
 

             The Design of Multimedia Object Support in DEC Rdb

1  Abstract

 Storing multimedia objects in a relational database offers advantages
over file system storage. Digital's relational database software product
DEC Rdb supports the storing and indexing of multimedia objects-text,
still frame images, compound documents, audio, video, and any binary large
object. After evaluating the existing DEC Rdb version 3.1 for its ability
to insert, fetch, and process multimedia data, software designers decided
to modify many parts of Rdb and to use write-once optical disks configured
in standalone drive or jukebox configurations. Enhancements were made to
the buffer manager and page allocation algorithms, thus reducing wasted
disk space. Performance and capacity field tests indicate that DEC Rdb can
sustain a 200-kilobyte-per-second SQL fetch throughput and a 57.7-kilobyte-
per-second SQL/Services fetch throughput, insert and fetch a 2-gigabyte
object, and build a 50-gigabyte database.

2  Introduction

To accommodate the increasing demand for computer storage and indexing
of multimedia objects, Digital supports multimedia objects in its DEC Rdb
relational database software product. This paper discusses the improvements
over version 3.1 and presents details of the new features and algorithms
that were developed for version 4.1 and are used in version 5.1. This
advanced technology makes the DEC Rdb commercial database product a
precursor of sophisticated database management systems.

Multimedia objects, such as large amounts of text, still frame images,
compound documents, and digitized audio and video, are becoming standard
data types in computer applications. Devices that scan paper, i.e.,
facsimile machines, are inexpensive and ubiquitous. Devices that capture
and play back full-motion video and audio are just beginning to reach the
mass market. Capturing these objects for use within a computer results in
many large data files. For example, one minute of digitized and compressed
standard TV-quality video requires approximately 50 megabytes (MB) of
storage!

To date, relational databases have been used successfully in storing,
indexing, and retrieving coded numbers and characters. Relational algebra
is an effective tool for reorganizing queries to reduce the number of
records, e.g., from 1 million to 70 records, that an application program
must search to obtain the desired information. Other database features,
such as transaction processing, locking, recovery, and concurrent and
consistent access, are essential to the successful operation of numerous
businesses. Electronic banking, credit card, airline reservation, and



hospital information systems all rely on these features to query, maintain,
and sustain business records.

                     Digital Technical Journal Vol. 5 No. 2, Spring 1993  1



 

 The Design of Multimedia Object Support in DEC Rdb

However, although a business might have its numbers and characters
organized, controlled, and managed in a computer database, maintaining
the paper and film storage media associated with database records can be
costly, both in dollars and in human resources. Some estimates place the
worldwide data storage business at $40 billion, and as much as 95 percent
of the information is stored on either paper or film. Currently, businesses
such as insurance, banking, engineering, and medicine depend on human
beings to manage the filing and retrieval of these extensive paper and film
archives. Human error can result in the loss of paper and film. Clearly,
scanning the paper, storing the information in a computer, and making this
information available over computer networks is a better way to manage
paper records. This scheme allows (1) multiple copies to be distributed
at once; (2) a customer file to be electronically located and retrieved
in seconds, whereas to materialize a paper folder can take days; and (3)
properly programmed computers to maintain these types of information more
efficiently and accurately than humans can.

The idea of eliminating paper-based storage of business records in favor of
computer storage is long-standing. However, only recently have technical
developments made it practical to consider capturing, storing, and indexing
large quantities of multimedia objects. Storage robots based on magnetic
tape or optical disk can be configured in the range of multiple terabytes
(TB) at the low cost of 45 cents per MB. Central processors based on
reduced instruction sets are getting fast enough to process multimedia
objects without having to rely on digital signal coprocessors. Processor
main memory can be configured in gigabytes (GB). Document management
systems, which have thrived over the past few years, deliver computer
scanning, indexing, storage, and retrieval across local area networks.

Until now, most multimedia objects have been stored in files. Document
management systems generally use commercial relational database technology
to store the documents' index and attribute information, where one
attribute is the physical location of the file. This approach has several
disadvantages: considerable custom software must be written and maintained
to make the system appear logically as one database; application programs
must be written against these proprietary software interfaces; a system
based on both files and a relational database is difficult to manage;
two backup-and-restore procedures must be learned and applied; and
complications in the recovery process can occur, if the database and file
system backups are executed independently.

Notwithstanding these disadvantages, storing multimedia objects in a
relational database offers several advantages over file system storage.

o  Coding an application against one standard interface structured query
   language (SQL) to store object attribute data as well as multimedia
   objects is easier than coding against both SQL to manage attribute data



   and a file system to store the multimedia object.

o  The database requires only one tool to back up and monitor data storage
   rather than two to maintain the database and the file system.

2  Digital Technical Journal Vol. 5 No. 2, Spring 1993



 

                         The Design of Multimedia Object Support in DEC Rdb

o  The database guarantees that concurrent users see a consistent view of
   stored information. In contrast to a file system, a database provides a
   locking mechanism to prevent writers and readers from interfering with
   one another in a general transaction scheme. However, a file system
   does offer locks to prevent readers and writers from simultaneous file
   access.

o  The database guarantees, assuming that proper backup and maintenance
   procedures are followed, that no information is lost as a result of
   media or machine failure. All transactions committed by the database are
   guaranteed. A file system can be restored only up to the last backup,
   and any files created between the last backup and the system failure are
   lost.

In the sections that follow, we present (1) the results of an evaluation
of DEC Rdb version 3.1 for its ability to insert, fetch, and process
multimedia objects; (2) a discussion of the impact of optical storage
technology on multimedia object storage; and (3) design considerations
for optical disk support, transaction recovery, journaling, the physical
database, language, and large object data storage and transfer. The paper
concludes with the results of DEC Rdb performance tests.

3  Evaluation of DEC Rdb as a Multimedia Object Storage System

Given the premise that production systems need to store multimedia objects,
as well as numbers and characters, in databases, the SQL Multimedia
engineering team members evaluated the following DEC Rdb features to
determine if the product could support the storage and retrieval of
multimedia objects:

o  External interface support of inserting and fetching large objects

o  Large object read and write performance

o  Maximum large object size

o  Maximum physical capacity available for storing large multimedia objects

The DEC Rdb product has always supported a large object data type called
segmented strings, also known as binary large objects (BLOBs). The
evolution from support for BLOBs to a multimedia database capability was
logical and straightforward. In fact, the DEC Rdb version 1.0 developers
envisioned the use of the segmented string data type for storing text and
images in the database.

In evaluating DEC Rdb version 3.1, we came to a variety of conclusions
about the existing support for storing and retrieving multimedia objects.



Descriptions of the major findings follow.

The DEC Rdb SQL, which is compliant with the standards of the American
National Standards Institute (ANSI) and the International Organization for
Standardization (ISO), and SQL/Services, which is client-server software
that enables desktop computers to access DEC Rdb databases across the

                     Digital Technical Journal Vol. 5 No. 2, Spring 1993  3



 

 The Design of Multimedia Object Support in DEC Rdb

network, did not support the segmented string data type. Note that the
most recent SQL92 standard does not support any standard large object
mechanisms.[1] Object-oriented relational database extensions are expected
to be part of the emerging SQL3 standard.[2]

The total physical capacity for storing large objects and for mapping
tabular data to physical storage devices is insufficient. All segmented
string objects have to be stored in only one storage area in the database.
This specification severely restricts the maximum size of a multimedia
database and thus impacts performance. One cannot store a large number of
X-rays or one-hour videos on a 2- to 3-GB disk or storage area. Contention
for the disk would come from any attempt to access multimedia objects,
regardless of the table in which they are stored. Although multiple
discrete disks can be bound into an OpenVMS volume set, thereby increasing
the maximum capacity, data integrity would be uncertain. Losing any disk of
the volume would result in the loss of the entire volume set.

The maximum size of the database that DEC Rdb can support is 65,535 storage
areas, where each area can span 2[32] - 1 pages. That translates to 256
terapages (i.e., 256 x 10[12] pages) or 128 petabytes (PB) (i.e., 128 x
10[15] bytes). At a penny per megabyte, a 128-petabyte storage system would
cost 1.28 billion dollars!

The largest BLOB that DEC Rdb can maintain is 275 TB (i.e., 275 x 10[12]
bytes). A data storage rate of 1 megabyte per second (MB/s) for motion
video and audio translates into 8.7 years of video. However, as mentioned
previously, the maximum size and the total number of objects that can be
stored are limited. As part of system testing, we successfully stored and
retrieved a 2-GB object in a DEC Rdb data field.

DEC Rdb uses a database key to reference individual segments stored
in database pages. A BLOB belongs to only one column of one row of a
relation. The database key value that locates the first segment is stored
in the column of a table defined to represent the BLOB data type. DEC
Rdb implements segmented strings as singly linked lists of segments.
Therefore, version 3.1 must read a segment in order to find the next
segment. This process has two disadvantages: (1) random positioning with a
BLOB data stream is extremely slow, and (2) BLOB pages cannot be prefetched
asynchronously. Figure 1 illustrates a DEC Rdb version 3.1 singly linked
list segmented string implementation.

BLOB data transfer performance of DEC Rdb version 3.1 was promising. We
were able to code a load test that sustained 65 kilobytes per second
(kB/s); a fetch test sustained 125 kB/s. To put these measurements in
perspective, DEC Rdb is capable of inserting more than one A4-size (210
millimeters [mm] by 297 mm, i.e., approximately 8.25 by 11.75 inches)
scanned piece of paper per second and capable of fetching more than two



A4-size pieces of paper per second. The test was conducted by writing
and reading 50-kB memory data buffers to and from magnetic storage areas
defined by the DEC Rdb software. This experiment ignores the overhead of
network delays and compression.

4  Digital Technical Journal Vol. 5 No. 2, Spring 1993



 

                         The Design of Multimedia Object Support in DEC Rdb

DEC Rdb version 3.1 can write multiple copies of BLOBs, one to the target
database storage area and one to each of the database journal files. The
journal files provide for transaction recovery and system failures, such as
disk drive failures. Database journal files tend to be bottlenecks, because
every data transaction is recorded in the journal. Therefore, writing large
objects to journal files dramatically impacts both the size of the journal
file and the I/O to the journal file.

The volume of storage required for most modest multimedia applications
can be measured in terabytes. A magnetic disk storage system 1 TB in size
is expensive to purchase and maintain. An alternative storage device that
provided the capacity at a much lower cost was required. We investigated
the possibility of using Digital's RV20 write-once optical disk drive and
the RV64 optical library ("jukebox") system based on the RV20 drives.
We quickly rejected this solution because the optical disk drives were
interfaced to the Q-bus and UNIBUS hardware as tape devices. Since
relational databases use tape devices for backup purposes only and not
for direct storage of user data, these devices were not suitable. Note that
physically realizing and maintaining a large data store is a problem for
both file systems and relational databases.

DEC Rdb version 3.1 does not support large capacity write once, read many
(WORM) devices, which are suitable for storing large multimedia objects.
Version 3.1 has no optical jukebox support either.

4  Storage Technology Impact

When we evaluated DEC Rdb version 3.1, a 1-TB magnetic disk farm was orders
of magnitude more expensive than optical storage. Large format 12- or 14-
inch (i.e., 30.5- or 35.6-centimeter) WORM optical disks have a capacity of
6 to 10 GB. The WORM drives support removable media. These drives can be
configured in a jukebox, where a robot transfers platters between storage
slots and drives. A fully loaded optical jukebox, which includes optical
disk drives and a full set of optical disk platters, of approximately 1-TB
capacity costs about $400,000, i.e., $0.40 per MB. By comparison, Digital's
RA81 magnetic disk drive, for example, has a capacity of 500 MB and costs
$20,000. Thus, to store 1 TB of data would require 2,000 RA81 disk drives
at a total cost of $40 million, i.e., $40.00 per MB!

How big is one terabyte? Assume, conservatively, that a standard business
letter scanned and compressed results in an object that is 50 kB in size.
Therefore, 1 TB can store 20 million business letters, i.e., 40,000 reams
of paper at 500 sheets per ream. A ream is approximately 2 inches (51 mm)
high, so 1 TB is equivalent to a stack of paper 80,000 inches or 6,667
feet or 1.25 miles (2 kilometers) high! The total volume of paper is 160
cubic yards (122 cubic meters). A 1-TB optical disk jukebox is about 3
to 4 cubic yards (2.3 to 3 cubic meters). Assuming TV-quality video, 1 TB



can store 308 hours or approximately 12 days of video. Full-motion video
archives suitable for use in the broadcast industry require petabytes of
mass storage.

                     Digital Technical Journal Vol. 5 No. 2, Spring 1993  5



 

 The Design of Multimedia Object Support in DEC Rdb

The gap between affordable and practical configurations of optical disk
jukeboxes and magnetic disk farms has closed considerably since late
1992. Juxtaposing equal amounts (700 GB) of magnetic and optical storage,
including storage device interconnects, installation, and interface
software, reveals that magnetic disk storage is about five times more
expensive than optical storage. The major disadvantage of optical jukebox
storage is data retrieval latency related to platter exchanges. This
latency, which is approximately 15 seconds, varies with the jukebox load
and how data is mapped to different platters.

Mass storage technology, including device interconnects, combines different
classes of storage devices into storage hierarchies. Storage management
software continues to be a challenging aspect of large multimedia
databases.

To provide 1 TB of mass storage capacity for relational database multimedia
objects at reasonable cost, we conducted a review of third-party optical
disk subsystems, hardware, and device drivers for VAX computers running the
OpenVMS operating system. A characterization of the available optical disk
subsystems revealed three basic technical alternatives.

1. Low-level device drivers provided by the drive and jukebox
   manufacturers.

2. Hardware and software that model the entire capacity of an optical disk
   jukebox as one large virtual address space.

3. Write-once optical disk drives interfaced as standard updatable magnetic
   disks. The overwrite capability is provided at either the driver or
   the file-system level, where overwritten blocks are revectored to new
   blocks on the disk. For example, consider a file of 100 blocks created
   as a single extent on a WORM device. When requested to rewrite blocks
   50 and 51, the WORM file system writes the new blocks onto the end
   of all blocks written. The system also writes a new file header that
   contains three file extents: blocks 0 to 49 stored in the original
   extent; blocks 50 to 51 stored in the new extent; and blocks 52 to 100
   stored as the third extent. Obviously, files that are updated frequently
   are not candidates for WORM storage. However, immutable objects, such as
   digitized X-rays, bank checks, and health-benefit authorization forms,
   are ideal candidates for WORM storage devices.

As a result of this investigation, we decided that using write-once optical
devices, interfaced as standard disk devices, was the best solution to
provide optical storage for multimedia object storage. This functionality
is being met with commercially available optical disk file and device
drivers.



In the future, WORM devices may be superseded by erasable optical or
magnetic disks. However, experts expect that WORM devices, like microfilm,
will continue to be useful for legal purposes.

6  Digital Technical Journal Vol. 5 No. 2, Spring 1993



 

                         The Design of Multimedia Object Support in DEC Rdb

5  Design Considerations

The tamperproof nature of WORM devices is an asset but causes special
problems in database system design. The evaluation of DEC Rdb version
3.1 indicated that several features needed to be added to the DEC Rdb
product to make it a viable multimedia repository. This section describes
the design of the new multimedia features included in DEC Rdb versions 4.1
through 5.1.

Mass Storage

DEC Rdb version 4.1 supports WORM optical disks configured in standalone
drive or jukebox configurations. DEC Rdb permits database columns that
contain multimedia objects to be stored or mapped to either erasable
(magnetic or optical disk) or write-once (optical disk) areas. The write-
once characteristic can be set and reset to permit the migration of the
data to erasable devices. No changes to application programs are required
to use write-once optical disks, including jukeboxes.

The main design goals for WORM area support were to

o  Reduce wasted optical disk space by taking into account the write-once
   nature of WORM devices

o  Not introduce DEC Rdb application programming changes for WORM areas

o  Maintain the atomicity, consistency, isolation, and durability (ACID)
   properties of transactions for WORM devices

o  Maintain comparable performance, allowing for hardware differences
   between optical and magnetic devices

DEC Rdb uses the optical disk file system to create, extend, delete, and
close database storage files on WORM devices. Although this approach uses
the block revectoring logic in the optical disk file system, minimal space
is wasted. When writing blocks to WORM devices, DEC Rdb explicitly knows
that blocks can be written only once and bypasses the revectoring logic in
the optical disk file system.

Nonetheless, DEC Rdb software could waste space in two major ways. First,
when DEC Rdb creates a storage area on an erasable medium (e.g., a magnetic
or erasable optical disk), the database pages are initialized to contain
a standard page format, with page numbers, area IDs, checksums, etc.
Preinitialized database pages help to determine corrupted database pages.
However, preinitializing database pages on write-once media makes little
sense. The second way in which DEC Rdb could waste write-once optical disk
pages is to use storage allocation bit maps for space management (SPAM).



SPAM pages are used to keep track of free and used pages. As records are
added to and deleted from the database, the SPAM bit maps are constantly
updated. SPAM pages are maintained within each database file. With write-
once devices, a page can be used only once. Again, it makes no sense to
update SPAM pages for write-once media.

                     Digital Technical Journal Vol. 5 No. 2, Spring 1993  7



 

 The Design of Multimedia Object Support in DEC Rdb

To eliminate needlessly wasting space on write-once media, DEC Rdb does
not preinitialize WORM pages. As a general rule, WORM areas should not
contain any updatable data structures. DEC Rdb maintains WORM storage space
allocation in the database root file. The database root file should always
reside on a magnetic disk, because the root file is frequently updated and
magnetic disks yield higher performance. The clusterwide object manager
mechanism ensures that the pointer to the end of the written area is
consistent across a cluster.

SPAM pages, although disabled for write-once areas, are in fact allocated
anyway. The reason for allocating SPAM pages in a write-once area is to
provide the ability to migrate the contents of the storage area to an
erasable device. The SPAM pages simply need to be rebuilt to reflect the
space utilization at the point of conversion.

This write-once characteristic was the basis for several enhancements we
made to the buffer manager and page allocation algorithms. Given that
a free WORM page has never been written to, the buffer manager simply
materializes an initialized buffer in main memory for write operations
without having to first read the page from disk. In the case of page
allocation for magnetic disks, DEC Rdb must scan SPAM pages in search
of enough free storage space to satisfy a write operation. The scanning
algorithm is much simpler for write-once areas; to store new records, DEC
Rdb allocates one more page at the end of the written portion of the area
to a process. DEC Rdb maintains such allocated pages in a queue called
the marked WORM page queue on a per-process basis. Whenever a WORM page
is written to disk, that page is taken off the marked WORM page queue. An
attempt to store a record checks the queue before allocating new WORM pages
to storage. Facilities exist to allocate many WORM pages in one operation,
thus minimizing the number of writes to the root file.

By explicitly taking into account the write-once characteristic of the
device, DEC Rdb greatly reduces wasted space, keeping optical disk read and
write performance high.

Transaction Recovery

To understand the discussion of transaction recovery, the concepts of
first- and second-class records must be understood. Both alphanumeric
records and BLOB segments are stored in database pages. Alphanumeric
records are first-class records and thus have identities in tables; these
records are the rows. First-class records are required to be on a medium
that permits update (either magnetic disk or erasable optical disk). All
relation tuples are first-class records. Second-class records, such as
BLOBs, have no identities of their own. BLOBs can exist only within the
domain of an alphanumeric record and are pointed to by first-class records.
Second-class records may be located in WORM areas.



Multimedia objects can be stored as second-class records in either write-
once or erasable areas. However, due to transaction recovery constraints,
the rows of relations must be stored in magnetic disks as first-class
records.

8  Digital Technical Journal Vol. 5 No. 2, Spring 1993



 

                         The Design of Multimedia Object Support in DEC Rdb

If an update transaction against the database is aborted, then the database
must restore the state of all database areas to pretransaction state.
Regardless of the transaction recovery scheme employed, e.g., hybrid undo-
redo, the effects of an uncommitted transaction to write-once media may
have to be undone.

By definition, a write transaction on write-once media, once complete, can
never be undone. In cases where a transaction fails and the transaction
has written data to a write-once area, DEC Rdb employs a logical undo
operation. This operation de-references the database key that points to
the BLOB data written as part of the failed transaction. An example helps
to illustrate how the logical undo operation works.

1. Consider row R of table T, which contains a column defined as data type
   BLOB.

2. The BLOB storage map indicates that the large objects are stored in a
   write-once area.

3. A process starts a transaction and updates the row storing a BLOB in the
   write-once area.

4. For some reason the transaction aborts.

5. Recovery nullifies the value of the database key that locates the first
   page of the BLOB.

The write-once pages can never be reused and will never again be allocated.
Nothing points to or references data written as part of an aborted
transaction.

This transaction recovery scheme introduces the interesting phenomenon of
WORM holes. Consider the following scenario:

o  A write-once area has the first 106 pages written and allocated.

o  Process X starts a transaction that writes a BLOB segment to the write-
   once area.

o  Page 107 is allocated for process X.

o  Later in time, process Y starts a transaction to store a BLOB in the
   same write-once area.

o  Process Y causes pages 108 to 120 to be allocated, data is written, the
   transaction commits, and process Y disconnects from the database.



o  At this point, process X decides to roll back its transaction.

o  Page 107 remains in a preinitialized state.

Page 107 can never be allocated to store BLOB data. Recall that DEC Rdb
manages space on write-once devices by maintaining an end-of-area pointer
to keep track of pages that have been written. Zero-filled pages that
will never be allocated are called WORM holes. WORM holes are interesting
because DEC Rdb utilities, such as verify, expect to find all allocated

                     Digital Technical Journal Vol. 5 No. 2, Spring 1993  9



 

 The Design of Multimedia Object Support in DEC Rdb

pages in a standard format. The utilities have been modified to ignore
empty pages on write-once areas.

Journaling Design Considerations

An effective database management system guarantees the recovery of a
database to a consistent state in the event of a major system failure, such
as media failure. Hence, full and incremental backups must be performed
at regular intervals, and the database must record or keep a journal file
of transactions that occur between backups. In DEC Rdb, the after image
journal (AIJ) file records all transactions against the database since
the last backup. Also, to recover from a system failure, the database must
keep track of all outstanding or pending transactions. The recovery unit
journal (RUJ) file records the state and data associated with all pending
transactions.

Journal files are heavily utilized in a database management system.
Contention for the journal files comes from every process that is updating
the database. To be completely recoverable, the database management system
must record BLOB data, as well as alphanumeric data, to both the AIJ and
the RUJ files. Because multimedia objects are large, eliminating the need
to write these objects to the journal files is desirable. The double-write
transaction negatively impacts the performance of the application storing
the object and taxes the journal file, one of the most burdened resources
in the database.

As discussed in the Transaction Recovery section, DEC Rdb uses logical
undo operations to undo aborted transactions. In addition to the minimal
processing required to de-reference a database key pointing to the WORM
area pages, DEC Rdb automatically disables RUJ log writes for WORM area
records. This is another advantage of using WORM devices for multimedia
objects.

Recording multimedia objects in the AIJ file is not so straightforward.
DEC Rdb uses the AIJ file for media recovery, as well as for transaction
recovery. By definition, keeping a media recovery journal forces twice the
number of I/O operations, each to a separate device. DEC Rdb must write
the multimedia object to the storage area designated for the multimedia
object and write a copy of the object to the AIJ file. If the primary
storage device that contains the object fails, the database administrator
can apply the last full backup of the storage area, followed by any
subsequent incremental backups, and roll forward through the AIJ journal
file to recover the data. If a multimedia database is to be completely
recoverable and consistent, then multimedia objects must be recorded in
the AIJ file. Since they can never be erased, WORM optical disks might be
the best devices to write an object (or a journal file) to. Even though a
jukebox can misfeed and permanently damage the media, disks in a jukebox



can be disk shadowed. The trade-off is doubling the I/O versus risking data
integrity. Rather than legislate a policy, DEC Rdb permits applications
to disable AIJ logging for BLOBs, thus transferring the risk to individual
applications.

10  Digital Technical Journal Vol. 5 No. 2, Spring 1993



 

                         The Design of Multimedia Object Support in DEC Rdb

Database Physical Design Considerations

The original design of segmented strings specified a singly linked list,
where the segments were written one at a time, as shown in Figure 1.
When writing a new segment, the previous segment had to be updated with a
pointer value that identified the location of the new segment. For example,
to store a BLOB with two segments R1 and R2, the old algorithm stored R1,
stored R2, and then modified R1 to point to R2. Although this algorithm
does not waste space on a magnetic disk, it does waste space on write-
once optical disk. Segment R1 must be rewritten to disk with a pointer to
segment R2.

If we impose the dependency between the two stores that R2 must be stored
before R1, the store dependency for BLOBs becomes a reverse order of
segments. Storing segments in reverse order requires buffering all segments
of a multimedia object. Whereas buffering the entire object in main memory
may be feasible for small multimedia objects, main memory is not large
enough to buffer audio and video data objects. The singly linked list
method that DEC Rdb used prior to version 4.1 is not well suited for WORM
devices. Therefore, we redesigned the format of BLOBs in WORM areas to
eliminate the need to buffer large amounts of data.

The new design replaces the singly linked list with BLOB segment pointer
arrays and BLOB data segments. The segment pointer array maintains a
list of database keys that locate each segment, in order, for a BLOB, as
illustrated in Figure 2. Because segment pointer arrays are stored as a
singly linked list, the pointer arrays can become large. Application data
is stored in BLOB data segments. The new method buffers and writes the BLOB
segment pointers to disk after assigning the segmented string to a record.

Besides eliminating the waste problem for write-once devices, the segment
pointer array has other advantages. DEC Rdb reads the pointer array into
memory when an application accesses a BLOB. DEC Rdb can, therefore, quickly
and randomly address any segment in the BLOB. Also, DEC Rdb can begin to
load segments into main memory before the application requests them. This
feature benefits applications that sequentially access an object, such as
playing a video game.

Storage Map Enhancements for BLOBs

Designers addressed several issues related to storage mapping. The
major problems solved involved capacity and system management, jukebox
performance, and the failover of full volumes.

 Capacity and System Management. DEC Rdb can map user data, represented
logically as tables, rows, and columns, into multiple files or storage
areas. Besides increasing the amount of data that can be stored in the



database, spreading data across multiple devices reduces contention for
disks and improves performance. However, as mentioned in the section
Evaluation of DEC Rdb as a Multimedia Data Storage System, prior to DEC
Rdb version 4.1, only one storage area could be used for storing BLOB data.
All BLOB columns in the database were implicitly mapped into the single

                    Digital Technical Journal Vol. 5 No. 2, Spring 1993  11



 

 The Design of Multimedia Object Support in DEC Rdb

area, which severely limited the maximum amount of multimedia data that
could be stored in DEC Rdb.

Prior to new multimedia support for BLOBs, DEC Rdb restricted the direct
storage of a particular table column to one DEC Rdb storage area (i.e.,
file). This partitioning control is accomplished by means of the DEC Rdb
storage map mechanism, as shown in the following code example:

This code directs the BLOB data from the table PLACEMENT_HISTORY and the
column RESUME of the table CANDIDATES to be stored in the area RESUME_AREA
and the BLOB column PICTURE of the table CANDIDATES to be stored in the
area PHOTO_AREA. The remaining BLOB data in the database is stored in the
default RDB$SYSTEM area.

Restricting the storage of all BLOBs across the entire database schema
to a single file or database area was clearly undesirable. The size of
the area would be limited to the largest file that could be created by
the OpenVMS operating system and the mass storage devices available. The
limited mapping of one BLOB area mapped to one disk can be circumvented
by using the OpenVMS system's Bound Volume Set mechanism. This mechanism
allows n discrete disks to be bound into one logical disk. DEC Rdb can then
create a single storage area on the logical disk that spans the bound set
of disks.

However, although the volume set mechanism solves the problem of
limited area mapping, serious limitations exist in the database system
administration and recovery processes. All database-related facilities
operate at the granularity of a database storage area. Thus, if one disk
in a 10-disk volume set is defective, DEC Rdb would have to restore all 10
disks. Not only does restoring data on functioning disks waste processing
time, but during the restore operation, applications are stalled for access
at the area level. This situation introduces concurrency problems for on-
line system operations.

DEC Rdb version 4.1 and successive versions solve the capacity problem
by (1) permitting the definition of multiple BLOB storage areas, (2)
binding discrete storage areas into storage area sets, and (3) providing
the ability to map or to vertically partition individual BLOB columns to
areas or area sets. Applications can set aside a disk or a set of disks
for storing employee photographs, X-rays, video, etc. The alphanumeric
data and indexes can be stored in separate areas as well. Figure 3 depicts
the employee photograph column being mapped to the EMP_PHOTO_1, EMP_PHOTO_
2, and EMP_PHOTO_3 storage area set. All alphanumeric data in the table
EMPLOYEES is assumed to be mapped to storage area A.

Coding this example results in



This code directs the BLOB data, i.e., the column PHOTOGRAPH from the table
EMPLOYEES, to be stored in the three specified areas EMP_PHOTO_1, EMP_
PHOTO_2, and EMP_PHOTO_3.

12  Digital Technical Journal Vol. 5 No. 2, Spring 1993



 

                         The Design of Multimedia Object Support in DEC Rdb

The ability to define multiple BLOB storage areas and to bind discrete
areas into a storage set eliminates the BLOB storage capacity limitation in
DEC Rdb. Consider the storage problem of storing 1 MB of medical X-rays as
part of a patient record. Prior to DEC Rdb version 4.1, the limited one-
BLOB storage area could store approximately 2,000 X-rays on a 2-GB disk
device. The features included in version 4.1 allow the creation of a DEC
Rdb storage area set that spans multiple disk devices. Also, adding storage
areas or disks to a storage area set can expand the capacity initially
defined for the column.

 Jukebox Performance Problems. When a storage area set is defined using
the SQL storage map statement, DEC Rdb implements a random algorithm to
select a discrete area or disk from the set to store the next object.
Since multiple processes access multimedia objects across the entire set, a
random algorithm that evenly distributes data across the disks in the area
set reduces contention for any one disk.

Using a random algorithm to select from a set of platters in a jukebox
is extremely inefficient. A jukebox comprises one to five disk drives
with 50 to 150 shelf slots where optical disk media is stored. A storage
robot exchanges optical disk platters between drives and storage slots. As
described earlier, a full platter exchange-spin down the platter currently
in the drive, eject the platter, insert a new platter, spin up the new
platter-takes approximately 15 seconds. Each optical disk surface, i.e.,
side of a platter, is modeled as a discrete disk to the OpenVMS operating
system. Consider, for example, ten storage areas defined on optical disks
in the jukebox and mapped into a storage area set. All patient X-rays from
a single table in the database are to be stored in this area set. Each
new X-ray inserted in the database causes DEC Rdb to randomly select a
disk surface in the jukebox, which probably results in a platter exchange.
Consequently, each X-ray insertion takes 15 seconds!

The solution to the jukebox performance problem was not to eliminate
random storage area selection, which works successfully with fixed-
spindle devices. Rather, the solution was to accommodate an alternate
algorithm that sequentially filled the disks in an area set. Using DEC Rdb,
applications can specify random or sequential loading of storage area sets
as part of the storage map statement. Contention for a single optical disk
in a jukebox is a far more desirable situation, with respect to latency,
than causing one platter exchange per object stored.

When multiple users simultaneously issue requests to read multimedia
objects stored in a jukebox, long delays occur, whether the storage area is
loaded sequentially or randomly. Using a transaction monitor to serialize
access to the database helps eliminate jukebox thrashing and improve the
aggregate performance of the database engine.



 Failover of Full Volumes. The introduction of storage area sets gave rise
to another problem: What happens when one area in the set becomes full?
Normally, within the DEC Rdb environment, disk errors that result from
trying to exceed the allocated disk space are signaled to the application

                    Digital Technical Journal Vol. 5 No. 2, Spring 1993  13



 

 The Design of Multimedia Object Support in DEC Rdb

so that the transaction can be rolled back (discarded). When related to
storage area sets, however, the error is just an indication that a portion
of the disk space allocated to the column has been exhausted and that
processing should continue. Also, since multimedia objects tend to be
exceedingly large, great amounts of data may have already exhausted cache
memory and been written back to the WORM media, even though the database
transaction has not committed. Handling such an error by signaling to
the application and expecting the application to roll back and retry the
transaction would result in the waste of a large number of device blocks
that have already been burned. Thus, DEC Rdb had to implement a new scheme.

DEC Rdb now implements full failover of an area within the area set. Thus,
when an area becomes full, DEC Rdb traps the error, selects a new area in
the set, and writes the remaining portion of the BLOB being written to the
new area. This area failover works whether the storage allocation is random
or sequential. In addition, the area that is now full is marked with the
attribute of full, and the clusterwide object manager of DEC Rdb maintains
this attribute consistently throughout the cluster. Consequently, writers
to the database will consider the area unavailable for future BLOB store
operations. Further, the DEC Rdb database management utilities can remove
the attribute if additional space is made available to the database area
(e.g., if DEC Rdb moves BLOBs from area A to another copy of area A that
resides on a device with twice the capacity).

Language Design Considerations

SQL, the ISO/ANSI standard relational database structured query language,
is well suited to expressing queries against alphanumeric data yet hardly
begins to address the needs of multimedia objects. Putting aside the fact
that sampled data (i.e., a scanned image) is more difficult to query than
coded data (e.g., text coded in ASCII), SQL cannot provide data compression
and rendition capabilities for multimedia objects. Multimedia object
processing is better suited to a language like C or C++. Ideally, SQL
would support the ability to define objects and to associate methods with
those objects. SQL3 is a new version of the SQL standard that the standards
organizations are just beginning to work on. SQL3 contains the mechanism to
define abstract data types and to execute external procedures as part of
SQL statements. However, SQL3 will not become a standard for four to five
years.

As discussed previously, DEC Rdb SQL lacks support for the segmented string
or BLOB data type that was available in the Rdb relational engine. A new
DEC Rdb SQL data type, LIST OF BYTE VARYING, was designed based on the
native Rdb segmented string data type. The data access mechanism for the
LIST OF BYTE VARYING data type is a list cursor, which operates like a
table cursor-open the cursor, fetch segments of a BLOB, and close the
cursor. This new data type with associated access mechanism was also



added to SQL/Services. SQL/Services software enables remote clients on a
network, such as personal computers, to attach to remote DEC Rdb databases.
The ability to scroll or to randomly position the list cursor allows

14  Digital Technical Journal Vol. 5 No. 2, Spring 1993



 

                         The Design of Multimedia Object Support in DEC Rdb

positioning at a particular data segment within the multimedia object
stream without having to physically read through the entire data stream.

Although applications can program directly to list cursors, this interface
was cumbersome and did not offer any object typing or processing. The list
cursor mechanism does not present the straightforward byte-stream interface
that is common in most file systems. Applications want to store objects,
such as images and compound documents, not BLOBs. Data compression was
another important consideration. Multimedia objects should be compressed
on the client side of the network; then, compressed bits are transferred
through the network, servers, and disks. The objects should be decompressed
when they are to be rendered for display. Finally, the enormous size of
multimedia objects saturates main memory resources on personal computers,
so application developers must use disk storage to buffer as well as
persistently store multimedia objects.

The limitations of the LIST OF BYTE VARYING data type and the list
cursor data access mechanism led to the development of multimedia object
extensions. SQL Multimedia is an object library that operates against SQL
and SQL/Services. SQL Multimedia allows application developers to classify
or type multimedia data types (e.g., IMAGE, TEXT, and COMPOUND_DOCUMENT)
and to specify the data format within a type or class. Because no widely
agreed upon multimedia object encodings or formats exist, we decided not
to limit the types of data encoding or formats that could be stored in the
database. For example, the database can store an image in Digital Document
Interchange Format (DDIF) or Tagged Image File Format (TIFF). The option
of defining a canonical encoding and format for each object class was too
restrictive.

In both the SQL and the SQL/Services versions, the SQL Multimedia insert
and fetch calls operate within the bounds of a transaction. All multimedia
objects enjoy the same rights and privileges as alphanumeric data types in
the database, with respect to concurrent access, recovery, etc.

A process that attaches to a DEC Rdb database can specify that an
authorization identifier or a default identifier be created and referenced
by the "RDB$HANDLE" symbolic label. A transaction can be started explicitly
or a default transaction begins. To operate within the bounds of the
default transaction, the SQL Multimedia routines required access to the
default authorization identifier RDB$HANDLE. A new SQL compile time switch,
for the SQL module language and precompilers, causes this identifier to
be defined in a global address space. The SQL Multimedia routines can thus
access the value of the identifier. If a distributed transaction identifier
is not passed to the SQL Multimedia routines, the SQL Multimedia operation
is executed using the default transaction.

SQL Multimedia improves the cumbersome list cursor interface by supporting



the following object sources and destinations:

o  The entire object sourced from or deposited to main memory

o  The object buffered through main memory

                    Digital Technical Journal Vol. 5 No. 2, Spring 1993  15



 

 The Design of Multimedia Object Support in DEC Rdb

o  A file

SQL Multimedia handles file I/O operations across many different software
environments, including the MS-DOS, Windows, Macintosh, ULTRIX, and OpenVMS
operating systems. SQL Multimedia preserves file attributes on insert
operations. For example, the Macintosh file system's resource fork, which
contains the name and version of the application to be launched when the
object is accessed by a user, is preserved. If another Macintosh user
fetches the object to a local file, then SQL Multimedia restores the
file including the resource fork. Assuming the second user has the same
application, the user can now access and manipulate the multimedia object,
e.g., a compound document or a QuickTime video file. Rules and default
file organizations exist for the case where a user inserted a file from
an OpenVMS system and another user causes the object to be fetched to a
different client file system, say on a PC. Application programmers can
direct SQL Multimedia to override the default file attributes.

Although SQL Multimedia handles disparate file system I/O, at present, it
does not convert multimedia object formats or encodings. Images captured
and stored in DEC Rdb in DDIF are delivered to each client in DDIF.

SQL Multimedia makes it easy for application programmers to insert and
fetch compound documents to and from the database. The buffered I/O data
stream conforms to Digital's Compound Document Architecture (CDA) stream
management interface. Fetching a compound document using the buffered I/O
interface, SQL Multimedia returns the address of a procedure entry mask, a
data buffer pointer, and the buffer length. These returned arguments can
be passed to the CDA viewer in the DECwindows environment. The viewer then
repeatedly calls the SQL Multimedia buffer-fill procedure until the object
has been transferred to the viewer and displayed.

In addition, SQL Multimedia provides object-specific processing for image
and text objects. Disk image objects formatted according to DDIF and main
memory objects formatted according to Digital's image toolkit DECimage
Application Services (DAS) can be processed on either fetch or insert
operations. SQL Multimedia leverages the capabilities of DAS software
to provide image processing, e.g., compression, decompression, scaling,
and dithering. When an image is inserted or fetched, SQL Multimedia object
processing arguments permit the specification of image process steps and
parameters. The DAS toolkit supports Comité Consultatif Internationale de
Télégraphique et Téléphonique (CCITT) compression (a ubiquitous compression
standard for facsimile machines) for bitonal images and Joint Photographic
Experts Group (JPEG) compression (an ISO/ANSI standard) for multispectural
images.

To improve application performance, SQL Multimedia can generate multiple
rendered versions of an image that are stored in a single database field.



Therefore, a user can store the original image, retaining its fidelity,
and also store a miniature version of the image for fast access or browsing
purposes. For example, consider a personnel application where 90 percent

16  Digital Technical Journal Vol. 5 No. 2, Spring 1993



 

                         The Design of Multimedia Object Support in DEC Rdb

of the fetches for employee photographs are to be displayed in a passport-
size format on an employee information form. If the capture portion of
the application stored the original employee photograph and directed
SQL Multimedia to generate and store a passport-size rendered version in
addition to the original, at fetch time, the I/O operations required to
transmit the image to the employee form would be reduced. Storing multiple
rendered versions would also eliminate using CPU time to scale the fetched
image.

6  System Testing and Evaluation

After the multimedia engineering of the DEC Rdb product was complete, we
conducted several testing activities to determine the performance and
capacity boundaries. The performance work presented is not complete but
is offered as an indication of the multimedia object access capabilities of
the DEC Rdb software.

In the debit credit domain, the Transaction Processing Performance Council
(TPC) tests provide a standard procedure to measure the performance of one
database as compared to another. However, no standard multimedia database
performance tests exist. The performance of a DEC Rdb multimedia database
is influenced by many variables, including the processor, mass storage
medium, database design, object sizes, and workload. The performance data
presented in this paper should be used only as a guide.

Performance Testing

For performance testing we used a VAX 6360 processor (relatively slow
by today's standards) configured with 128 MB of main memory, an HSC50
storage interconnect processor with 16 RA70 magnetic disks, 6 RA92 magnetic
disks, and 2 ESE20 solid-state disks. The total mass storage available for
building databases was 10 GB. We evaluated the SQL performance of DEC Rdb
version 4.2 Field Test 1 (FT1) and SQL Multimedia version 1.0 Field Test 2
(FT2), and generated the SQL/Services remote client data fetch and insert
performance data for DEC Rdb version 4.1 Field Test 4 and SQL Multimedia
version 1.0 FT2.

This performance data should be used as a guideline, because the field-
test software contained implementation errors that affected performance but
were corrected in the released products. As presented in Table 1, using the
released version of DEC Rdb, we are able to sustain a 300-kB/s throughput
from a magnetic disk DEC Rdb storage area, across an Ethernet network, to
a DECstation 5240 workstation. This test demonstrates fetching a software
motion pictures (SMP) video clip out of the database for display on an
ULTRIX-based workstation.[3] Although the video was sampled at 15 frames
per second, we can play back the video clip at 20 frames per second! The
performance measured for an fetch was 57.7 kB/s, as shown in Table 2. We



expect to conduct similar performance tests on a DEC 7000 AXP processor.

                    Digital Technical Journal Vol. 5 No. 2, Spring 1993  17



 

 The Design of Multimedia Object Support in DEC Rdb

The performance test inserted and fetched 50-kB records. Fifty kilobytes is
a conservative estimate of a compressed A4-size piece of paper, probably
the most prevalent object to be stored in multimedia databases. For both
the distributed SQL/Services client and the local SQL interface, 50-kB
main memory buffers were the sources and destinations for the inserts and
fetches.

We built several 50-MB databases, varying database design parameters such
as page and buffer sizes, to determine the fastest set of parameters for
the large object performance test. Using the largest page and buffer sizes
yielded the best performance. The database table was organized into three
columns: two key columns and a BLOB column. The BLOB column was mapped to a
storage area set consisting of multiple magnetic storage disks.

After we established the best database organization, we built many 3- to
10-GB databases by

o  Varying the number of processes executing insert and fetch operations

o  Varying the number of tables in the database

o  Varying the number of inserts and fetches per transaction

o  Enabling and disabling AIJ journaling

o  Inserting and fetching from an SQL/Services client or using SQL for
   local database access

When we conducted the performance tests, the computer was dedicated to our
task; no other activity was taking place. A simple contention test, where
multiple readers simultaneously fetch objects from a single table, and a
more complicated update test, where multiple writers are simultaneously
updating one table, have yet to be fabricated and run.

To put some of the performance results presented in Table 1 into
perspective: the tested configuration can sustain approximately 600 kB
of insert bandwidth, which translates into twelve 50-kB A4-size pieces of
paper per second. Even a single process scanning paper at 103.4 kB/s can
keep up with some of the fastest paper scanners available.

Also, scanning both sides of a compressed bank check (scanned at 200 dots
per square inch) results in an object size of about 20 kB. Therefore, the
particular configuration we tested could store 30 checks per second with
multiple processes, and 6 checks per second with a single process.

Capacity Testing



We conducted two capacity tests. The first stored and fetched a 2-GB object
in a DEC Rdb field, and the second built a 50-GB database. A 2-GB known
pattern was generated in virtual memory. DEC Rdb wrote this object, with no
AIJ, to a field in an empty database. The BLOB column was mapped to three
disks, totaling 2.5 GB of storage. To avoid having to sustain storage area
or file extensions, the storage area set was defined to be 2.3 GB. DEC Rdb
was able to successfully insert and fetch the 2-GB object.

18  Digital Technical Journal Vol. 5 No. 2, Spring 1993



 

                         The Design of Multimedia Object Support in DEC Rdb

To demonstrate the capacity that could be achieved with SQL Multimedia,
DEC Rdb, and optical storage, we built a 50-GB database. The hardware
configuration consisted of the following:

o  A VAX 4000 Model 500, with 6 GB of magnetic disk and 128 MB of main
   memory

o  A Kodak Automated Disk Library Model 6800, with 100 GB of storage (with
   a maximum capacity of 1.2 TB)

o  DEC Rdb version 4.2 Field Test 0

o  SQL Multimedia version 1.0 FT2

o  Perceptics LaserStar optical disk software

Starting with a backup of a 2-GB manufacturing database that was used by
Digital's Mass Storage Group, DEC Rdb added an SQL Multimedia column to a
table that contained over 550,000 rows. DEC Rdb then mapped the column to
five platters, modeled as ten 9.5-million-block (5.1-GB) magnetic disks
to the OpenVMS operating system, using the sequential load algorithm.
An update table cursor was devised that returned between 2,000 to 3,000
rows. Using SQL Multimedia, DEC Rdb inserted images representing the disk
assembly process until the storage was full.

7  Conclusion

The multimedia features that have been added to Rdb are in direct support
of the increasing demand for computer data storage and indexing of
multimedia object types (i.e., text, still images, compound documents,
audio, and video). Relational database systems must expand mass storage
device support, database physical database design, language functionality,
and performance to manage the variety of today's information. The
development of this advanced technology in Digital's DEC Rdb product
provides desktop computer-to-optical disk jukebox integration by means
of a commercial database. As multimedia technology matures, databases
must address the need to store and index information beyond numbers and
characters.

The work accomplished to support multimedia objects in DEC Rdb is just
"the tip of the iceberg." Current multimedia capabilities are able to
successfully manage the majority of document and still frame applications.
However, improvement in capacity and performance are required before the
database can serve multiple channels of video and audio data. As the SQL
standard evolves to incorporate a more object-oriented mechanism, much of
the SQL Multimedia functionality will migrate to using standard interfaces
to define, operate on, and query abstract data types.



                    Digital Technical Journal Vol. 5 No. 2, Spring 1993  19



 

 The Design of Multimedia Object Support in DEC Rdb

8  Acknowledgments

A large number of people from various disciplines contributed to the
success of this multimedia database project, including Becky Jacobs,
Michael Sawyer, John Lacey, Cheri Jones, Bruce Mills, Steve Hagan, Ian
Smith, Susan Hillson, Peter Spiro, J. M. Smith, Jim Gray, Dave Lomet,
Rudy Downs, Ken Cross (Perceptics), Chris Eastland, Mase Merchant, Scott
Matsumoto, Paul Carmen (Eastman Kodak), Jim Lewis (Eastman Kodak), and
Marilyn Gulliksen.

9  References

1. American National Standard for Information Systems-Database Language-
   SQL,
   ANSI X3.135-1992 (New York, NY: American National Standards Institute,
   1992) and

   Information Technology-Database Language-SQL, ISO/IEC 9075:1992 (Geneva:
   International Organization for Standardization, 1992).

2. J. Melton, ed., Database Language SQL (SQL3), ISO/ANSI Working Draft,
   ANSI X3H2-93-091 and ISO/IEC JTC1/SC21/WG3/DBL YOK-003
   (February 1993).

3. B. Neidecker-Lutz and R. Ulichney, "Software Motion Pictures," Digital
   Technical Journal, vol. 5, no. 2 (Spring 1993, this issue): 19-27.

10  General References

SQL Extensions

K. Meyer-Wegener, V. Lum, and C. Wu, "Image Management in a Multimedia
Database System," Proceedings of the IFIP TC 2/WG 2.6 Working Conference on
Visual Database Systems, Tokyo, Japan (1989): 497-523.

M. Stonebreaker, "The Design of the POSTGRESS Storage System," Proceedings
of the 13th International Conference on Very Large Databases, Brighton,
U.K. (1987): 289-300.

M. Stonebreaker and L. Rowe, The POSTGRESS Papers, Memorandum No. UCB/ERL
M86/85 (Berkeley, CA: University of California, 1986).

Object Storage Management

M. Stonebreaker, "Persistent Objects in a Multi-Level Store," Proceedings
of the ACM SIGMOD International Conference on Management of Data, Denver,
CO (1991): 2-11.



20  Digital Technical Journal Vol. 5 No. 2, Spring 1993



 

                         The Design of Multimedia Object Support in DEC Rdb

WORM Devices

D. Maier, "Using Write-Once Memory for Database Storage," Proceedings of
the ACM SIGMOD/SIGACT Conference on Principles of Database Systems (PODS)
(1982).

S. Christodoulakis et al., "Optical Mass Storage Systems and Their
Performance," IEEE Database Engineering (March 1988).

S. Christodoulakis and D. Ford, "Retrieval Performance Versus Disk
Space Utilization on WORM Optical Disks," Proceedings of the ACM SIGMOD
International Conference on Management of Data, Portland, OR (1989): 306-
314.

Storage Management for Large Objects

A. Biliris, "The Performance of Three Database Storage Structures for
Managing Large Objects," Proceedings of the ACM SIGMOD International
Conference on Management of Data, San Diego, CA (1992): 276-285.

11  Trademarks

The following are trademarks of Digital Equipment Corporation: CDA, DDIF,
DEC, DECimage, DECstation, Digital, HSC50, OpenVMS, Q-bus, RA, RV20, SQL
Multimedia, ULTRIX, UNIBUS, and VAX.

Kodak is a registered trademark of Eastman Kodak Company.

Macintosh is a registered trademark and QuickTime is a trademark of Apple
Computer, Inc.

MS-DOS is a registered trademark and Windows is a trademark of Microsoft
Corporation.

Perceptics is a registered trademark and LaserStar is a trademark of
Perceptics Corporation.

12  Biographies

 James J. Feenan, Jr. Principal engineer Jay Feenan has been implementing
application code on database systems since 1978. Presently a technical
leader for the design and implementation of stored procedures in DEC Rdb
version 6.0, he has contributed to various Rdb and DBMS projects. Prior
to joining Digital in 1984, he implemented Manufacturing Resource Planning
systems and received American Production and Inventory Control Society
certification. Jay holds a B.S. from Worcester Polytechnic Institute and an
M.B.A. from Anna Maria College. He is a member of the U.S. National Rowing



Team.

 John L. Janosik, Jr. A principal software engineer, John Janosik was the
project leader for DEC Rdb version 5.0, the Alpha AXP port version. John
has been a member of the Database Systems Group since joining Digital
in 1988. Prior to this, he was a senior software engineer for Wang

                    Digital Technical Journal Vol. 5 No. 2, Spring 1993  21



 

 The Design of Multimedia Object Support in DEC Rdb

Laboratories Inc. and worked on PACE, Wang's relational database engine
and application development environment. John received a B.S. in computer
science from Worcester Polytechnic Institute in 1983.

 T. K. Rengarajan T. K. Rengarajan, a member of the Database Systems Group
since 1987, works on the KODA software kernel of the DEC Rdb system. He
has contributed in the areas of buffer management, high availability, OLTP
performance on Alpha AXP systems, and multimedia databases. Presently, he
is working on high-performance logging, recoverable latches, asynchronous
batch writes, and asynchronous prefetch for DEC Rdb version 6.0. Ranga
holds M.S. degrees in computer-aided design and computer science from the
University of Kentucky and the University of Wisconsin, respectively.

 Mark F. Riley Consulting software engineer Mark Riley has been a member
of the Database Systems Group since 1989 and works on multimedia data type
extensions in Rdb/VMS. Prior to this, he worked for five years in the Image
Systems Group and developed parts of the DECimage Application Services
toolkit. Mark received a B.S.E.E. from Worcester Polytechnic Institute in
1980 and an M.S. in engineering from Dartmouth College in 1982.



22  Digital Technical Journal Vol. 5 No. 2, Spring 1993
=============================================================================
Copyright 1993 Digital Equipment Corporation.  Forwarding and copying of this 
article is permitted for personal and educational purposes without fee 
provided that Digital Equipment Corporation's copyright is retained with the 
article and that the content is not modified. This article is not to be 
distributed for commercial advantage. Abstracting with credit of Digital 
Equipment Corporation's authorship is permitted.  All rights reserved.
=============================================================================


