburse step must be executed by a
 financial clerk who is responsible for the group to which
 the applicant belongs.

 The overall task assignment rule is: Everyone who is able
 to play the role of financial clerk and who is
 responsible for the applicant's group is eligible to
 execute the reimburse step.

The requirements thus far derived from the example are

 o Organization structure dependencies. To select one user
 relative to another (e.g., a user playing the role of
 secretary reporting to a user playing the role of
 manager) requires describing the users, the roles, and
 the dependencies (relationships). This description is
 called an organization structure. An organization
 structure contains all organizational object types like
 "user," "group," or "role," and the relationships among
 them like "reports to" or "supervises." Given such a
 structure, users can be selected based on their
 relationships to others. Users can also be selected based
 on attributes such as their absence status (i.e., whether
 they are on vacation or on a business trip) or their
 workload.

 o Historical access. In some cases, the eligible user for
 a step cannot be determined locally, and historical
 information is required. For example, determining the
 user who can play the role of manager in one step might
 require knowing which user started the workflow.
 Therefore, it must be possible to query a log of the
 history of a workflow to derive the information necessary
 to make task assignments.

The following are additional requirements:

 o Data dependency. In the travel expense reimbursement
 example used in this paper, the manager to whom the sign
 step is assigned can sign for any amount. In other cases,
 however, this signatory power may have limitations. For
 instance, if the amount exceeds a certain value, a vice
 president and not the manager of the applicant must sign
 the travel expense reimbursement form. As this last
 example shows, task assignment may depend on data in the
 workflow.

 o Delegation. A manager who is out of the office may want
 to delegate his/her tasks to keep business operations
 running smoothly. The appropriate task assignment rule
 would then have to be extended to incorporate the
 delegation of tasks. Depending on the status of the
 manager (e.g., on a business trip or on vacation), the
 work would be assigned to someone else (i.e., delegated).
 However, task assignment rules that incorporate
 delegation can be complex. Consider the situation in
 which a manager leaves on a business trip after work has
 already been assigned. In this situation (and also in the

 case where a manager has an excessive amount of work to
 accomplish), the manager must be able to dynamically
 delegate some or all of the already assigned tasks.
 Further consider that a manager may want to delegate
 different types of tasks not to the same user but to
 different users, depending on the type of task. To avoid
 leaking information or making an inexpedient assignment,
 the task assignment rule must make sure that the target
 users are eligible to receive the delegated task
 assignment.

 o Separation of duty. Some scenarios require a separation
 of duty, i.e., two tasks must be performed by different
 users. For example, in the transfer of a large amount of
 money, two managers must sign the transfer form to
 double-check the transaction. Regarding the travel
 expense reimbursement workflow, a user who fills out the
 claim form should not also sign it. Task assignment rules
 must ensure that there is a separation of duty.

 o Responsibility. As previously stated, a subworkflow can
 be either a step or a group of steps that may be a reuse
 of building blocks for larger workflows. A second use of
 a composite workflow is to explicitly express
 responsibility for workflows. Sometimes an application
 domain requires a user to take responsibility for a set
 of tasks even though the user does not actually execute
 the tasks. For example, consider a workflow that
 implements the start of a new product development. The
 investment plan depends on the development plan, which is
 based on a market analysis. A manager or a vice president
 is usually responsible for these three complex tasks
 (market analysis, development plan, investment plan) but
 not involved in the detailed work. In a WFMS, this
 situation would be modeled as a workflow called Product
 Development Start, which contains the three complex tasks
 as subworkflows. The Product Development Start workflow
 could then be assigned to a manager or a vice president
 to model responsibility. The assignment to this user
 means only that the user must acknowledge the start of
 the assigned workflow and therefore accept responsibility
 for it. The assignment does not imply that the user has
 to perform the detailed work. Thus, a WFMS must be able
 to assign not only steps to users but also composite
 workflows.

 o Early/late allocation. Often, the application semantics
 clearly indicates the single user who should execute a
 task. In such cases, the related task assignment rule
 (e.g., the role of manager of applicant) passes to this
 user at run time. In other scenarios, however, successful
 execution of a task requires some capability that more
 than one user possesses. This capability is often
 expressed through a role (e.g., financial clerk, which is

 a role usually played by more than one user in large
 enterprises). In the single-user case, the task is
 assigned to that user regardless of the user's workload;
 this process is called early allocation. The user must
 carry out the task unless it is feasible to delegate it.
 In the multiple-user case, the task appears on the
 worklist of all users able to play the role. One user
 starts the task; in most cases, this user would not have
 the highest workload. Therefore, the final allocation of
 the task is made not by the WFMS but by the set of
 eligible users themselves. This process is called late
 allocation. In this case, if one user starts work on a
 step, the other users are no longer allowed to begin the
 task.[5,59] Subsequently, their assignment must be
 revoked. "Implementing Agent Coordination for Workflow
 Management Systems Using Active Database Systems"
 describes a general mechanism for handling the revocation
 of assignments.[69]

The travel expense reimbursement workflow is used in the
following discussion about the limitations of roles as a basis
for task assignment rules. These limitations influenced the major
design objectives of PRA, which are then discussed.

Roles As Task Assignment Rules

As stated earlier, roles have limited use as task assignment
rules. Applying the role concept to the task assignment rules
introduced above illustrates the limitations. Certainly, the term
role has many definitions. In this paper, a role is an
abstraction of a set of users. The abstraction criteria are the
set of capabilities of a user. Whether or not a particular user
belongs to the set of users abstracted by a role is defined by an
explicit relationship between a user and a role called the
"plays" relationship. A user who has a plays relationship with a
role has the capabilities defined by that role, i.e., the user is
able to play the role. For example, if both Ann and Joe are users
who are able to play the role of clerk, then each one has the
capabilities defined by this role and each is capable of
executing the task. A user might have a wide range of
capabilities and be able to play several roles at the same time.
E.g., a user might be able to play the role of employee and the
role of manager simultaneously. Although this definition of role
is not the only one, it is very common and often
applied.[6,14,51,52,62,63,70,71]

For each task assignment rule that was introduced in the travel
expense reimbursement example, a discussion follows about the
extent to which roles support the requirements.

 o Fill. The task assignment rule for the fill step is the
 only rule of the example that can be modeled completely
 with a role. Assume that every user is able to play the

 role of employee. If the fill step is assigned to the
 role of employee, every user can execute the step, thus
 modeling exactly the task assignment rule of the fill
 step.

 o Check. Assigning the check step to the role of secretary
 does not model the full semantics of the desired task
 assignment rule. Such an assignment models only the
 requirement that a user has to be able to play the role
 of secretary to carry out the step. The assignment does
 not model the additional requirement that only those
 users who report to the same manager as the applicant are
 eligible.

 o Sign. Analogous to the situation in the check step,
 assigning the sign step to the role of manager does not
 model that only a user to whom the applicant reports is
 eligible but that any manager is eligible.

 o Reimburse. Assigning the reimburse step to the role of
 financial clerk ensures only that the step is assigned to
 a capable user. The assignment does not fulfill the
 additional requirement that this user must also be
 responsible for the group to which the applicant belongs.

The discussion of the last three task assignment rules
demonstrates two tightly coupled limitations of using roles to
model requirements.

 1. The concept of roles cannot express organizational
 dependencies, such as relationships between users (e.g.,
 "reports to" and "responsible for"). It only relates
 users to roles by a plays relationship. Furthermore,
 roles do not provide a means of introducing additional
 objects of organization structures like "group" and
 "department." The only two objects the concept of roles
 provides are "role" and "user."

 2. The concept of roles, therefore, does not provide a
 sufficiently sophisticated language to express, for
 instance, that a user not only has to play a certain role
 but also has to relate to some other user in a particular
 way (e.g., "reports to" a particular user).

 In addition, the other requirements like historical access,
delegation, and separation of duty cannot be modeled at all using
roles.

To overcome these limitations, PRA introduces the concepts of
organization schema and organizational policy and the Policy
Definition Language. A brief introduction follows. Details are
presented in the section Policy Resolution Architecture.

Organization Schema

One of the fundamental concepts of PRA is a freely definable
organization schema. An organization schema contains all types of
organizational objects and relationships that are available for
modeling a particular organization. Figure 2a gives an example of
an organization schema. If a defined schema is instantiated, it
contains an organization structure. Since other objects besides
roles are required to model an organization, relationships other
than "plays" must be available. Some necessary additional
relationships are "reports to," which relates two users, and "is
responsible for" and "belongs to," which relate a user and a
group. A freely definable organization schema, such as the one
provided by PRA, allows designers to define roles as required by
the workflow application.

[Figure 2 (Sample Organization Schema and Organization Structure
for the Travel Expense Reimbursement Example) is not available in
ASCII format.]

Such a freely definable organization schema may seem to be a
luxury, and a fixed organization schema that provides the most
relevant objects and relationships may seem sufficient. An
analysis of various organization structures in different
enterprises clearly shows, however, that a single organization
schema is not adequate for all situations in which WFMSs can be
deployed. An enterprise that deploys a schema in which the
semantics of the modeled objects are fixed has to follow the
semantics completely. Consequently, such a schema does not meet
enterprise-specific needs.

Figure 2a shows a graphical representation of a sample schema for
the travel expense reimbursement example. Although this schema
may appear general and an adequate alternative to an
all-embracing schema, it does not contain required organizational
objects such as task forces with a limited life span, committees,
and departments. Also, this sample schema does not consider
objects or relationships necessary for modeling delegation and
relocation of employees. Figure 2b displays a superficial
organization structure, i.e., an instantiation of the schema.
Objects like user and role are depicted as icons, and
relationships are depicted as arcs and solid, dashed, and dotted
lines between the icons.

Approaches that go beyond using roles as a basis for task
assignment commonly provide organizational objects in addition to
roles and users, usually group and/or department
objects.[2,6,8,59,72] The literature contains evidence that the
schemas and the task assignment rules are fixed and have to be
used as they are. Additionally, these approaches do not separate
the workflow from the workflow specification, which makes the
reuse of a workflow in a different organizational setting very
difficult.

Organizational Policies As Task Assignment Rules

A second fundamental PRA concept is that of an organizational
policy, which up to this point has been called a task assignment
rule. An organizational policy specifies all the eligible users
for a task by stating the criteria a user must meet. These
criteria can include a role or roles that a user has to be able
to play and relationships that a user has to have with other
users or groups.

Figure 3a shows an example of an informal organizational policy
for the sign step. This organizational policy specifies that if
the WFMS is to assign the sign step, it will assign the step to
the manager of the applicant if the amount is less than $1,000.
Otherwise, it will assign the step to the vice president
responsible for the applicant's group. A more advanced rule would
not fix the amount at $1,000 but would make this amount dependent
on the authorization level of the manager, as illustrated in
Figure 3b.

Figure 3 Informal Organizational Policies for the Sign Step of
 the Travel Expense Reimbursement Workflow

(a)

WORKFLOW TravelExpenseReimbursement
STEP sign
CRITERIA IF amount < 1000
 THEN manager of applicant
 ELSE VP responsible for applicant's group
 ENDIF

(b)

WORKFLOW TravelExpenseReimbursement
STEP sign
CRITERIA IF amount < authorization level of applicant's manager
 THEN manager of applicant
 ELSE VP responsible for applicant's group
 ENDIF

The Policy Definition Language is PRA's formal language for
specifying organizational policies. Policies written in this
language are precise and executable by an execution engine called
the policy resolution engine. Each time the WFMS is about to
assign a step, the system evaluates the corresponding
organizational policy to determine the set of users who can
execute the task.

POLICY RESOLUTION ARCHITECTURE

WFMSs operate in global, open, and distributed environments and
in group, department, enterprise, and multiple-enterprise
settings. The enterprise-level deployment of workflows is
possible only if the underlying concepts and systems are
developed appropriately. PRA is therefore based on several design
principles that ensure a general approach that supports
enterprise-level deployment.

Design Principles

The PRA design principles are reusability, security, generality,
dynamics, and distribution.

Reusability. In the travel expense reimbursement example, the
sign step was modeled to approve travel expenses. Other
workflows, like capital equipment orders, can reuse the sign step
for similar tasks, e.g., to approve an order. If an
organizational policy were attached to the step type itself, this
assignment rule would serve to determine eligible users
independent of the workflow in which the step is reused. Viewed
from an organizational perspective, however, the reuse of steps
in different workflows requires several policies. For example,
the signing of a travel expense reimbursement form is carried out
by a manager of the applicant, whereas the signing of a capital
equipment order for an amount that exceeds a certain value is
carried out by an appropriate vice president. Therefore, the sign
step in the context of a travel expense reimbursement workflow
has an organizational policy that defines the manager of the
applicant to be eligible, whereas the sign step in the context of
the capital equipment order workflow has a different policy, one
that defines an appropriate vice president as eligible for the
task.

The observation that a policy for a step depends not only on the
step itself but also on the workflow in which the step is reused
led to the decision to make organizational policies objects in
themselves, independent of a workflow specification.
Organizational policies name not only the step in which they are
used but also the surrounding workflow. The design of

organizational policies for a step depends on the context in
which the step is to be reused.

As mentioned earlier, making organizational policies independent
objects allows different organization structures to reuse a
workflow. To achieve such reuse, each organizational setting has
its own set of organizational policies for the workflow to be
reused. These organizational policies are tailored to the
specific needs and circumstances of the organizational setting.

Organizational policies can themselves be reused. Different steps
may require the same set of eligible users, and, therefore, one
policy would be sufficient for more than one kind of step (e.g.,
sign and fill) or for more than one use of the same kind of step.
For example, a manager signs not only travel expense forms but
also capital equipment orders. In both workflows, the
organizational policy that defines the manager of the applicant
depends on the authorization level. Both workflows can reuse the
sign step, as can be seen in the policy shown in Figure 4a. If
the authorization level depends on the workflow, the policy
changes to take into consideration the specific kind of workflow,
as shown in Figure 4b.

Figure 4 Informal Organizational Policies Showing Reuse of the
 Sign Step

(a)

WORKFLOW TravelExpenseReimbursement | CapitalEquipmentOrder
STEP sign
CRITERIA IF amount < authorization level of applicant's manager
 THEN manager of applicant
 ELSE VP responsible for applicant's group
 ENDIF

(b)

WORKFLOW TravelExpenseReimbursement | CapitalEquipmentOrder
STEP sign
CRITERIA IF amount < authorization level of applicant's
 manager depending on workflow type
 THEN manager of applicant
 ELSE VP responsible for applicant's group
 ENDIF

Security. Because changing an organizational policy may affect
daily business operations, all users should not be able to make
changes at will. For example, a user (applicant) should not be
able to approve his/her own travel request. Organizational
policies are therefore objects that must be properly secured to
prevent users from performing unauthorized tasks. The decision to
design organizational policies as objects makes it easier to
secure the policies, because security mechanisms such as access
control lists (ACLs) can be applied directly to objects.[73]

Designers considered and rejected the alternative approach of
securing the workflow specification and, consequently, the
organizational policies included in the specification. Workflow
types do have to be secured to prevent unauthorized changes;
however, securing the workflow specification would allow those
who are eligible to change the workflow type to also change the
associated organizational policies. Such an all-encompassing
security design inhibits the separation of duty between workflow
designers who care about how a business process is implemented by
a workflow and organization designers who care about the
organization structure and the user capabilities and
responsibilities. Protecting workflows independently of
organizational policies allows users to modify a workflow without
allowing them to modify organizational policies and thus gain or
grant unauthorized eligibility. Similarly, organization schemas
and organization structures must be secured independently to
prevent users from changing roles or relationships to gain or
grant unauthorized authority.

Generality. Although several standard organization structures
prevail -- strong hierarchical, matrix-shaped, function-oriented,
and networked -- hybrid organization structures exist, which
contain a myriad of anomalies and exceptions. Independent of
their organization structure, most enterprises have business
processes that are potential candidates for a WFMS
implementation. A WFMS that claims to be able to implement
business processes in all kinds of enterprises must therefore be
able to support all possible organization structures. A fixed
organization schema is inadequate for such a universal
implementation capability. Consequently, PRA supports the
modeling of arbitrary organization schemas and allows WFMSs to
implement any organization that might exist.

Following this general approach, it is apparent that a fixed set
of assignment rules is also inadequate. The PRA design hence
provides a language that enables users to define task assignment
rules (organizational policies) as required by the workflows of
an enterprise.

Dynamics. Organizations change for many reasons, e.g., employee
numbers fluctuate, restructuring takes place, groups join or
split because of new product strategies, etc. Business operations
and therefore workflows, however, must continue uninterrupted. To
do so, the organization structure and the organizational policies
of a WFMS must change to reflect the changes in the real
organization. The decision to separate workflows from
organization structures and organizational policies enables users
to change versions independently. For example, an organizational
policy can change while a workflow that uses it is running. If
the change takes place before the WFMS assigns the step to a
user, the WFMS will use the new version of the organizational
policy instead of the old version. Policy changes result in
neither the shutting down of the WFMS nor the stopping and
restarting (from the beginning) of the workflow. This
independence allows WFMSs to deal with the dynamics of an
organization and make correct task assignments while changes are
taking place.

Distribution. Not only are enterprises becoming more
distributed, but they are also increasing their worldwide
operation. Nations have different local laws and policies because
they decide autonomously on these issues. A local subsidiary has
to adhere to local law, even though it belongs to a company that
operates worldwide. For example, U.S. companies have a position
called vice president. A U.S. company may have the rule that
contracts with external suppliers of manufacturing parts must be
signed by the vice president of manufacturing. If the U.S.
company has a German subsidiary, by German law, this subsidiary
is a company in itself and must have a person called
"Geschaftsfuhrer" who is responsible for the operations of the
company. If the subsidiary wants to enter into a contract with a
supplier, German law requires the Geschaftsfuhrer to sign the
contract even though the U.S. corporate organizational policy
requires the vice president of manufacturing to sign. Although
the same type of workflow is running in both countries, e.g., the
contract with external supplier workflow, the organizational
policies for the approval step differ. The U.S. version of the
organizational policy specifies the vice president of
manufacturing is the only eligible user, and the German version
specifies that the Geschaftsfuhrer the only eligible user.

Domains were introduced to deal with the issue of autonomous
policies. A domain is an abstract entity of management.
Organizational policies as well as workflows are related to
domains. The previous example might involve two domains: "USA"
and "GERMANY." (The domains could be further subdivided.)

The principles just discussed guided the PRA design. As mentioned
in the previous section, PRA defines the concepts of organization
schema, organizational policy, and a formal language to model
policies. In addition, PRA defines interfaces for an execution
engine and their use by a WFMS. A detailed discussion of the PRA

components follows.

Organization Schema and Organization Structure

The PRA organization schema is a set of objects and relationships
that can be freely defined, thus enabling users to model
arbitrary organizations. Each member of the set can be
instantiated to populate an organization schema, that is, to
produce an organization structure. PRA allows users to define
constraints on the organization structure to avoid erroneous
structures. For example, if an enterprise has the policy that an
employee must not report to more than two people, PRA enables the
user to define a constraint that specifies that one person can be
related to only two others through a "reports to" relationship.
If a modeler adds a third reporting line, the system detects the
violated constraint.

Organizational Policy

An organizational policy specifies a set of eligible users for a
given workflow, which can be either elementary (a step) or
composite. A set of users is not stable and therefore fixed but
specified through an expression called an organizational
expression. An organizational expression specifies the selection
of users with particular properties from an organization
structure. For example, an expression might enumerate users,
select all users able to play a particular role, or select a user
related to some other in a specific way. Additionally,
organizational expressions can refer to the history of a workflow
or to its internal data, such as local variables, and thus be
dependent on the workflow state. Consequently, the set of users
for the same step in two different instances of the same workflow
might be different. Consider, for example, the travel expense
reimbursement workflow, with the user selection for the sign step
dependent on the authorization level. In two instances of the
workflow, the amounts to be reimbursed might differ such that
different people, e.g., the manager and the vice president, must
execute the two sign steps.

To provide a general mechanism for determining a set of eligible
users for a workflow, PRA organizational policies accommodate
operations in addition to executing a step or taking
responsibility for a composite workflow. Delegating a workflow
and undoing a workflow are two examples. To delegate a workflow,
an organizational policy has to ensure that both the person who
delegates the workflow and the person to whom the workflow is
assigned are eligible users. The operation of undoing a workflow
(i.e., to undo the results achieved thus far) and starting again
can result in wasted effort and unrecoverable work. Therefore, a
WFMS must carefully choose eligible users for this operation.

To deal with various workflow operations, a PRA organizational

policy relates a workflow type and one of its operations in a
given domain to an organizational expression. An organizational
policy is defined as the tuple <workflow type, operation, domain,
organizational expression>. For example, the organizational
policy for the fill step in the travel expense reimbursement
example is <TravelExpenseReimbursement.Fill, execute, USA, `every
user who plays the role of employee'>. Since an applicant should
be able to undo the step and start again, the WFMS must also
specify the organizational policy
<TravelExpenseReimbursement.Fill, undo, USA, `the user who
started fill'>. (The next section describes PRA's formal language
for specifying organizational policies.)

When a WFMS determines that a workflow in a particular domain is
to be executed, it calls the policy resolution engine, which
looks for the appropriate organizational policy and evaluates its
organizational expression. The engine returns the results of the
evaluation, i.e., the set of eligible users, to the WFMS, which
subsequently assigns the workflow to those users. One
organizational policy can be reused for several workflow types,
domains, etc., by entering a set in the appropriate element of
the tuple. For example, if the organizational policy for the fill
step of the travel expense reimbursement workflow is the same in
the U.S. as it is in Europe, the policy could be modeled as
<TravelExpenseReimbursement.Fill, execute, {USA, EUROPE}, `every
user who plays the role of employee'>.

Policy Definition Language

From the organizational viewpoint, the following elements are
necessary to run a workflow: an organization schema together with
its instantiation, the organizational policies for this workflow,
and the relevant organizational expressions. To describe these
elements in a formal way, PRA defines a language called the
Policy Definition Language (PDL), which consists of several
parts. The first part enables the definition of an organization
schema and its population. The second part is concerned with
organizational expressions. Finally, the third part supports the
definition of organizational policies.

The following figures illustrate the PDL for a sample
organization schema and organization structure, some
organizational expressions, and some organizational policies for
the travel expense reimbursement workflow. Figure 5 shows the PDL
for the organization schema displayed in Figure 2a. The PDL for
the instantiation displayed in Figure 2b appears in Figure 6.

Figure 5 Policy Definition Language for the Sample Organization Schema
 Shown in Figure 2a

 ORGANIZATION_TYPE Role
 ATTRIBUTES name: String
 authorization_level: set(task, amount);
 KEYS name;

 ORGANIZATION_TYPE Group
 ATTRIBUTES name: String
 KEYS name;

 ORGANIZATION_TYPE User
 ATTRIBUTES name: String
 office_tel_#: String
 e_mail: String
 absence: {vacation, ill, business, available}
 KEYS name;

 RELATIONSHIP_TYPE Reports_to
 FROM User
 TO User
 ATTRIBUTES kind: {line, functional, none}

 RELATIONSHIP_TYPE Plays
 FROM User
 TO Role
 ATTRIBUTES duration_from: date
 duration_to: date

 RELATIONSHIP_TYPE Responsible_for
 FROM User
 TO Group

 RELATIONSHIP_TYPE Belongs_to
 FROM User
 TO Group

Note that, for simplicity, we assume user names to be unique. In reality,
this is not the case and the modeling must deal with nonunique names.

Figure 6 Policy Definition Language for the Sample Organization Structure
 (Instantiation) Shown in Figure 2b

 Role "Employee", {}
 "Manager", {(TravelExpenseReimbursement.Sign, 1000),
 (CapitalEquipmentOrder.Sign, 5000)}
 "FinancialClerk", {}
 "Secretary", {}
 "Engineer", {}
 "VP", {(TravelExpenseReimbursement.Sign, *),
 (CapitalEquipmentOrder.Sign, *)}

 Group "Sales"
 "Manufacturing"
 "Engineering"
 "Administration"

 User "Al", "[1] 125-5589", "al@center.com", available
 "Nina", "[1] 125-5590", "nina@center.com", available
 "Ken", "[1] 125-5601", "ken@center.com", available
 "Susan", "[1] 125-5609", "susan@center.com", business
 "Matt", "[1] 125-4499", "matt@center.com", available
 "Charles","[1] 125-4580", "charles@center.com", available
 "Mike", "[1] 125-0101", "mike@center.com", available

 Reports_to "Al", "Nina", line
 "Ken", "Nina", line
 "Nina", "Mike", line
 "Susan", "Matt", line
 "Charles", "Matt", line
 "Matt", "Mike", line
 "Mike", "", none

 Plays "Al", "Employee", 01-02-88, 0-0-0 (* open ended *)
 "Al", "FinancialClerk", 01-02-88, 0-0-0
 "Nina", "Employee", 01-02-90, 0-0-0
 "Nina", "Manager", 01-02-90, 0-0-0
 "Ken", "Employee", 01-02-91, 0-0-0
 "Ken", "Secretary", 01-02-91, 0-0-0
 "Susan", "Employee", 01-02-92, 0-0-0
 "Susan", "Secretary", 01-02-92, 0-0-0
 "Matt", "Employee", 01-02-88, 0-0-0
 "Matt", "Manager", 01-02-88, 0-0-0
 "Charles", "Employee", 01-02-88, 0-0-0
 "Charles", "Engineer", 01-02-88, 0-0-0
 "Mike", "Employee", 01-02-90, 0-0-0
 "Mike", "VP", 01-02-93, 12-31-97

 Responsible_for "Al", "Sales"
 "Al", "Manufacturing"

 "Al", "Engineering"
 "Mike", "Sales"
 "Mike", "Manufacturing"
 "Mike", "Engineering"

 Belongs_to "Al", "Administration"
 "Nina", "Engineering"
 "Ken", "Administration"
 "Susan", "Administration"
 "Matt", "Engineering"
 "Charles", "Engineering"
 "Mike", ""

The organization schema definition part of the PDL looks like a
data definition language (DDL) in a relational database. Two
differences exist, though: (1) PDL distinguishes organizational
object types from organizational relationship types, and (2) PDL
allows complex data types (e.g., sets as attributes). If a policy
resolution engine is built on top of a relational database, a
compiler or a translator within the engine translates the
organization schema definition part of PDL into a set of DDL
statements.

Figure 7 lists the organizational expressions required to
formulate the organizational policies for the travel expense
reimbursement workflow. Note that the organizational expression
for employees selects all users who play the role of employee.
The RETURNS statement indicates the search for users. The
definition of the plays relationship type in Figure 5 indicates
that the employee is of the type role. This information is
sufficient to formulate a query to the underlying database system
in an implementation of a policy resolution engine.

Figure 7 Organizational Expressions for the Travel Expense Reimbursement
 Example

 ORGANIZATIONAL_EXPRESSION employees()
 RETURNS User: user
 user plays employee

 ORGANIZATIONAL_EXPRESSION secretaries()
 RETURNS User: user
 user plays secretary

 ORGANIZATIONAL_EXPRESSION manager_of(User: a_user)
 RETURNS User: user
 a_user reports_to user

 ORGANIZATIONAL_EXPRESSION subordinates_of(User: a_user)
 RETURNS User: user
 user reports_to a_user

 ORGANIZATIONAL_EXPRESSION group_of(User: a_user)
 RETURNS Group: group
 a_user belongs_to group

 ORGANIZATIONAL_EXPRESSION VP_responsible_for_group_of(User: a_user)
 RETURNS User: user
 user plays VP
 INTERSECTION
 user responsible_for group_of(a_user)

 ORGANIZATIONAL_EXPRESSION executing_agent(Workflow: a_workflow)
 RETURNS User
 (* provided by the historical services of WFMS *)

The PDL for the organizational policies for the travel expense
reimbursement example appears in Figure 8. The WFMS applies the
first organizational policy when assigning the fill step in a
travel expense reimbursement workflow. The policy is valid in
three domains, USA, EUROPE, and ASIA, for the execute operation,
which has no parameters. The policy engine returns a set of all
users who are able to play the role of employee. The second
policy listed in Figure 8 returns a set of all users who play the
role of secretary and who report to the same user as the
applicant.

Figure 8 Organizational Policies for the Travel Expense
 Reimbursement Example

 ORGANIZATIONAL_POLICY
 WORKFLOW TravelExpenseReimbursement.Fill
 OPERATION Execute()
 DOMAIN USA, EUROPE, ASIA
 ORGANIZATIONAL_EXPRESSION employees()

 ORGANIZATIONAL_POLICY
 WORKFLOW TravelExpenseReimbursement.Check
 OPERATION Execute()
 DOMAIN USA, EUROPE, ASIA
 ORGANIZATIONAL_EXPRESSION
 secretaries()
 INTERSECTION
 subordinates_of(
 manager_of(
 executing_agent(
 TravelExpenseReimbursement.Fill)))

 ORGANIZATIONAL_POLICY
 WORKFLOW TravelExpenseReimbursement.Sign
 OPERATION Execute()
 DOMAIN USA, EUROPE, ASIA
 ORGANIZATIONAL_EXPRESSION
 manager_of(
 executing_agent(
 TravelExpenseReimbursement.Fill))

 ORGANIZATIONAL_POLICY
 WORKFLOW TravelExpenseReimbursement.Reimburse
 OPERATION Execute()
 DOMAIN USA, EUROPE, ASIA
 ORGANIZATIONAL_EXPRESSION
 financial_clerks()
 INTERSECTION
 User: user responsible_for
 group_of(
 executing_agent(
 TravelExpenseReimbursement.Fill))

Independent from the travel expense reimbursement example are the
sample separation of duty and delegation policies shown in
Figures 9 and 10. The organizational policy that specifies
separation of duty ensures that the user who signs the expense
form is different from the user who fills out the form. The
policy that models the delegation operation contains a parameter
that specifies to which person the sign step is to be delegated.
Only the manager of the applicant can call this operation and
then only if the parameter specifies either the next higher
manager or the responsible vice president. The step can be
delegated only to one of these two users.

Figure 9 Organizational Policy for the Separation of Duty

 ORGANIZATIONAL_POLICY
 WORKFLOW TravelExpenseReimbursement.Sign
 OPERATION Execute()
 DOMAIN USA, EUROPE, ASIA
 ORGANIZATIONAL_EXPRESSION
 manager_of(
 executing_agent(
 TravelExpenseReimbursement.Fill))
 DIFFERENCE
 executing_agent(
 TravelExpenseReimbursement.Fill)

Figure 10 Organizational Policy for the Delegate Operation

 ORGANIZATIONAL_POLICY
 WORKFLOW TravelExpenseReimbursement.Sign
 OPERATION Delegate (User: a_user)
 DOMAIN USA, EUROPE, ASIA
 ORGANIZATIONAL_EXPRESSION
 IF a_user IN
 (manager_of(
 manager_of(
 executing_agent(
 TravelExpenseReimbursement.Fill)))
 OR
 VP_responsible_for_group_of(
 executing_agent(
 TravelExpenseReimbursement.Fill)))
 THEN
 manager_of(
 executing_agent(
 TravelExpenseReimbursement.Fill))

Since the PDL is well defined, it can be used not only by
designers to model organizations and policies but also by
developers of graphics-oriented tools. Such tools could present
graphical symbols to users to be manipulated. When a user decides
to commit the changes, the tool generates a PDL script, which is
fed into the policy resolution engine.

Approaches like the ones mentioned earlier in the paper provide a
fixed set of types for modeling an organization or a fixed set of
functions, such as "role player" or "supervisor," from which to
select users for a workflow. None of these approaches provides a
language like PDL that can freely define the organizational
aspect as the application semantics requires.

Policy Resolution Engine

The policy resolution engine is a mechanism that evaluates
organizational policies for a WFMS. Serving as a base service,
the policy resolution engine manages organizational policies and
organizational expressions, as well as the organization schema
and its population. The engine also provides interfaces for the
definition, modification, and evaluation of these objects. The
interfaces are distinguished by the kind of service they provide.
There are basically two kinds of interfaces: evaluation
interfaces and management interfaces.

Evaluation Interfaces. Policy resolution engine clients use
evaluation interfaces to evaluate organizational policies or
organizational expressions when necessary. The engine provides
four evaluation interfaces: two for organizational policies
("resolve" and "conform to") and two for organizational
expressions (also "resolve" and "conform to"). The resolve
operation for organizational policies expects a workflow
reference and one of its operations as input values. This
operation selects an appropriate organizational policy, evaluates
it, and returns a set of users eligible to execute the given task
of the workflow. The conform to operation for organizational
policies expects a workflow reference, one of its operations, and
a user as input values. This operation resolves the appropriate
organizational policy for the workflow and checks whether the
user is contained in the set of results for that organizational
policy (i.e., if the user conforms to the policy). If the user is
contained in the set of results, the conform to operation returns
the value "true"; otherwise it returns the value "false." Policy
resolution engine clients use this operation to validate a
request by a user to execute a certain task of a workflow.

The resolve and conform to operations for organizational
expressions work analogously. Instead of a workflow reference,
the operations expect the name of an organizational expression as

input. The operations evaluate the named organizational
expression and return the set of results, which is used if the
resolve operation is called. The conform to operation returns
true and false values as described in the previous paragraph.

Management Interfaces. Management interfaces are used to define,
modify, or delete organizational policies, organizational
expressions, or organization schemas and their populations. These
interfaces look like the following operations that are provided
for organizational policies: create, delete, modify, list, get.
The create operation creates an organizational policy; the delete
operation deletes a policy; the modify operation allows users to
change an organizational policy to adjust to new requirements;
the list operation returns the identifiers of all policies; and
the get operation returns the complete description of a policy.

Designers do not call these management interfaces directly,
since they communicate their changes through user-friendly
interfaces or tools. These tools are either graphics oriented or
language oriented. In a graphics-oriented tool, a designer
manipulates icons and graphical symbols, which in turn results in
calls to the appropriate management interfaces. Alternatively, a
graphics tool can generate a PDL script according to the
manipulations of a user and submit this script to the policy
resolution engine. In this case, the engine interprets the
submitted script and changes its internal state accordingly.
Language-oriented tools enable a designer to directly express
changes using PDL. These tools take specifications and translate
them into management interface calls. Of course, they can also
submit the language specifications directly as PDL scripts to the
policy resolution engine, as described above.

Legacy Databases. Many large enterprises have developed
databases that contain some or all of the organizational data the
policy resolution engine needs to evaluate organizational
policies. These databases, called legacy databases, might be
self-implemented or based on standards efforts like those related
to providing directory services on networks, i.e., X.500.[74] In
general, organizations must deal with one of the following
scenarios:

 o No legacy database exists. No existing database has to
 be considered, and the policy resolution engine can use
 its own database to build up organizational knowledge.

 o Legacy databases contain all relevant data. To use the
 policy resolution engine, the database must provide a
 sufficiently expressive query interface, on top of which
 queries issued from the engine can be evaluated. The only
 additional information that has to be stored is
 organizational policies and organizational expressions.
 The organization has to choose whether to extend the

 legacy databases or to use the database within the policy
 resolution engine.

 o A legacy database contains some relevant data. In
 addition to organizational policies and organizational
 expressions, organizational objects and relationships
 must be stored in either the legacy database or the
 database of the policy resolution engine.

If the relevant data is stored in several databases, the querying
interface must be built in such a way that the policy resolution
engine can issue the necessary queries, which might span several
databases. Furthermore, semantics issues have to be dealt with in
heterogeneous environments.[75,76]

Architectural Considerations -- Clients of a Policy Resolution
Engine. From an architectural point of view, there are two
possible ways to design a policy resolution engine:

 1. Incorporate the policy resolution engine into a WFMS. The
 engine would be a module, whose operations are hidden by
 the exported interfaces of the WFMS. All calls to the
 engine operations would be made through the interface of
 the WFMS.

 2. Make the policy resolution engine an independent
 component. The engine would be a server with a WFMS
 system as one of its clients. All clients of the engine,
 including the WFMS, would be able to directly access the
 exported operations of the engine.

PRA recommends the implementation of a policy resolution engine
as an independent base service, which can be used by clients
other than a WFMS. For example, an electronic mail system can be
a client of the policy resolution engine. Since electronic mail
is sent to users, rather than enumerate the electronic mail
addresses of the recipients by hand, organizational expressions
can provide the addresses. For example, a manager could send an
electronic mail message to "all my subordinates" or an engineer
could send an electronic mail message to "all my colleagues who
are engineers." The sample operational expression shown in Figure
11 returns all electronic mail addresses of all subordinates of a
given user.

Figure 11 Organizational Expression for Electronic Mail

 ORGANIZATIONAL_EXPRESSION subordinates(User: a_user)
 RETURNS String: user.e_mail
 user reports_to a_user

Another possible client is a transaction processing monitor,
which incorporates workflow management.[77] Dayal et al.
reference a service called role resolution, which is an earlier
development of policy resolution.[78]

Figure 12 shows a schematic representation of a policy resolution
engine with three clients -- a WFMS, a transaction processing
monitor, and an electronic mail system.

Figure 12 Client-server Structure of a Policy Resolution Engine

 +--------------+ +--------------+ +--------------+
 | WORKFLOW | | TRANSACTION | | |
 | MANAGEMENT | | PROCESSING | | ELECTRONIC |
 | SYSTEM | | MONITOR | | MAIL SYSTEM |
 +-------^------+ +-------^------+ +-------^------+
 | | |
 | | |
 +--------------+ | +--------------+
 | | |
 | | |
 +--V----V----V-+
 | POLICY |
 | RESOLUTION |
 | ENGINE |
 +--------------+

SUMMARY

The sample workflow discussed in this paper, that is, the travel
expense reimbursement workflow, illustrates that roles are
sufficient as task assignment rules for only the simplest
scenarios. Since workflow management systems are deployed in
situations where complex workflows are modeled and executed,
a more general and powerful model called the Policy Resolution
Architecture (PRA) was developed. PRA provides the concept of an
organizational policy. An organizational policy is more general
than a role in that it relates a workflow type to an
organizational expression that determines the set of eligible
users for the workflow. Because they state all criteria a user
has to fulfill and do not limit the selection based on their
properties or interrelationships, organizational policies specify
all eligible users. Since an organizational expression is
related to a workflow type by an organizational policy, task
assignment through organizational policies is a very general
approach. Organizational policies are evaluated based on
organization schema and their populations (organization
structures). Since PRA provides a way to model arbitrary complex
organization schemas, arbitrary organizations can be modeled and
subsequently populated. This generality, in conjunction with
organizational policies, provides a powerful and flexible
approach to task assignment in workflow management.

ACKNOWLEDGMENTS

I want to thank the anonymous referees whose remarks helped me a
great deal in revising this paper. Susan Thomas assisted me by
improving my English and thus making the paper more readable.
Kathy Stetson was always very helpful in coordinating the writing
and revision processes.

REFERENCES

 1. T. May, "Know Your Work-Flow Tools," BYTE (July 1994).

 2. T. Kreifelts and P. Seuffert, "Addressing in an Office
 Procedure System," Message Handling Systems, State of the
 Art and Future Directions: Proceedings IFIP WG 6.5 Working
 Conference on Message Handling Systems, R. Speth, ed.
 (Amsterdam: North-Holland, 1987).

 3. S. Chang and W. Chan, "Transformation and Verification of
 Office Procedures," IEEE Transactions on Software
 Engineering, vol. SE-11, no. 8 (August 1985).

 4. W. Croft and L. Lefkowitz, "Task Support in an Office
 System," ACM Transactions on Office Information
 Systems, vol. 2, no. 3 (July 1984).

 5. C. Ellis and G. Nutt, "Office Information Systems and
 Computer Science," Computing Surveys, vol. 12, no. 1 (March
 1980).

 6. C. Ellis and M. Bernal, "Officetalk-D: An Experimental
 Office Information System," First SIGOA Conference on Office
 Information Systems (1982).

 7. C. Ellis, "Formal and Informal Models of Office Activity,"
 Information Processing 83, R. Mason, ed. (Amsterdam:
 North-Holland, 1983).

 8. B. Karbe and N. Ramsperger, "Concepts and Implementation of
 Migrating Office Processes," Verteilte Kunstliche
 Intelligenz und Kooperatives Arbeiten: 4. Internationaler
 GI-Kongress Wissensbasierte Systeme, Informatik Fachberichte
 291, W. Brauer and D. Hernandez, eds. (Munich:
 Springer-Verlag, October 1991).

 9. T. Kreifelts, "Coordination of Distributed Work: From Office
 Procedures to Customizable Activities," Verteilte
 Kunstliche Intelligenz und Kooperatives Arbeiten: 4.
 Internationaler GI-Kongress Wissensbasierte Systeme,
 Informatik Fachberichte 291, W. Brauer and D. Hernandez,
 eds. (Munich: Springer-Verlag, October 1991).

10. C. Cook, "Streamlining Office Procedures -- An Analysis
 Using the Information Control Net Model," AFIPS Conference
 Proceedings of the 1980 National Computer Conference,
 Anaheim, California (May 1980).

11. I. Ladd and D. Tsichritis, "An Office Form Flow Model,"
 AFIPS Conference Proceedings of the 1980 National Computer
 Conference, Anaheim, California (May 1980).

12. L. Baumann and R. Coop, "Automated Workflow Control: A Key
 to Office Productivity," AFIPS Conference Proceedings of the
 1980 National Computer Conference, Anaheim, California (May
 1980).

13. M. Zisman, "Representation, Specification and Automation of
 Office Procedures," Ph.D. dissertation (Philadelphia:
 University of Pennsylvania, Wharton School, 1977).

14. B. Curtis, M. Kellner, and J. Over, "Process Modeling,"
 Communications of the ACM, vol. 35, no. 9 (September 1992).

15. W. Deiters and V. Gruhn, "The Funsoft Net Approach to
 Software Process Management," International Journal of
 Software Engineering and Knowledge Engineering, vol. 4, no.
 2 (1994).

16. W. Deiters, V. Gruhn, and H. Weber, "Software Process
 Evolution in MELMAC," The Impact of CASE Technology on
 Software Processes Series on Software Engineering and
 Knowledge Engineering, vol. 3, D. Cooke, ed. (Singapore:
 World Scientific Publishing, 1994).

17. D. Harel et al., "STATEMATE: A Working Environment for the
 Development of Complex Reactive Systems," Proceedings of the
 Tenth International Conference on Software Engineering
 (1988).

18. W. Humphrey and M. Kellner, "Software Process Modeling:
 Principles of Entity Process Models," Proceedings of the
 Eleventh International Conference on Software Engineering
 (May 1989).

19. M. Jaccheri and R. Conradi, "Techniques for Process Model
 Evolution in EPOS," IEEE Transactions on Software
 Engineering (December 1993).

20. T. Katayama, "A Hierarchical and Functional Software Process
 Description and Its Enaction," Proceedings of the Eleventh
 International Conference on Software Engineering (May 1989).

21. P. Mi and W. Scacchi, Operational Semantics of Process
 Enactment and Its Prototype Implementations (Los Angeles:
 University of Southern California, Computer Science
 Department, April 1991).

22. P. Mi and W. Scacchi, Modeling Articulation Work in Software
 Engineering Processes (Los Angeles: University of Southern
 California, Computer Science Department, April 1991).

23. P. Mi and W. Scacchi, "A Knowledge-Based Environment for
 Modeling and Simulating Software Engineering Processes,"
 IEEE Transactions on Knowledge and Data Engineering, vol. 2,

 no. 3 (September 1990).

24. L. Osterweil, "Software Processes Are Software Too,"
 Proceedings of the Ninth International Conference on
 Software Engineering (March/April 1987).

25. L. Williams, "Software Process Modeling: A Behavioral
 Approach," Proceedings of the Tenth International Conference
 on Software Engineering (1988).

26. W. Royce, "Managing the Development of Large Software
 Systems," Proceedings of the Ninth International Conference
 on Software Engineering (March/April 1987).

27. B. Boehm, "A Spiral Model of Software Development and
 Enhancement," ACM Software Engineering Notes, vol. 11, no. 4
 (August 1986).

28. C. Hegarty and L. Rowe, "Control Loops and Dynamic Run
 Modifications Using the Berkeley Process-Flow Language,"
 Proceedings of the Third International Conference on Data
 and Knowledge Systems for Manufacturing and Engineering,
 Lyons, France (1992).

29. S. Jablonski, "Data Flow Management in Distributed CIM
 Systems," Proceedings of the Third International Conference
 on Data and Knowledge Systems for Manufacturing and
 Engineering, Lyons, France (1992).

30. Proceedings of the Third International Conference on Data
 and Knowledge Systems for Manufacturing and Engineering,
 Lyons, France (1992).

31. H. Yoshikawa and J. Goossenaerts, eds., Information
 Infrastructure Systems for Manufacturing (Amsterdam:
 North-Holland, 1993).

32. T. Harder and A. Reuter, "Principles of Transaction-oriented
 Database Recovery," ACM Computing Surveys, vol. 15, no. 4
 (December 1983).

33. P. Attie, M. Singh, A. Shet, and M. Rusinkiewicz,
 "Specifying and Enforcing Intertask Dependencies,"
 Proceedings of the Nineteenth International Conference on
 Very Large Databases (VLDB), Dublin, Ireland (1993).

34. Y. Breitbart, A. Deacon, H. Schek, and G. Weikum, "Merging
 Application-centric and Data-centric Approaches to Support
 Transaction-oriented Multi-system Workflows," SIGMOD Record,
 vol. 22, no. 3 (September 1993).

35. U. Dayal, M. Hsu, and R. Ladin, "A Transactional Model for
 Long-Running Activities," Proceedings of the Seventeenth
 International Conference on Very Large Databases (VLDB),

 Barcelona, Spain (September 1991).

36. H. Garcia-Molina and K. Salem, "Sagas," Proceedings of the
 1993 ACM SIGMOD International Conference on Management of
 Data (1987).

37. Bulletin of the Technical Committee on Data Engineering,
 vol. 16, no. 2 (June 1993).

38. S. Jablonski, "Transaction Support for Activity Management,"
 Proceedings of the Workshop on High Performance Transaction
 Processing Systems (HPTS), Asilomar, California (1993).

39. H. Wachter and A. Reuter, "The ConTract Model," in
 Transaction Models for Advanced Database Applications, A.
 Elmagarmid, ed. (San Mateo, California: Morgan Kaufmann,
 1992).

40. T. Malone and K. Crowston, "The Interdisciplinary Study of
 Coordination," ACM Computing Surveys, vol. 26, no. 1 (March
 1994).

41. T. Malone, K. Crowston, J. Lee, and B. Pentland, "Tools for
 Inventing Organizations: Toward a Handbook of Organizational
 Processes," CCS WP #141, Sloan School WP #3562-93
 (Cambridge: Massachusetts Institute of Technology, Center
 for Coordination Science, May 1993).

42. R. Burkhart, "Process-based Definition of Enterprise
 Models," Proceedings of the First International Conference
 on Enterprise Integration Modeling Technology (ICEIMT),
 Hilton Head, South Carolina (June 1992).

43. C. Bussler, "Enterprise Process Modeling and Enactment in
 GERAM," Proceedings of the International Conference on
 Automation, Robotics and Computer Vision (ICARCV '94),
 Singapore (November 1994).

44. M. Fox, "The TOVE Project: Towards a Common-Sense Model of
 the Enterprise," Proceedings of the First International
 Conference on Enterprise Integration Modeling Technology
 (ICEIMT), Hilton Head, South Carolina (June 1992).

45. Proceedings of the First International Conference on
 Enterprise Integration Modeling Technology (ICEIMT), Hilton
 Head, South Carolina (June 1992).

46. R. Katz, "Business/enterprise Modeling," IBM Systems
 Journal, vol. 29, no. 4 (1990).

47. J. Sowa and J. Zachman, "Extending and Formalizing the
 Framework for Information Systems Architecture," IBM Systems
 Journal, vol. 31, no. 3 (1992).

48. F. Vernadat, "Business Process and Enterprise Activity
 Modelling: CIMOSA Contribution to a General Enterprise
 Reference Architecture and Methodology (GERAM)," Proceedings
 of the International Conference on Automation, Robotics and
 Computer Vision (ICARCV '94), Singapore (November 1994).

49. T. Williams, "Architectures for Integrating Manufacturing
 Activities and Enterprises," Information Infrastructure
 Systems for Manufacturing, H. Yoshikawa and J. Goossenaerts,
 eds. (Amsterdam: North-Holland, 1993).

50. F. Flores and T. Winograd, Understanding Computers and
 Cognition (Reading, MA: Addison-Wesley, 1987).

51. R. Medina-Mores, R. Winograd, T. Flores, and F. Flores, "The
 Action Workflow Approach to Workflow Management Technology,"
 Proceedings of the ACM 1992 Conference on Computer Supported
 Cooperative Work (CSCW), Toronto, Ontario, Canada (November
 1992).

52. T. Danielsen and U. Pankoke-Babatz, "The Amigo Activity
 Model," in Research into Networks and Distributed
 Applications, R. Speth, ed. (Munich: North-Holland, Elsevier
 Science Publishers B.V., 1988).

53. R. Fehling, K. Joerger, and D. Sagalowicz, Knowledge Systems
 for Process Management (Palo Alto, CA: Teknowledge Inc.,
 1986).

54. J. Guyot, "A Process Model for Data Bases," SIGMOD Record,
 vol. 17, no. 4 (December 1988).

55. C. Bussler and S. Jablonski, "An Approach to Integrate
 Workflow Modeling and Organization Modeling in an
 Enterprise," Proceedings of the Third IEEE International
 Workshop on Enabling Technologies: Infrastructure for
 Collaborative Enterprises (WET ICE), Morgantown, West
 Virginia (April 1994).

56. S. Jablonski, "MOBILE: A Modular Workflow Model and
 Architecture," Proceedings of the Fourth Working Conference
 on Dynamic Modelling and Information Systems,
 Noordwijkerhout, Netherlands (September 1994).

57. M. Hsu, A. Ghoneimy, and C. Kleissner, "An Execution Model
 for an Activity Management System," Proceedings of the
 Workshop on High Performance Transaction Systems (1991).

58. M. Hsu and M. Howard, "Work-Flow and Legacy Systems," BYTE
 (July 1994).

59. F. Leymann and W. Altenhuber, "Managing Business Processes
 as an Information Resource," IBM Systems Journal, vol. 33,
 no. 2 (1994).

60. Workflow Management Software: The Business Opportunity (Ovum
 Reports, December 1991).

61. T. White and L. Fischer, "New Tools for New Times: The
 Workflow Paradigm (Alameda: Future Strategies Inc., Book
 Division, 1994).

62. J. Bair, "Contrasting Workflow Models: Getting to the Roots
 of Three Vendors," Proceedings of the Groupware '93
 Conference, San Jose, California (1993).

63. S. Sarin, K. Abbot, and D. McCarthy, "A Process Model and
 System for Supporting Collaborative Work," Proceedings of
 the ACM SIGOIS Conference on Organizational Computing
 Systems (November 1991).

64. M. Shan, "Pegasus Architecture and Design Principles,"
 Proceedings of the 1993 ACM SIGMOD International Conference
 on Management of Data, Washington, D.C. (May 1993).

65. M. Ansari, L. Ness, M. Rusinkiewicz, and A. Sheth, "Using
 Flexible Transactions to Support Multi-System
 Telecommunication Applications," Proceedings of the
 Eighteenth International Conference on Very Large Databases
 (VLDB), Vancouver, British Columbia, Canada (1992).

66. D. Evans, "Putting Elves to Work: Workflow Technology in a
 Law Firm," Proceedings of the Groupware '93 Conference, San
 Jose, California (1993).

67. D. Sng, "A National Information Infrastructure for the 21st
 Century Collaborative Enterprise," Proceedings of the
 International Conference on Automation, Robotics and
 Computer Vision (ICARCV '94), Singapore (November 1994).

68. R. Marshak, "Characteristics of a Workflow System -- Mind
 Your P's and R's," Proceedings of the Groupware '93
 Conference, San Jose, California (1993).

69. C. Bussler and S. Jablonski, "Implementing Agent
 Coordination for Workflow Management Systems Using Active
 Database Systems," Proceedings of the Fourth International
 Workshop on Research Issues in Data Engineering: Active
 Database Systems (RIDE-ADS '94), Houston, Texas (February
 1994).

70. C. Ellis, S. Gibbs, and G. Rein, "Groupware -- Some Issues
 and Experiences," Communications of the ACM, vol. 34, no. 1
 (January 1991).

71. L. Lawrence, "The Role of Roles," Computers and Security,
 vol. 12, no. 1 (1993).

72. L. Aiello, D. Nardi, and M. Panti, "Modeling the Office
 Structure: A First Step towards the Office Expert System,"
 Second ACM SIGOA Conference on Office Information Systems
 (ACM SIGOA), vol. 5, nos. 1 and 2 (1984).

73. D. Denning, Cryptography and Data Security (Reading, MA:
 Addison-Wesley, 1983).

74. Blue Book, Volume VIII, Fascicle VIII.8, Data Communication
 Networks: Directory, Recommendations X.500-X.521 (Study
 Group VII), Comite Consultatif Internationale de
 Telegraphique et Telephonique.

75. S. Ceri and J. Widom, "Managing Semantic Heterogeneity with
 Production Rules and Persistent Queues," Proceedings of the
 Nineteenth Conference on Very Large Databases (VLDB),
 Dublin, Ireland (1993).

76. W. Kent, "Solving Domain Mismatch and Schema Mismatch
 Problems with an Object-Oriented Database Programming
 Language," Proceedings of the Seventeenth International
 Conference on Very Large Databases (VLDB), Barcelona, Spain
 (September 1991).

77. U. Dayal et al., "Third Generation TP Monitors: A Database
 Challenge," Proceedings of the 1993 ACM SIGMOD International
 Conference on Management of Data, Washington, D.C. (May
 1993).

78. C. Bussler, "Capability Based Modeling," Proceedings of the
 First International Conference on Enterprise Integration
 Modeling Technology (ICEIMT), Hilton Head, South Carolina
 (June 1992).

BIOGRAPHY

Christoph J. Bussler Christoph Bussler is a faculty member at
the Technical University of Darmstadt, Germany, where he is
pursuing a Ph.D. degree. His research work is in workflow and
organization modeling, with a focus on organizational embedding
of workflow management, and in architectures for enterprise-wide
deployment of workflow management systems. While at Digital from
1991 to 1994, Christoph developed the Policy Resolution
Architecture and its prototype implementation. He holds an M.C.S.
(1990) from the Technical University of Munich and has published
numerous papers on workflow management and enterprise modeling.

TRADEMARKS

Digital and ObjectFlow are trademarks of Digital Equipment
Corporation.

===
Copyright 1995 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

