The Design of Miltinmedia Object Support in DEC Rdb

1 Abstract

Storing rmultinmedia objects in a relational database offers advantages
over file systemstorage. Digital's relational database software product
DEC Rdb supports the storing and i ndexing of multinmedia objects-text,
still frame inmages, conpound docunents, audio, video, and any binary |arge
object. After evaluating the existing DEC Rdb version 3.1 for its ability
to insert, fetch, and process multinedia data, software designers decided
to modi fy many parts of Rdb and to use write-once optical disks configured
i n standal one drive or jukebox configurations. Enhancenments were nade to
the buffer manager and page all ocation algorithms, thus reduci ng wasted
di sk space. Performance and capacity field tests indicate that DEC Rdb can
sustain a 200-Kki | obyt e-per-second SQ. fetch throughput and a 57.7-kil obyte-
per-second SQL/ Services fetch throughput, insert and fetch a 2-gigabyte
object, and build a 50-gi gabyte dat abase.

2 Introduction

To accommpdat e the increasing demand for conputer storage and indexing

of nmultinmedia objects, Digital supports multinedia objects in its DEC Rdb
rel ati onal database software product. This paper discusses the inprovenents
over version 3.1 and presents details of the new features and al gorithns
that were devel oped for version 4.1 and are used in version 5.1. This
advanced technol ogy nmakes the DEC Rdb commerci al database product a
precursor of sophisticated database nanagenent systens.

Mul ti medi a objects, such as |arge amounts of text, still frame inmages,
conmpound docunents, and digitized audio and vi deo, are beconi ng standard
data types in conputer applications. Devices that scan paper, i.e.

facsim | e machi nes, are inexpensive and ubiquitous. Devices that capture
and play back full-motion video and audio are just beginning to reach the
mass market. Capturing these objects for use within a conmputer results in
many | arge data files. For exanple, one minute of digitized and conpressed
standard TV-quality video requires approximtely 50 negabytes (MB) of

st or age!

To date, relational databases have been used successfully in storing,

i ndexi ng, and retrieving coded nunmbers and characters. Relational al gebra
is an effective tool for reorganizing queries to reduce the nunber of
records, e.g., from1 mllion to 70 records, that an application program
nmust search to obtain the desired information. O her database features,
such as transaction processing, |ocking, recovery, and concurrent and
consi stent access, are essential to the successful operation of nunerous
busi nesses. El ectronic banking, credit card, airline reservation, and

hospital information systenms all rely on these features to query, maintain,
and sustain business records.

Digital Technical Journal Vol. 5 No. 2, Spring 1993 1

The Design of Multimedia Object Support in DEC Rdb

However, although a business might have its numbers and characters

organi zed, controlled, and nmanaged in a conputer database, nmintaining

the paper and fil m storage nedi a associ ated with database records can be
costly, both in dollars and in human resources. Sonme estinates place the
wor | dwi de data storage business at $40 billion, and as nmuch as 95 percent
of the information is stored on either paper or film Currently, businesses
such as insurance, banking, engineering, and nmedi ci ne depend on human

bei ngs to nmanage the filing and retrieval of these extensive paper and film
archives. Human error can result in the | oss of paper and film Cearly,
scanni ng the paper, storing the infornation in a conputer, and making this
i nformati on avail abl e over conputer networks is a better way to nmanage
paper records. This scherme allows (1) nultiple copies to be distributed

at once; (2) a custoner file to be electronically located and retrieved

in seconds, whereas to materialize a paper folder can take days; and (3)
properly progranmed conputers to nmaintain these types of information nore
efficiently and accurately than humans can.

The idea of elimnating paper-based storage of business records in favor of
conput er storage is |ong-standing. However, only recently have technica
devel opnents made it practical to consider capturing, storing, and indexing
| arge quantities of nmultinmedi a objects. Storage robots based on magnetic
tape or optical disk can be configured in the range of multiple terabytes
(TB) at the low cost of 45 cents per MB. Central processors based on
reduced instruction sets are getting fast enough to process multinedia

obj ects without having to rely on digital signal coprocessors. Processor
mai n menory can be configured in gigabytes (GB). Docunment managenent
systenms, which have thrived over the past few years, deliver conputer
scanni ng, indexing, storage, and retrieval across |ocal area networks.

Until now, nobst nultinmedia objects have been stored in files. Docunent
managenment systens generally use commercial relational database technol ogy
to store the docunents' index and attribute information, where one
attribute is the physical location of the file. This approach has severa
di sadvant ages: consi derable custom software nust be witten and naintai ned
to make the system appear |ogically as one database; application prograns
must be witten against these proprietary software interfaces; a system
based on both files and a rel ational database is difficult to manage;

two backup-and-restore procedures nmust be |earned and applied; and
conplications in the recovery process can occur, if the database and file
syst em backups are executed i ndependently.

Not wi t hst andi ng these di sadvantages, storing rmultinmedia objects in a
rel ati onal database offers several advantages over file system storage.

o Coding an application against one standard interface structured query
| anguage (SQL) to store object attribute data as well as nultinedia
objects is easier than coding against both SQL to nmanage attribute data

and a file systemto store the nmultinedi a object.

0 The database requires only one tool to back up and nonitor data storage
rather than two to nmintain the database and the file system

2 Digital Technical Journal Vol. 5 No. 2, Spring 1993

The Design of Miltinmedia Object Support in DEC Rdb

0 The dat abase guarantees that concurrent users see a consistent view of
stored information. In contrast to a file system a database provides a
| ocki ng mechanismto prevent witers and readers frominterfering with
one another in a general transaction schene. However, a file system
does offer locks to prevent readers and witers from sinultaneous file
access.

0 The dat abase guarantees, assuning that proper backup and nai nt enance
procedures are followed, that no infornmation is |l ost as a result of
medi a or machine failure. Al transactions committed by the database are
guaranteed. A file systemcan be restored only up to the I ast backup
and any files created between the | ast backup and the system failure are
| ost.

In the sections that follow, we present (1) the results of an eval uation
of DEC Rdb version 3.1 for its ability to insert, fetch, and process
mul ti medi a objects; (2) a discussion of the inpact of optical storage
technol ogy on nultinmedi a object storage; and (3) design considerations
for optical disk support, transaction recovery, journaling, the physica
dat abase, | anguage, and | arge object data storage and transfer. The paper
concludes with the results of DEC Rdb performance tests.

3 Evaluation of DEC Rdb as a Multinmedia Object Storage System

G ven the prem se that production systens need to store nmultinmedia objects,
as well as nunbers and characters, in databases, the SQL Miltinedi a

engi neering team nmenbers eval uated the foll owing DEC Rdb features to
deternmine if the product could support the storage and retrieval of

mul ti medi a obj ects:

o External interface support of inserting and fetching |arge objects

0o Large object read and wite performance

o Mxinmum | arge object size

o Maxi num physi cal capacity available for storing |arge nultinmedia objects
The DEC Rdb product has al ways supported a | arge object data type called
segnmented strings, also known as binary |arge objects (BLOBs). The

evol ution from support for BLOBs to a multinedi a database capability was

| ogi cal and straightforward. In fact, the DEC Rdb version 1.0 devel opers
envi sioned the use of the segnented string data type for storing text and

i mages in the database.

In evaluating DEC Rdb version 3.1, we cane to a variety of concl usions
about the existing support for storing and retrieving rmultinmedi a objects.

Descriptions of the major findings follow

The DEC Rdb SQ., which is conpliant with the standards of the Anmerican
Nati onal Standards Institute (ANSI) and the International Organization for
St andardi zation (1SO, and SQ./ Services, which is client-server software

t hat enabl es desktop conmputers to access DEC Rdb dat abases across the

Digital Technical Journal Vol. 5 No. 2, Spring 1993 3

The Design of Multimedia Object Support in DEC Rdb

network, did not support the segnented string data type. Note that the
nost recent SQL92 standard does not support any standard | arge object
mechani sms. [1] Object-oriented rel ational database extensions are expected
to be part of the enmerging SQ3 standard.[2]

The total physical capacity for storing |large objects and for mapping
tabul ar data to physical storage devices is insufficient. Al segnmented
string objects have to be stored in only one storage area in the database.
This specification severely restricts the maxi mum size of a nultinedia

dat abase and thus inpacts performance. One cannot store a |arge nunber of
X-rays or one-hour videos on a 2- to 3-GB disk or storage area. Contention
for the disk would come fromany attenpt to access multinedi a objects,
regardl ess of the table in which they are stored. Although nultiple

di screte di sks can be bound into an OpenVMs vol une set, thereby increasing
t he maxi mum capacity, data integrity would be uncertain. Losing any di sk of
the volume would result in the |loss of the entire volune set.

The maxi mum si ze of the database that DEC Rdb can support is 65,535 storage
areas, where each area can span 2[32] - 1 pages. That translates to 256
terapages (i.e., 256 x 10[12] pages) or 128 petabytes (PB) (i.e., 128 x

10[15] bytes). At a penny per negabyte, a 128-petabyte storage system woul d
cost 1.28 billion dollars!

The |l argest BLOB that DEC Rdb can maintain is 275 TB (i.e., 275 x 10[12]
bytes). A data storage rate of 1 negabyte per second (MB/s) for notion
video and audio translates into 8.7 years of video. However, as nentioned
previ ously, the mexinmum size and the total nunber of objects that can be
stored are limted. As part of systemtesting, we successfully stored and
retrieved a 2-GB object in a DEC Rdb data field.

DEC Rdb uses a database key to reference individual segnents stored

i n dat abase pages. A BLOB belongs to only one colum of one row of a

rel ati on. The database key value that |ocates the first segnent is stored
in the colum of a table defined to represent the BLOB data type. DEC

Rdb i npl enents segnmented strings as singly linked Iists of segnents.
Therefore, version 3.1 nust read a segnment in order to find the next
segnment. This process has two di sadvantages: (1) random positioning with a
BLOB data streamis extrenely slow, and (2) BLOB pages cannot be prefetched
asynchronously. Figure 1 illustrates a DEC Rdb version 3.1 singly linked
list segmented string inplenmentation

BLOB data transfer performance of DEC Rdb version 3.1 was pronising. W
were able to code a | oad test that sustained 65 kil obytes per second
(kB/s); a fetch test sustained 125 kB/s. To put these nmeasurenments in
perspective, DEC Rdb is capable of inserting nore than one A4-size (210
millimeters [mm by 297 mm i.e., approximately 8.25 by 11.75 inches)
scanned pi ece of paper per second and capable of fetching nore than two

Ad-si ze pieces of paper per second. The test was conducted by writing
and readi ng 50-kB nenory data buffers to and from magneti c storage areas

defined by the DEC Rdb software. This experinment ignores the overhead of
net wor k del ays and conpressi on.

4 Digital Technical Journal Vol. 5 No. 2, Spring 1993

The Design of Miltinmedia Object Support in DEC Rdb

DEC Rdb version 3.1 can wite nultiple copies of BLOBs, one to the target
dat abase storage area and one to each of the database journal files. The
journal files provide for transaction recovery and system failures, such as
disk drive failures. Database journal files tend to be bottl enecks, because
every data transaction is recorded in the journal. Therefore, witing |arge
objects to journal files dramatically inpacts both the size of the journa
file and the 1/Oto the journal file.

The vol une of storage required for nost nodest nultinmedia applications
can be neasured in terabytes. A magnetic disk storage system 1l TB in size
i s expensive to purchase and maintain. An alternative storage device that
provi ded the capacity at a much | ower cost was required. W investigated
the possibility of using Digital's RV20 wite-once optical disk drive and
the RV64 optical library ("jukebox") system based on the RV20 drives.

We quickly rejected this solution because the optical disk drives were
interfaced to the Q bus and UNI BUS hardware as tape devices. Since

rel ati onal databases use tape devices for backup purposes only and not
for direct storage of user data, these devices were not suitable. Note that
physically realizing and maintaining a |large data store is a problem for
both file systens and rel ati onal databases.

DEC Rdb version 3.1 does not support |arge capacity wite once, read nany
(WORM) devices, which are suitable for storing |arge nultinmedia objects.
Version 3.1 has no optical jukebox support either.

4 Storage Technol ogy | npact

When we eval uated DEC Rdb version 3.1, a 1-TB nagnetic disk farmwas orders
of magni tude nore expensive than optical storage. Large format 12- or 14-
inch (i.e., 30.5- or 35.6-centinmeter) WORM optical disks have a capacity of
6 to 10 GB. The WORM dri ves support renovabl e nmedia. These drives can be
configured in a jukebox, where a robot transfers platters between storage
slots and drives. A fully | oaded optical jukebox, which includes optica

di sk drives and a full set of optical disk platters, of approximtely 1-TB
capacity costs about $400,000, i.e., $0.40 per MB. By conparison, Digital's
RA81 magnetic disk drive, for exanple, has a capacity of 500 MB and costs
$20, 000. Thus, to store 1 TB of data would require 2,000 RA81 disk drives
at a total cost of $40 mllion, i.e., $40.00 per MB!

How big is one terabyte? Assunme, conservatively, that a standard busi ness
| etter scanned and conpressed results in an object that is 50 kB in size.
Therefore, 1 TB can store 20 million business letters, i.e., 40,000 reans
of paper at 500 sheets per ream A reamis approximtely 2 inches (51 nm
high, so 1 TB is equivalent to a stack of paper 80,000 inches or 6,667
feet or 1.25 miles (2 kilonmeters) high! The total volune of paper is 160
cubic yards (122 cubic neters). A 1-TB optical disk jukebox is about 3

to 4 cubic yards (2.3 to 3 cubic neters). Assumng TV-quality video, 1 TB

can store 308 hours or approxinmately 12 days of video. Full-notion video
archives suitable for use in the broadcast industry require petabytes of
mass storage.

Digital Technical Journal Vol. 5 No. 2, Spring 1993 5

The Design of Multimedia Object Support in DEC Rdb

The gap between affordable and practical configurations of optical disk

j ukeboxes and magnetic disk farnms has cl osed considerably since late
1992. Juxt aposi ng equal amounts (700 GB) of nmgnetic and optical storage,
i ncl udi ng storage device interconnects, installation, and interface
software, reveals that magnetic di sk storage is about five tinmes nore
expensi ve than optical storage. The mgjor di sadvantage of optical jukebox
storage is data retrieval latency related to platter exchanges. This

| atency, which is approximtely 15 seconds, varies with the jukebox | oad
and how data is mapped to different platters.

Mass storage technol ogy, including device interconnects, conbines different
cl asses of storage devices into storage hierarchies. Storage managenent
software continues to be a chall enging aspect of large multinedia

dat abases.

To provide 1 TB of mass storage capacity for relational database nmultinedia
obj ects at reasonabl e cost, we conducted a review of third-party optica

di sk subsystens, hardware, and device drivers for VAX conputers running the
OpenVMS operating system A characterization of the avail able optical disk
subsystens reveal ed three basic technical alternatives.

1. Low-1level device drivers provided by the drive and jukebox
manuf act urers.

2. Hardware and software that nodel the entire capacity of an optical disk
j ukebox as one large virtual address space.

3. Wite-once optical disk drives interfaced as standard updat abl e nmagnetic
di sks. The overwrite capability is provided at either the driver or
the file-systemlevel, where overwitten blocks are revectored to new
bl ocks on the disk. For example, consider a file of 100 bl ocks created
as a single extent on a WORM devi ce. When requested to rewite bl ocks
50 and 51, the WORM file systemwites the new bl ocks onto the end
of all blocks witten. The systemalso wites a new file header that
contains three file extents: blocks O to 49 stored in the origina
extent; blocks 50 to 51 stored in the new extent; and bl ocks 52 to 100
stored as the third extent. Obviously, files that are updated frequently
are not candi dates for WORM storage. However, inmutable objects, such as
digitized X-rays, bank checks, and health-benefit authorization forns,
are ideal candidates for WORM storage devices.

As a result of this investigation, we decided that using wite-once optica
devices, interfaced as standard di sk devices, was the best solution to
provi de optical storage for nmultimedia object storage. This functionality
is being net with comercially available optical disk file and device
drivers.

In the future, WORM devi ces nmay be superseded by erasable optical or
magneti ¢ di sks. However, experts expect that WORM devices, |ike mcrofilm

will continue to be useful for |egal purposes.

6 Digital Technical Journal Vol. 5 No. 2, Spring 1993

The Design of Miltinmedia Object Support in DEC Rdb

5 Design Considerations

The tanperproof nature of WORM devices is an asset but causes specia

probl ems in database system design. The eval uati on of DEC Rdb version

3.1 indicated that several features needed to be added to the DEC Rdb
product to nmake it a viable multinmedia repository. This section describes
the design of the new nultinmedia features included in DEC Rdb versions 4.1
t hrough 5. 1.

Mass Storage

DEC Rdb version 4.1 supports WORM opti cal disks configured in standal one
drive or jukebox configurations. DEC Rdb pernits database col ums that
contain rmultinmedia objects to be stored or mapped to either erasable
(magnetic or optical disk) or wite-once (optical disk) areas. The wite-
once characteristic can be set and reset to pernit the migration of the
data to erasabl e devices. No changes to application programs are required
to use wite-once optical disks, including jukeboxes.

The main design goals for WORM area support were to

0 Reduce wasted optical disk space by taking into account the wite-once
nature of WORM devi ces

0 Not introduce DEC Rdb application programr ng changes for WORM areas

0o Mintain the atomcity, consistency, isolation, and durability (ACID)
properties of transactions for WORM devi ces

o Mintain conparable performance, allow ng for hardware differences
bet ween optical and magnetic devices

DEC Rdb uses the optical disk file systemto create, extend, delete, and
cl ose database storage files on WORM devi ces. Al though this approach uses
the bl ock revectoring logic in the optical disk file system mninmal space
is wasted. When witing blocks to WORM devi ces, DEC Rdb explicitly knows
that bl ocks can be witten only once and bypasses the revectoring logic in
the optical disk file system

Nonet hel ess, DEC Rdb software could waste space in two major ways. First,
when DEC Rdb creates a storage area on an erasable nmedium (e.g., a magnetic
or erasable optical disk), the database pages are initialized to contain

a standard page format, with page nunbers, area |Ds, checksuns, etc.
Preinitialized database pages help to determ ne corrupted database pages.
However, preinitializing database pages on wite-once nedia makes little
sense. The second way in which DEC Rdb could waste write-once optical disk
pages is to use storage allocation bit maps for space managenent (SPAM .

SPAM pages are used to keep track of free and used pages. As records are
added to and deleted fromthe database, the SPAM bit naps are constantly
updat ed. SPAM pages are maintained within each database file. Wth wite-
once devices, a page can be used only once. Again, it makes no sense to
updat e SPAM pages for wite-once nedia.

Digital Technical Journal Vol. 5 No. 2, Spring 1993

The Design of Multimedia Object Support in DEC Rdb

To elim nate needl essly wasting space on wite-once nedia, DEC Rdb does

not preinitialize WORM pages. As a general rule, WORM areas shoul d not
contain any updatabl e data structures. DEC Rdb nmi ntai ns WORM st orage space
allocation in the database root file. The database root file should al ways
reside on a nmagnetic di sk, because the root file is frequently updated and
magneti ¢ di sks yield higher performance. The clusterw de object manager
mechani sm ensures that the pointer to the end of the witten area is

consi stent across a cluster.

SPAM pages, al though disabled for wite-once areas, are in fact allocated
anyway. The reason for allocating SPAM pages in a wite-once area is to
provide the ability to nmigrate the contents of the storage area to an
erasabl e device. The SPAM pages sinply need to be rebuilt to reflect the
space utilization at the point of conversion.

This wite-once characteristic was the basis for several enhancenents we
made to the buffer nmanager and page allocation algorithns. G ven that

a free WORM page has never been witten to, the buffer manager sinply
materializes an initialized buffer in nain menory for wite operations

wi t hout having to first read the page fromdisk. In the case of page
allocation for magnetic di sks, DEC Rdb nust scan SPAM pages in search

of enough free storage space to satisfy a wite operation. The scanning
algorithmis much sinpler for wite-once areas; to store new records, DEC
Rdb al |l ocates one nore page at the end of the witten portion of the area
to a process. DEC Rdb nmintains such allocated pages in a queue called
the marked WORM page queue on a per-process basis. Whenever a WORM page
is witten to disk, that page is taken off the marked WORM page queue. An
attenpt to store a record checks the queue before allocati ng new WORM pages
to storage. Facilities exist to allocate nmany WORM pages i n one operation
thus minimzing the nunber of wites to the root file.

By explicitly taking into account the wite-once characteristic of the
devi ce, DEC Rdb greatly reduces wasted space, keeping optical disk read and
write performance high

Transacti on Recovery

To understand the di scussion of transaction recovery, the concepts of
first- and second-cl ass records nmust be understood. Both al phanuneric
records and BLOB segnments are stored in database pages. Al phanuneric
records are first-class records and thus have identities in tables; these
records are the rows. First-class records are required to be on a nmedi um
that permts update (either magnetic disk or erasable optical disk). Al
relation tuples are first-class records. Second-cl ass records, such as
BLOBs, have no identities of their own. BLOBs can exist only within the
dormai n of an al phanuneric record and are pointed to by first-class records.
Second-cl ass records nmay be | ocated in WORM ar eas.

Mul ti medi a obj ects can be stored as second-class records in either wite-
once or erasable areas. However, due to transaction recovery constraints,
the rows of relations nust be stored in magnetic disks as first-class
records.

8 Digital Technical Journal Vol. 5 No. 2, Spring 1993

The Design of Miltinmedia Object Support in DEC Rdb

If an update transacti on agai nst the database is aborted, then the database
nmust restore the state of all database areas to pretransaction state.
Regar dl ess of the transaction recovery schenme enpl oyed, e.g., hybrid undo-
redo, the effects of an uncomritted transaction to wite-once nedia my
have to be undone.

By definition, a wite transaction on wite-once nedia, once conplete, can
never be undone. In cases where a transaction fails and the transaction
has witten data to a wite-once area, DEC Rdb enpl oys a | ogi cal undo
operation. This operation de-references the database key that points to
the BLOB data witten as part of the failed transaction. An exanple hel ps
to illustrate how the | ogical undo operation works.

1. Consider row R of table T, which contains a colum defined as data type
BLOB

2. The BLOB storage map indicates that the |arge objects are stored in a
write-once area.

3. A process starts a transaction and updates the row storing a BLOB in the
write-once area.

4. For sone reason the transaction aborts.

5. Recovery nullifies the value of the database key that | ocates the first
page of the BLOB

The write-once pages can never be reused and will never again be allocated.
Not hi ng points to or references data witten as part of an aborted

transacti on.

This transaction recovery scheme introduces the interesting phenonmenon of
WORM hol es. Consi der the follow ng scenari o:

0 Awite-once area has the first 106 pages witten and all ocat ed.

0 Process X starts a transaction that wites a BLOB segnent to the wite-
once area

o Page 107 is allocated for process X

o Later in tinme, process Y starts a transaction to store a BLOB in the
sanme wite-once area.

0 Process Y causes pages 108 to 120 to be allocated, data is witten, the
transaction conmits, and process Y disconnects fromthe database.

o At this point, process X decides to roll back its transaction.
o Page 107 remains in a preinitialized state.

Page 107 can never be allocated to store BLOB data. Recall that DEC Rdb
manages space on write-once devices by maintaining an end-of-area pointer
to keep track of pages that have been witten. Zero-filled pages that

will never be allocated are called WORM hol es. WORM hol es are interesting
because DEC Rdb utilities, such as verify, expect to find all allocated

Digital Technical Journal Vol. 5 No. 2, Spring 1993 9

The Design of Multimedia Object Support in DEC Rdb

pages in a standard format. The utilities have been nodified to ignore
enpty pages on write-once areas.

Jour nal i ng Desi gn Consi derations

An effective database nmanagenent system guarantees the recovery of a

dat abase to a consistent state in the event of a major systemfailure, such
as nedia failure. Hence, full and increnental backups nust be perforned

at regular intervals, and the database nust record or keep a journal file
of transactions that occur between backups. In DEC Rdb, the after inmmge
journal (AlIJ) file records all transactions against the database since

the | ast backup. Also, to recover froma systemfailure, the database nust
keep track of all outstanding or pending transactions. The recovery unit
journal (RUJ) file records the state and data associated with all pending
transactions.

Journal files are heavily utilized in a database managenment system
Contention for the journal files conmes fromevery process that is updating
the database. To be conpletely recoverable, the database managenment system
nmust record BLOB data, as well as al phanuneric data, to both the AlJ and
the RUJ files. Because multinmedia objects are large, elimnating the need
to wite these objects to the journal files is desirable. The double-wite
transaction negatively inpacts the performance of the application storing
the object and taxes the journal file, one of the npbst burdened resources
in the database.

As discussed in the Transaction Recovery section, DEC Rdb uses | ogica
undo operations to undo aborted transactions. In addition to the m ninal
processing required to de-reference a database key pointing to the WORM
area pages, DEC Rdb automatically disables RUJ log wites for WORM area
records. This is another advantage of using WORM devi ces for nultinedia
obj ect s.

Recording multinedia objects in the AlJ file is not so straightforward.
DEC Rdb uses the AlJ file for nedia recovery, as well as for transaction
recovery. By definition, keeping a nedia recovery journal forces twi ce the
nunber of 1/0O operations, each to a separate device. DEC Rdb nust wite
the multimedia object to the storage area designated for the nmultinedia
object and wite a copy of the object to the AlJ file. If the primary
storage device that contains the object fails, the database adm nistrator
can apply the last full backup of the storage area, followed by any
subsequent increnental backups, and roll forward through the AlJ journa
file to recover the data. If a nultinedia database is to be conpletely
recoverabl e and consistent, then multinedia objects nmust be recorded in
the AlJ file. Since they can never be erased, WORM optical disks m ght be
the best devices to wite an object (or a journal file) to. Even though a
j ukebox can mi sfeed and permanently danage the nmedia, disks in a jukebox

can be di sk shadowed. The trade-off is doubling the |I/O versus risking data
integrity. Rather than legislate a policy, DEC Rdb pernmits applications

to disable AlJ logging for BLOBs, thus transferring the risk to individua
applications.

10 Digital Technical Journal Vol. 5 No. 2, Spring 1993

The Design of Miltinmedia Object Support in DEC Rdb

Dat abase Physical Design Consi derations

The original design of segnmented strings specified a singly linked list,
where the segnents were witten one at a tinme, as shown in Figure 1

When witing a new segnent, the previous segnent had to be updated with a
poi nter value that identified the |ocation of the new segnent. For exanple,
to store a BLOB with two segments RL and R2, the old algorithmstored Rl
stored R2, and then nodified RL to point to R2. Although this algorithm
does not waste space on a nagnetic disk, it does waste space on wite-

once optical disk. Segnent RL nust be rewitten to disk with a pointer to
segnent R2.

If we inpose the dependency between the two stores that R2 nust be stored
before Rl, the store dependency for BLOBs becones a reverse order of
segnments. Storing segnents in reverse order requires buffering all segnents
of a nultinmedia object. Whereas buffering the entire object in main nenory
may be feasible for small nultinmedia objects, nain menory is not |arge
enough to buffer audio and video data objects. The singly linked Iist

nmet hod that DEC Rdb used prior to version 4.1 is not well suited for WORM
devi ces. Therefore, we redesigned the format of BLOBs in WORM areas to
elimnate the need to buffer |arge anpunts of data.

The new design replaces the singly linked list with BLOB segnent pointer
arrays and BLOB data segnents. The segment pointer array maintains a

list of database keys that | ocate each segnent, in order, for a BLOB, as
illustrated in Figure 2. Because segnent pointer arrays are stored as a
singly linked list, the pointer arrays can becone |arge. Application data
is stored in BLOB data segnments. The new nethod buffers and wites the BLOB
segnment pointers to disk after assigning the segnented string to a record.

Besi des elimnating the waste problem for wite-once devices, the segnent
poi nter array has ot her advantages. DEC Rdb reads the pointer array into
menory when an application accesses a BLOB. DEC Rdb can, therefore, quickly
and randonly address any segnent in the BLOB. Also, DEC Rdb can begin to

| oad segnments into nain nmenory before the application requests them This
feature benefits applications that sequentially access an object, such as
pl ayi ng a vi deo gane.

St orage Map Enhancements for BLOBs

Desi gners addressed several issues related to storage mappi ng. The
maj or probl ens solved invol ved capacity and system managenent, jukebox
performance, and the failover of full volunes.

Capacity and System Managenent. DEC Rdb can map user data, represented
logically as tables, rows, and colums, into nmultiple files or storage
areas. Besides increasing the amount of data that can be stored in the

dat abase, spreading data across nultiple devices reduces contention for

di sks and i nproves performance. However, as mentioned in the section

Eval uati on of DEC Rdb as a Multinedia Data Storage System prior to DEC
Rdb version 4.1, only one storage area could be used for storing BLOB data.
Al BLOB colums in the database were inplicitly mapped into the single

Digital Technical Journal Vol. 5 No. 2, Spring 1993 11

The Design of Multimedia Object Support in DEC Rdb

area, which severely limted the maxi mum amount of nultinmedia data that
could be stored in DEC Rdb.

Prior to new nultinmedia support for BLOBs, DEC Rdb restricted the direct
storage of a particular table colum to one DEC Rdb storage area (i.e.
file). This partitioning control is acconplished by neans of the DEC Rdb
storage map nechani sm as shown in the follow ng code exanpl e:

This code directs the BLOB data fromthe table PLACEMENT_HI STORY and the
col um RESUME of the table CANDI DATES to be stored in the area RESUME_AREA
and the BLOB colum PI CTURE of the table CANDI DATES to be stored in the
area PHOTO AREA. The renmi ning BLOB data in the database is stored in the
def aul t RDB$SYSTEM ar ea.

Restricting the storage of all BLOBs across the entire database schema

to a single file or database area was clearly undesirable. The size of

the area would be linted to the largest file that could be created by

the OpenVMS operating system and the nass storage devices avail able. The
limted mappi ng of one BLOB area mapped to one disk can be circunvented

by using the OpenVMS system s Bound Vol une Set nmechani sm This nechani sm
allows n discrete disks to be bound into one |ogical disk. DEC Rdb can then
create a single storage area on the | ogical disk that spans the bound set
of di sks.

However, although the volunme set mechani sm sol ves the probl em of

limted area mapping, serious limtations exist in the database system

admi ni stration and recovery processes. All database-related facilities
operate at the granularity of a database storage area. Thus, if one disk

in a 10-di sk volunme set is defective, DEC Rdb would have to restore all 10
di sks. Not only does restoring data on functioning disks waste processing
time, but during the restore operation, applications are stalled for access
at the area level. This situation introduces concurrency problens for on-
line system operations.

DEC Rdb version 4.1 and successive versions solve the capacity probl em

by (1) permitting the definition of nultiple BLOB storage areas, (2)

bi ndi ng di screte storage areas into storage area sets, and (3) providing
the ability to map or to vertically partition individual BLOB columms to
areas or area sets. Applications can set aside a disk or a set of disks
for storing enployee photographs, X-rays, video, etc. The al phanuneric
data and i ndexes can be stored in separate areas as well. Figure 3 depicts
t he enpl oyee phot ograph col um bei ng napped to the EMP_PHOTO 1, EMP_PHOTO _
2, and EMP_PHOTO 3 storage area set. All al phanuneric data in the table
EMPLOYEES i s assuned to be mapped to storage area A.

Coding this exanmple results in

This code directs the BLOB data, i.e., the colum PHOTOGRAPH from the table

EMPLOYEES, to be stored in the three specified areas EMP_PHOTO 1, EMP_
PHOTO 2, and EMP_PHOTO 3.

12 Digital Technical Journal Vol. 5 No. 2, Spring 1993

The Design of Miltinmedia Object Support in DEC Rdb

The ability to define nultiple BLOB storage areas and to bind discrete
areas into a storage set elinmnates the BLOB storage capacity limtation in
DEC Rdb. Consider the storage problemof storing 1 MB of nedical X-rays as
part of a patient record. Prior to DEC Rdb version 4.1, the linmited one-
BLOB storage area could store approximtely 2,000 X-rays on a 2-GB disk
device. The features included in version 4.1 allow the creation of a DEC
Rdb storage area set that spans nultiple disk devices. Al so, adding storage
areas or disks to a storage area set can expand the capacity initially
defined for the col um.

Jukebox Performance Probl ens. When a storage area set is defined using

the SQL storage nmap statenment, DEC Rdb inplenments a random algorithmto
select a discrete area or disk fromthe set to store the next object.

Since nmultiple processes access nultinedia objects across the entire set, a
random al gorithmthat evenly distributes data across the disks in the area
set reduces contention for any one disk.

Using a randomalgorithmto select froma set of platters in a jukebox

is extremely inefficient. A jukebox conprises one to five disk drives

with 50 to 150 shelf slots where optical disk nedia is stored. A storage
robot exchanges optical disk platters between drives and storage slots. As
described earlier, a full platter exchange-spin down the platter currently
in the drive, eject the platter, insert a new platter, spin up the new

pl atter-takes approximately 15 seconds. Each optical disk surface, i.e.
side of a platter, is nodeled as a discrete disk to the OpenVMS operating
system Consider, for exanple, ten storage areas defined on optical disks
in the jukebox and napped into a storage area set. Al patient X-rays from
a single table in the database are to be stored in this area set. Each
new X-ray inserted in the database causes DEC Rdb to randomy select a

di sk surface in the jukebox, which probably results in a platter exchange.
Consequently, each X-ray insertion takes 15 seconds!

The solution to the jukebox performance problemwas not to elininate
random st orage area sel ection, which works successfully with fixed-
spindl e devices. Rather, the solution was to acconmpdate an alternate

al gorithmthat sequentially filled the disks in an area set. Usi ng DEC Rdb,
applications can specify random or sequential |oading of storage area sets
as part of the storage map statenment. Contention for a single optical disk
in a jukebox is a far nore desirable situation, with respect to |atency,

t han causi ng one platter exchange per object stored.

When rultiple users simultaneously issue requests to read nultinedia
objects stored in a jukebox, long del ays occur, whether the storage area is
| oaded sequentially or randomy. Using a transaction nonitor to serialize
access to the database hel ps elininate jukebox thrashing and inprove the
aggregat e performance of the database engine.

Fai l over of Full Volunes. The introduction of storage area sets gave rise
to anot her problem Wat happens when one area in the set becones full?
Normal Iy, within the DEC Rdb environnent, disk errors that result from
trying to exceed the allocated di sk space are signaled to the application

Digital Technical Journal Vol. 5 No. 2, Spring 1993 13

The Design of Multimedia Object Support in DEC Rdb

so that the transaction can be rolled back (discarded). Wen related to
storage area sets, however, the error is just an indication that a portion
of the disk space allocated to the colum has been exhausted and that
processi ng should continue. Al so, since nultinmedia objects tend to be
exceedingly large, great anounts of data may have al ready exhausted cache
menory and been witten back to the WORM nedi a, even though the database
transaction has not conmitted. Handling such an error by signaling to

the application and expecting the application to roll back and retry the
transaction would result in the waste of a |arge nunber of device bl ocks
that have already been burned. Thus, DEC Rdb had to inplenment a new schene.

DEC Rdb now i npl enents full failover of an area within the area set. Thus,
when an area becones full, DEC Rdb traps the error, selects a new area in
the set, and wites the remaining portion of the BLOB being witten to the
new area. This area failover works whether the storage allocation is random
or sequential. In addition, the area that is now full is nmarked with the
attribute of full, and the clusterw de object manager of DEC Rdb nmi ntains
this attribute consistently throughout the cluster. Consequently, witers
to the database will consider the area unavailable for future BLOB store
operations. Further, the DEC Rdb database mamnagenent utilities can renove
the attribute if additional space is nade avail able to the database area
(e.g., if DEC Rdb noves BLOBs fromarea A to another copy of area A that
resides on a device with twice the capacity).

Language Desi gn Consi derations

SQL, the I SO ANSI standard rel ati onal database structured query | anguage,
is well suited to expressing queries against al phanuneric data yet hardly
begins to address the needs of multinedia objects. Putting aside the fact
that sanmpled data (i.e., a scanned inmage) is nore difficult to query than
coded data (e.g., text coded in ASCI1), SQ. cannot provide data conpression
and rendition capabilities for nmultinmedia objects. Miltinmedia object
processing is better suited to a |anguage like C or C++. ldeally, SQ

woul d support the ability to define objects and to associate nethods with
those objects. SQ3 is a new version of the SQL standard that the standards
organi zations are just beginning to work on. SQ.3 contains the mechanismto
define abstract data types and to execute external procedures as part of
SQL statenents. However, SQL3 will not becone a standard for four to five
years.

As di scussed previously, DEC Rdb SQL | acks support for the segmented string
or BLOB data type that was available in the Rdb relational engine. A new
DEC Rdb SQL data type, LIST OF BYTE VARYI NG was desi gned based on the

nati ve Rdb segnmented string data type. The data access nmechani smfor the

LI ST OF BYTE VARYING data type is a |ist cursor, which operates like a
tabl e cursor-open the cursor, fetch segnents of a BLOB, and cl ose the
cursor. This new data type with associ ated access nmechani sm was al so

added to SQL/ Services. SQL/Services software enables renpte clients on a
networ k, such as personal conputers, to attach to renmpte DEC Rdb dat abases.
The ability to scroll or to randomy position the |list cursor allows

14 Digital Technical Journal Vol. 5 No. 2, Spring 1993

The Design of Miltinmedia Object Support in DEC Rdb

positioning at a particular data segnent within the multinedi a object
stream wi t hout having to physically read through the entire data stream

Al t hough applications can programdirectly to |ist cursors, this interface
was cunbersonme and did not offer any object typing or processing. The list
cursor nechani sm does not present the straightforward byte-streaminterface
that is comon in nost file systens. Applications want to store objects,
such as i mages and conpound documents, not BLOBs. Data conpression was

anot her inportant consideration. Miltinedia objects should be conpressed

on the client side of the network; then, conpressed bits are transferred

t hrough the network, servers, and disks. The objects should be deconpressed
when they are to be rendered for display. Finally, the enornmous size of
mul ti medi a objects saturates main nenory resources on personal conputers,
so application devel opers nmust use disk storage to buffer as well as
persistently store nultinmedia objects.

The limtations of the LI ST OF BYTE VARYING data type and the |ist

cursor data access nmechanismled to the devel opnent of nultinmedia object
extensions. SQ. Miltinmedia is an object library that operates agai nst SQ
and SQL/ Services. SQ. Multinmedia allows application developers to classify
or type multinmedia data types (e.g., |MAGE, TEXT, and COVPOUND_DOCUMENT)
and to specify the data format within a type or class. Because no widely
agreed upon mrultinmedi a obj ect encodings or formats exist, we decided not
tolimt the types of data encoding or formats that could be stored in the
dat abase. For exanpl e, the database can store an image in Digital Docunent
I nterchange Format (DDIF) or Tagged Inmage File Format (TIFF). The option
of defining a canonical encoding and format for each object class was too
restrictive.

In both the SQL and the SQL/ Services versions, the SQL Miltinedia insert
and fetch calls operate within the bounds of a transaction. Al nultinedia
obj ects enjoy the sane rights and privil eges as al phanuneric data types in
the database, with respect to concurrent access, recovery, etc.

A process that attaches to a DEC Rdb dat abase can specify that an

aut horization identifier or a default identifier be created and referenced
by the "RDB$HANDLE' synbolic |abel. A transaction can be started explicitly
or a default transaction begins. To operate within the bounds of the
default transaction, the SQ. Miultinmedia routines required access to the
default authorization identifier RDBSHANDLE. A new SQ. conpile tinme swtch
for the SQ nodul e | anguage and preconpilers, causes this identifier to

be defined in a gl obal address space. The SQL Multinmedia routines can thus
access the value of the identifier. If a distributed transaction identifier
is not passed to the SQL Multinedia routines, the SQL Miultinedia operation
is executed using the default transaction.

SQ. Miultinedia inproves the cunbersonme |ist cursor interface by supporting

the foll owi ng object sources and destinations:
0 The entire object sourced fromor deposited to nmain nenory
0 The object buffered through main menory

Digital Technical Journal Vol. 5 No. 2, Spring 1993 15

The Design of Multimedia Object Support in DEC Rdb

o Afile

SQ Miltinedia handles file I1/O operations across many di fferent software
envi ronnents, including the M5-DOS, W ndows, Mcintosh, ULTRIX, and OpenVMS
operating systenms. SQL Multinedia preserves file attributes on insert
operations. For example, the Macintosh file systemis resource fork, which
contains the nanme and version of the application to be | aunched when the
object is accessed by a user, is preserved. |If another Macintosh user
fetches the object to a local file, then SQL Miultinedia restores the

file including the resource fork. Assuming the second user has the sane
application, the user can now access and mani pul ate the nultinmedi a obj ect,
e.g., a conmpound document or a QuickTinme video file. Rules and default
file organi zations exist for the case where a user inserted a file from
an OpenVMS system and anot her user causes the object to be fetched to a
different client file system say on a PC. Application progranmers can
direct SQL Multinedia to override the default file attributes.

Al t hough SQ. Mul tinmedi a handl es disparate file systeml|/O at present, it
does not convert nultinedia object formats or encodi ngs. | mages captured
and stored in DEC Rdb in DDIF are delivered to each client in DDIF.

SQ. Multinedia makes it easy for application programmers to insert and
fetch conpound docunents to and fromthe database. The buffered 1/0O data
stream conforns to Digital's Conpound Docurent Architecture (CDA) stream
managenment interface. Fetching a conmpound docunment using the buffered I/0O
interface, SQL Multinmedia returns the address of a procedure entry nask, a
data buffer pointer, and the buffer I ength. These returned argunents can
be passed to the CDA viewer in the DECw ndows environnent. The viewer then
repeatedly calls the SQL Multinedia buffer-fill procedure until the object
has been transferred to the viewer and displ ayed.

In addition, SQ. Miltimedia provides object-specific processing for inmge
and text objects. Disk inmage objects formatted according to DDIF and nmin
menory objects formatted according to Digital's image tool kit DEC nmage
Application Services (DAS) can be processed on either fetch or insert
operations. SQ. Miltinedia | everages the capabilities of DAS software

to provide i nmage processing, e.g., conpression, deconpression, scaling,
and dithering. When an inage is inserted or fetched, SQL Miltinedi a object
processi ng argunents permt the specification of inmage process steps and
paraneters. The DAS tool kit supports Comité Consultatif Internationale de
Tél égraphi que et Tél éphoni que (CCITT) conpression (a ubiquitous conpression
standard for facsinile machines) for bitonal imges and Joint Photographic
Experts Group (JPEG conpression (an | SO ANSI standard) for nultispectural
i mages.

To i nprove application performance, SQ. Miltinedia can generate nultiple
rendered versions of an inmage that are stored in a single database field.

Therefore, a user can store the original image, retaining its fidelity,
and also store a miniature version of the imge for fast access or browsing
pur poses. For exanple, consider a personnel application where 90 percent

16 Digital Technical Journal Vol. 5 No. 2, Spring 1993

The Design of Miltinmedia Object Support in DEC Rdb

of the fetches for enpl oyee photographs are to be displayed in a passport-
size format on an enployee information form |If the capture portion of

the application stored the original enployee photograph and directed

SQ Miltinedia to generate and store a passport-size rendered version in
addition to the original, at fetch tine, the I/O operations required to
transmt the inage to the enployee form would be reduced. Storing nultiple
rendered versions would also elimnate using CPU tine to scale the fetched
i mage.

6 System Testing and Eval uation

After the nultinedia engineering of the DEC Rdb product was conplete, we
conducted several testing activities to determ ne the performnce and
capacity boundaries. The performance work presented is not conplete but

is offered as an indication of the multinedia object access capabilities of
the DEC Rdb software.

In the debit credit donmmin, the Transaction Processing Performnce Counci
(TPC) tests provide a standard procedure to nmeasure the performance of one
dat abase as conpared to another. However, no standard rultinmedi a dat abase
performance tests exist. The performance of a DEC Rdb mul ti nedi a dat abase
is influenced by many vari abl es, including the processor, mass storage
medi um dat abase design, object sizes, and workl oad. The perfornmance data
presented in this paper should be used only as a guide.

Per f ormance Testing

For performance testing we used a VAX 6360 processor (relatively sl ow

by today's standards) configured with 128 MB of main nenory, an HSC50
storage interconnect processor with 16 RA70 magnetic di sks, 6 RA92 magnetic
di sks, and 2 ESE20 solid-state disks. The total nmmss storage avail able for
bui | di ng dat abases was 10 GB. W eval uated the SQ. performance of DEC Rdb
version 4.2 Field Test 1 (FT1) and SQL Multinedia version 1.0 Field Test 2
(FT2), and generated the SQ./ Services renmpte client data fetch and insert
performance data for DEC Rdb version 4.1 Field Test 4 and SQ. Miultinedi a
version 1.0 FT2.

Thi s performance data shoul d be used as a guideline, because the field-
test software contained inplenentation errors that affected perfornmance but
were corrected in the released products. As presented in Table 1, using the
rel eased version of DEC Rdb, we are able to sustain a 300-kB/s throughput
froma magnetic disk DEC Rdb storage area, across an Ethernet network, to

a DECstation 5240 workstation. This test denobnstrates fetching a software
notion pictures (SMP) video clip out of the database for display on an
ULTRI X- based workstation.[3] Al though the video was sanpled at 15 franes
per second, we can play back the video clip at 20 frames per second! The
performance neasured for an fetch was 57.7 kB/s, as shown in Table 2. W

expect to conduct simlar performance tests on a DEC 7000 AXP processor

Digital Technical Journal Vol. 5 No. 2, Spring 1993 17

The Design of Multimedia Object Support in DEC Rdb

The performance test inserted and fetched 50-kB records. Fifty kilobytes is
a conservative estimate of a conpressed A4-size piece of paper, probably
the nost preval ent object to be stored in nultinedi a databases. For both
the distributed SQ./ Services client and the | ocal SQ. interface, 50-kB

mai n menory buffers were the sources and destinations for the inserts and

f et ches.

We built several 50-MB databases, varying database design paranmeters such
as page and buffer sizes, to deternmine the fastest set of paraneters for
the | arge object performance test. Using the | argest page and buffer sizes
yi el ded the best performance. The database table was organi zed into three
colums: two key columms and a BLOB colum. The BLOB colum was nmapped to a
storage area set consisting of nultiple magnetic storage disks.

After we established the best database organization, we built many 3- to
10- GB dat abases hy

o Varying the number of processes executing insert and fetch operations
o Varying the nunmber of tables in the database

o Varying the nunmber of inserts and fetches per transaction

o Enabling and disabling AlJ journaling

o Inserting and fetching froman SQL/ Services client or using SQ. for
| ocal dat abase access

When we conducted the performance tests, the conputer was dedicated to our
task; no other activity was taking place. A sinple contention test, where
nmul tiple readers sinultaneously fetch objects froma single table, and a
nore conplicated update test, where nultiple witers are sinultaneously
updating one table, have yet to be fabricated and run

To put sonme of the performance results presented in Table 1 into
perspective: the tested configuration can sustain approxi mtely 600 kB

of insert bandwi dth, which translates into twelve 50-kB A4-size pieces of
paper per second. Even a single process scanning paper at 103.4 kB/s can
keep up with sone of the fastest paper scanners avail able.

Al so, scanning both sides of a conpressed bank check (scanned at 200 dots
per square inch) results in an object size of about 20 kB. Therefore, the
particul ar configuration we tested could store 30 checks per second with

nmul ti pl e processes, and 6 checks per second with a single process.

Capacity Testing

We conducted two capacity tests. The first stored and fetched a 2-GB obj ect
in a DEC Rdb field, and the second built a 50-GB database. A 2-GB known
pattern was generated in virtual menory. DEC Rdb wote this object, with no
AlJ, to a field in an enpty database. The BLOB col utmm was napped to three
disks, totaling 2.5 GB of storage. To avoid having to sustain storage area
or file extensions, the storage area set was defined to be 2.3 GB. DEC Rdb
was able to successfully insert and fetch the 2-GB object.

18 Digital Technical Journal Vol. 5 No. 2, Spring 1993

The Design of Miltinmedia Object Support in DEC Rdb

To denmponstrate the capacity that could be achieved with SQL Mil tinedi a,
DEC Rdb, and optical storage, we built a 50-GB database. The hardware
configuration consisted of the foll ow ng:

o A VAX 4000 Mbdel 500, with 6 GB of mmgnetic disk and 128 MB of main
menory

0 A Kodak Automated Disk Library Model 6800, with 100 GB of storage (with
a mexi mum capacity of 1.2 TB)

o DEC Rdb version 4.2 Field Test 0O
o SQ Miltinedia version 1.0 FT2
0 Perceptics LaserStar optical disk software

Starting with a backup of a 2-GB manufacturing database that was used by
Digital's Mass Storage Group, DEC Rdb added an SQ. Multinmedia colum to a
tabl e that contained over 550,000 rows. DEC Rdb then mapped the colum to
five platters, nodeled as ten 9.5-mllion-block (5.1-GB) nmagnetic disks
to the OpenVMs operating system using the sequential |oad al gorithm

An update table cursor was devised that returned between 2,000 to 3,000
rows. Using SQ. Miultinedia, DEC Rdb inserted inages representing the disk
assenbly process until the storage was full

7 Concl usi on

The mul timedia features that have been added to Rdb are in direct support
of the increasing demand for conputer data storage and indexing of

mul ti medi a object types (i.e., text, still inages, conpound docunents,
audi o, and video). Relational database systens nust expand mass storage
devi ce support, database physical database design, |anguage functionality,
and performance to manage the variety of today's information. The

devel opnent of this advanced technology in Digital's DEC Rdb product
provi des desktop conputer-to-optical disk jukebox integration by neans

of a conmercial database. As nultinmedia technol ogy natures, databases
nmust address the need to store and i ndex information beyond numbers and
characters.

The work acconplished to support nultinmedia objects in DEC Rdb is just
“"the tip of the iceberg." Current multinedia capabilities are able to
successfully manage the majority of docunment and still frane applications.
However, inprovenent in capacity and performance are required before the
dat abase can serve multiple channels of video and audio data. As the SQL
standard evolves to incorporate a nore object-oriented mechanism nuch of
the SQL Multinedia functionality will mgrate to using standard interfaces
to define, operate on, and query abstract data types.

Digital Technical Journal Vol. 5 No. 2, Spring 1993 19

The Design of Multimedia Object Support in DEC Rdb

8 Acknow edgnents

A | arge nunber of people fromvarious disciplines contributed to the
success of this nultinmedia database project, including Becky Jacobs,

M chael Sawyer, John Lacey, Cheri Jones, Bruce MIIs, Steve Hagan, |an
Smith, Susan Hillson, Peter Spiro, J. M Smith, JimGay, Dave Lonet,
Rudy Downs, Ken Cross (Perceptics), Chris Eastland, Mase Merchant, Scott
Mat sunot o, Paul Carnen (Eastman Kodak), Jim Lew s (Eastnman Kodak), and
Marilyn Gulliksen.

9 References

1. Anmerican National Standard for Information Systens-Database Language-
SQL,
ANS| X3.135-1992 (New York, NY: American National Standards Institute,
1992) and

I nformati on Technol ogy- Dat abase Language- SQL, | SO | EC 9075: 1992 (Geneva:
I nternational Organi zation for Standardization, 1992).

2. J. Melton, ed., Database Language SQ. (SQL3), |SO ANSI Working Draft,
ANSI X3H2-93-091 and |1SO' | EC JTC1/ SC21/ W33/ DBL YOK- 003
(February 1993).

3. B. Neidecker-Lutz and R. U ichney, "Software Mtion Pictures," Digital
Techni cal Journal, vol. 5, no. 2 (Spring 1993, this issue): 19-27.

10 Ceneral References

SQL Extensions

K. Meyer-Wgener, V. Lum and C. Wi, "I nmage Managenment in a Miltinedia

Dat abase System " Proceedings of the IFIP TC 2/ W5 2.6 Worki ng Conference on
Vi sual Dat abase Systenms, Tokyo, Japan (1989): 497-523.

M St onebreaker, "The Design of the POSTGRESS Storage System" Proceedi ngs
of the 13th International Conference on Very Large Databases, Brighton,

U K. (1987): 289-300.

M St onebreaker and L. Rowe, The POSTGRESS Papers, Menorandum No. UCB/ ERL
MB6/ 85 (Berkel ey, CA: University of California, 1986).

Obj ect Storage Managenent
M St onebreaker, "Persistent Objects in a Miulti-Level Store," Proceedings

of the ACM SI GMOD I nternational Conference on Managenent of Data, Denver,
CO (1991): 2-11.

20 Digital Technical Journal Vol. 5 No. 2, Spring 1993

The Design of Miltinmedia Object Support in DEC Rdb

WORM Devi ces

D. Maier, "Using Wite-Once Menory for Database Storage," Proceedi ngs of
the ACM SI GMOD/ SI GACT Conference on Principles of Database Systens (PODS)
(1982).

S. Christodoul akis et al., "Optical Mass Storage Systems and Their
Per formance, " | EEE Dat abase Engi neering (March 1988).

S. Christodoul akis and D. Ford, "Retrieval Performance Versus Disk

Space Utilization on WORM Optical Disks," Proceedings of the ACM SI GMOD

I nternational Conference on Managenent of Data, Portland, OR (1989): 306-
314.

St orage Managenent for Large Objects

A Biliris, "The Performance of Three Database Storage Structures for
Managi ng Large Objects," Proceedi ngs of the ACM SI GMOD | nternationa
Conf erence on Managenent of Data, San Di ego, CA (1992): 276-285.

11 Trademarks

The foll owing are trademarks of Digital Equi pnent Corporation: CDA, DDIF,
DEC, DECi mage, DECstation, Digital, HSC50, OpenVMS, Q@ bus, RA, RV20, SQL
Mul timedia, ULTRI X, UNI BUS, and VAX.

Kodak is a registered trademark of Eastman Kodak Conpany.

Maci ntosh is a registered trademark and QuickTinme is a trademark of Apple
Conputer, Inc.

MS-DOS is a registered trademark and Wndows is a trademark of M crosoft
Cor poration.

Perceptics is a registered trademark and LaserStar is a trademark of
Per ceptics Corporation.

12 Bi ographies

James J. Feenan, Jr. Principal engineer Jay Feenan has been inplenmenting
application code on database systens since 1978. Presently a technica

| eader for the design and inplenmentation of stored procedures in DEC Rdb
version 6.0, he has contributed to various Rdb and DBMS projects. Prior

to joining Digital in 1984, he inplenmented Manufacturing Resource Planning
systenms and received Anerican Production and Inventory Control Society
certification. Jay holds a B.S. from Wrcester Polytechnic Institute and an
M B. A. from Anna Maria College. He is a nenber of the U S. National Row ng

Team

John L. Janosik, Jr. A principal software engineer, John Janosi k was the
project | eader for DEC Rdb version 5.0, the Al pha AXP port version. John
has been a nenber of the Database Systens Group since joining Digita
in 1988. Prior to this, he was a senior software engi neer for Wang

Digital Technical Journal Vol. 5 No. 2, Spring 1993 21

The Design of Multimedia Object Support in DEC Rdb

Laboratories Inc. and worked on PACE, Wang's rel ati onal database engi ne
and application devel opnment environnment. John received a B.S. in conputer
science from Wrcester Polytechnic Institute in 1983.

T. K. Rengarajan T. K. Rengarajan, a nenber of the Database Systems Group
since 1987, works on the KODA software kernel of the DEC Rdb system He
has contributed in the areas of buffer managenent, high availability, OLTP
performance on Al pha AXP systens, and nultinmedi a databases. Presently, he
i s working on high-performance | oggi ng, recoverable | atches, asynchronous
batch wites, and asynchronous prefetch for DEC Rdb version 6.0. Ranga
holds M'S. degrees in conputer-aided design and conputer science fromthe
Uni versity of Kentucky and the University of Wsconsin, respectively.

Mark F. Riley Consulting software engi neer Mark Ri |l ey has been a nenber
of the Database Systems Group since 1989 and works on nultinedia data type
extensions in Rdb/VMS. Prior to this, he worked for five years in the | nmage
Systens Group and devel oped parts of the DECi nage Application Services
toolkit. Mark received a B.S.E.E. from Wrcester Polytechnic Institute in
1980 and an M'S. in engineering from Dartnmouth College in 1982.

22 Digital Technical Journal Vol. 5 No. 2, Spring 1993

Copyright 1993 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi pment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permitted. All rights reserved.

