

 DECnet Transport Architecture

By Mitchell P. Lichtenberg and Jeffrey R. Curless

1 Abstract

The PATHWORKS family of software products includes an implementation of
the DECnet transport protocol to allow Intel-based personal computers
access to network resources. This implementation, the DECnet Network
Process (DNP) transport component, provides basic file and print services,
terminal emulation, and application services. The new DNP component for the
version 4.1 release of the PATHWORKS for DOS client software is written in
assembly language to improve performance and reduce memory usage. The DOS
and OS/2 versions of the component contain the same base source code, thus
decreasing the development and maintenance costs.

2 Introduction

Digital's PATHWORKS family of software products provides the means to
integrate personal computers into the Digital network environment.
The PATHWORKS for DOS client software includes device drivers, network
transports, utility programs, and applications that allow PCs full access
to the resources available in local and wide area networks (LANs and WANs).
Transparent file sharing, electronic mail, and terminal emulation are
examples of services supported by PATHWORKS client software.

The DECnet protocol suite is implemented in Digital's standard set of
software for interconnecting VAX and reduced instruction set computer
(RISC) systems. DECnet software, which is included in the PATHWORKS client
software, enables PC integration. The DECnet protocols allow PATHWORKS
products to use the infrastructure of existing Digital networks and to
provide common utility programs and network management capabilities.

However, integrating PCs into a network system presents many design
challenges to software developers. They must provide network access
without limiting the functionality of the PCs and without compromising
the compatibility of the existing PC software and peripherals. Since the
PC architecture has limited memory resources and few built-in features
for networking, PC network software architectures must be as transparent
as possible, reducing memory usage and emulating local peripherals and
software interfaces.

To implement this transparent architecture, the PATHWORKS products comply
with PC-related industry standards. Most such standards result from popular
vendor software applications or hardware. For example, Microsoft's LAN
Manager software product influenced the acceptance of the industry-
standard server message block (SMB) protocol. This session layer protocol,
implemented over a variety of transports, is used in the LAN Manager

redirector for transparent file sharing and peripheral emulation. Digital
licenses the LAN Manager software in order to provide these services as
features of the PATHWORKS product family. Digital extended the LAN Manager

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 1

 DECnet Transport Architecture

across a LAN or a WAN system by using the DECnet transport protocol as the
transport layer in its PATHWORKS products.

In this paper we first present our rationale behind the design of the
DECnet transport component in PATHWORKS for DOS version 4.1, as well as
in PATHWORKS for OS/2 version 2.0. We then describe the new component's
internal structure, follow a typical network operation through the
component, and compare this version of the software component with previous
versions.

3 PATHWORKS Client Software and the DNP Component

Since its initial release, the PATHWORKS product family has implemented
the DECnet transport protocol to provide access to basic file services
and printer sharing, terminal emulation, and application services. This
network software implementation is called the DECnet Network Process (DNP)
transport component. Figure 1 illustrates the relationship between the DNP
transport component and the other memory-resident PATHWORKS client software
components.

Goals for PATHWORKS Client Software

PC network software products are judged primarily on two criteria:
performance, usually measured with popular benchmark programs, and resident
memory usage, a limited resource that may restrict other applications.
Increasing performance and decreasing memory usage are major goals for all
new releases of the PATHWORKS client software. In the PATHWORKS version
4.1 client software, Digital sought to double the performance of the
DNP transport component for small data transfers, while decreasing the
size of the code by 50 percent. Another goal was to significantly reduce
maintenance costs in order to free engineering resources for future project
development.

Before describing how we went about achieving these performance, memory,
and development cost goals in PATHWORKS version 4.1, we review of the
functionality of the DECnet DNP implementation. We also discuss the
component in relation to other PATHWORKS client components to give the
context in which our design decisions were made.

The DNP Component Functionality

Application programs can use DNP transport services through one of two
software interfaces: the network basic I/O system (NetBIOS) interface
and the I/O control block (IOCB) interface. The widely accepted NetBIOS
interface is used by applications and drivers that comply with industry-
standard specifications to provide peer-to-peer transport services on
a LAN. The IOCB interface is specific to Digital's DECnet transport

implementation of the DECnet protocols. IOCB provides a socket interface
similar to the one used by the ULTRIX operating system. This IOCB interface
is used by DECnet-specific application programs.

2 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 DECnet Transport Architecture

To communicate with the network, the DNP transport component calls the
data link layer (DLL) software interface. The DLL component is used by
all PATHWORKS client components to send and receive packets on the LAN.
This component demultiplexes incoming packets based on their protocol type
(e.g., local area transport [LAT], local area system transport [LAST], or
DECnet transport) and delivers these packets to the corresponding PATHWORKS
client component. The DLL component also transmits packets on the LAN,
either directly or indirectly by calling standards-based network drivers.
To reduce memory consumption, the DLL component provides a global buffer
pool that the DNP and other transport components can use for building
network packets or for storing unacknowledged data.

To provide timing and background process services, the DNP component calls
the PATHWORKS real-time Scheduler (SCH) component. The SCH communicates
directly with the DOS operating system and the PC's timer and interrupt
hardware to create a simple cooperative process environment. This
environment includes sleep and wake calls, and periodic interval timers.
The functions of the SCH component are similar to those performed by
true multitasking operating systems, such as the OS/2 system, which use
preemptive scheduling.

Considerations for a New DNP Component Design

In previous PATHWORKS client software, separate teams implemented and
maintained the DOS and OS/2 versions of the DNP transport component. We
decided to use the same base source code for both versions and thus reduce
development and maintenance costs. We then proceeded to consider our design
options.

Originally, the DNP component was written in the C programming language.
The internal architecture remained basically unchanged during the five
years following its release. This stable code should have been easy to port
between operating systems. However, the internal architecture of the OS/2
system was never considered in the original design because this system
was not available until 1988. Retrofitting the DOS version of the DNP
component for the OS/2 operating system was difficult, and we were not
able to maintain a common source code base.

To achieve the performance, memory, and development cost goals described
earlier in this section, we considered the following three approaches:

1. Rewrite the current DNP transport component

2. Write a new DNP transport component in C

3. Write a new DNP transport component in assembly language

Rewriting the current DNP component would not have produced a desirable
amount of code common to the DOS and OS/2 versions. In addition,
this approach would have resulted in only minimally improving the
maintainability of the code. Writing a new transport component in C would
have yielded a more portable code, but the performance and memory usage
would not have compared favorably with other vendors' transports. We

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 3

 DECnet Transport Architecture

decided to write the new transport component in assembly language to make
optimal use of the limited memory available on today's personal computers.

4 PATHWORKS Version 4.1 DNP Transport Component Design

Internally, the DNP transport component comprises various modules that
correspond approximately to the layers of the DECnet protocol suite, as
shown in Figure 2. Later in this section, we describe the major DNP modules
and how they cooperate.

4 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 DECnet Transport Architecture

Three types of events can cause the DNP component to respond or to "wake
up": user requests, received packets, and timer ticks. All of these events
are asynchronous, since they are generated by hardware interrupts or user
actions that are not managed by the operating system. Each time the DNP
component processes an event, variables and data structures internal to
the component change. In designing the component, we had to ensure that the
events would not interrupt one another.

To protect the data structures in a generic way, all versions of the
PATHWORKS DNP component use a queuing system called the executive.
Asynchronous events are queued to the executive module, where a semaphore
guards the dispatching and processing routines. The queue and the semaphore
guarantee the following: the receipt of a new event does not interrupt
ongoing processing, and events are processed in the order in which they
arrive.

Under the DOS operating system, the main loop of the executive module
uses the PATHWORKS SCH component to "sleep," process pending events,
and sleep again. Events that arrive while the main loop is executing are
simply placed on the queue. Operating under the DOS system, on which no
background processing services exist, the DNP component uses the PATHWORKS
SCH component. Since the OS/2 operating system does provide a background
processing environment, the corresponding version of the DNP component
uses the native background processing and scheduling functions of the OS/2
operating system to perform the same tasks.

Data Structures

The DNP transport component uses three primary data structures to manage
network links and to transfer data: the request (REQ) data structure, the
link status block (LSB) data structure, and the large data buffer (LDB)
data structure.

To queue events for processing, the REQ data structure is allocated from a
global pool. Pointers to a user request or to network data are stored in
the REQ structure and then placed on the executive dispatcher queue. The
REQ structure is also used to describe unacknowledged data and to store
events in the event log. Using the same pool for different purposes saved
memory and decreased the overall complexity of the component. Figure 3
illustrates a typical request queue to the executive dispatcher.

The executive module reads each event, i.e., collection of messages
or user requests, from the request queue and dispatches the event to
the appropriate handler routine, according to event type. The routine
then further dispatches the event to specific subroutines to handle the
individual messages or requests. The lowest-level routines keep network
links active and transfer data to and from the remote system.

In previous versions of the DNP component, the REQ data structure consumed
48 bytes of memory. We reduced its size to 22 bytes by creating variant
records that contained only those data fields necessary to identify the
type of request.

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 5

 DECnet Transport Architecture

The LSB data structure maintains the current status of a logical link.
In addition to the network services protocol (NSP) variables, the LSB
structure stores other data, including the queue of unacknowledged data
and the queue of outstanding transmit and receive requests. Figure 4
illustrates the contents of the LSB and associated data structures for
an active logical link.

6 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 DECnet Transport Architecture

The user requests are attached to queues on the logical link. For storage
of unsent or unacknowledged data, the DNP component uses a REQ data
structure to point to an LDB data structure. The LDB structures belong
to the Ethernet or token ring data link component and are shared by other
protocols. Before transmitting data, the DNP component allocates first
an LDB data structure and then a REQ data structure that points to the
LDB. The REQ structure is placed on the outgoing message queue of the LSB
structure, and the NSP layer eventually transmits the REQ data.

Internal DNP Modules

The DNP transport component consists of various modules. We now describe
the data link control (DLC) module, the NSP module, and the NetBIOS and
IOCB modules.

The DLC module is responsible for communication with the Ethernet or token
ring data link component. Only the DLC module calls the data link, and
the differences between the DOS and OS/2 versions are hidden in the DLC
module to present a consistent software interface to the rest of the DNP
component.

To make the NSP and DECnet Phase IV routing modules as operating-system
independent as possible, we developed a simplified software interface to
communicate with the Ethernet or token ring DLC module. The DLC module
calls the data link that is specific to the operating system. Providing
the software interface allowed us to use common code for all of the modules
that do not directly access the data link.

The NSP module manages the transport protocol, including the buffering,
flow control, and error recovery mechanisms. In PATHWORKS version 4.1, we
changed the buffering and flow control algorithms to match more closely the
types of traffic that PC network applications are likely to generate.

Most users of the NetBIOS interface post receive requests before
transmitting a request for data from a server. Some implementations of
the NetBIOS interface do not buffer received or transmitted data inside
the transport component, so applications must prepare to receive before
requesting data from the server. To best manage the incoming data, the
DNP component of PATHWORKS version 4.1 uses XON/XOFF flow control for
NetBIOS logical links and segment flow control for logical links that use
the IOCB interface. The previous version used segment flow control for
both the NetBIOS and IOCB interfaces. XON/XOFF flow control causes fewer
messages to be transmitted on the wire, especially in request/response
session layer protocols, and is most successful when the receiving node
has a buffer ready to accommodate the incoming data. Segment flow control
is more robust and allows the DNP component to better regulate the rate

of incoming data. This method of flow control can be especially useful
for non-request/response protocols such as those used in the DECwindows
software.

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 7

 DECnet Transport Architecture

The NetBIOS and IOCB modules form the session layers for the DNP component.
In previous versions of the DNP component, the NetBIOS module was layered
on top of the IOCB interface. However, as we mentioned earlier in the
paper, most popular network applications use the NetBIOS interface. We
decided to increase the performance of those applications by designing the
new DNP component in such a way that the NetBIOS module directly calls the
NSP module.

We recognized another element of the DNP design that could be improved.
Earlier DNP versions copied the user's NetBIOS request into a local data
structure for easy access. The extra resources required to store and copy
the user requests diminished the overall performance of the DNP component.
To improve performance, the DNP component now stores a pointer to the
original user's request and manipulates the request directly.

NetBIOS compatibility is one problem that many vendors face when writing
network transport components. The NetBIOS software interface is defined in
several different specifications, and many applications depend on quirks
and bugs in the design. The PATHWORKS NetBIOS interface must emulate these
bugs completely for certain applications to work properly. We paid careful
attention to the bug reports from customers in previous versions of the
PATHWORKS software when rewriting the NetBIOS layer to provide complete
compatibility.

5 A Typical Network Opeation

To illustrate the sequence of events through the DNP component for a
typical network operation, consider the transmission of 64 kilobytes
(KB) of data through the NetBIOS interface. The application that wishes to
send the data constructs a NetBIOS control block (NCB) data structure and
submits it to the NetBIOS software interface. The DNP component receives
control, creates a queue entry for the NCB structure, and then wakes the
SCH component. Waking the SCH component causes the main loop of the DNP
component to begin execution. The executive module checks the request type
and dispatches the entry to the NetBIOS module where the transmit request
is placed on the logical link's transmit request queue. The transmit
request initially points to the user's NCB and the beginning of the user's
data buffer.

The NSP module copies data into the LDB data structures and queues these
LDBs onto the unacknowledged data queue. The amount of data copied depends
on the size of the transmit pipeline, which is a network management
parameter. Each time data is copied into an LDB data structure, the pointer
advances in the transmit request queue. When all of the data is copied
into the LDBs, the user's transmit request is completed, allowing the
application to continue execution while the DNP component transmits the
queued data.

8 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 DECnet Transport Architecture

If the flow control mechanism permits sending data, the NSP module
calls the routing layer to add routing headers. The data link control
module then transmits the packets on the LAN. The remote network system
responds with acknowledgment messages, which are placed on the request
queue and processed when the DNP component returns to the main loop. An
acknowledgment message causes the LDBs to be returned to the data link
control module and makes space available on the transmit pipeline. The NSP
module can then refill the transmit pipeline by copying more user data into
the LDB data structures and restart the transmit process.

6 Results

We achieved our project goals for the DNP transport component in PATHWORKS
version 4.1 client software. As a result of the new design, we reduced
memory usage, improved performance, and reduced maintenance cost.

Memory Usage

We reduced the resident size of the DNP component from 53KB to 33KB. The
reduction in the size of the internal data structures freed up enough
memory resources to allow the DNP component to handle over 200 concurrent
network links. Previously, the DNP component was limited to 64 links.

Performance

By coding in assembly language, and optimizing the path for sending data
messages to the network, performance was nearly doubled for small data
transfers. Small data transfers account for the majority of transfers in
database applications.

The graph shown in Figure 5 represents DECnet performance, measured in
messages transferred per second, as a function of message size, ranging
from 64 to 65,500 bytes. We include data for versions 4.0 and 4.1 of
the DNP component. As the message size increases, the curves converge
because the Ethernet adapter's performance becomes the limiting factor
for throughput. Smaller message sizes are typical in many industry-standard
PC benchmark programs and applications.

The benchmark program used to calculate DECnet performance transfers data
from one PC to another as fast as possible, using fixed message sizes.
The hardware used in these tests consisted of 20-megahertz Intel 80386
microprocessors with 16-bit DEC EtherWORKS Turbo (DE200) adapters running
on a private Ethernet segment.

Maintenance Costs

Debugging the common source code base for the DOS and OS/2 versions is

much simpler than for the previous version of the DNP component. Since
the OS/2 version uses the memory protection features of the PC's Intel
microprocessor, invalid memory references under the OS/2 version cause
system traps that would not have been detected under the DOS version.
Nearly 90 percent of the code is common to the DOS and OS/2 versions of

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 9

 DECnet Transport Architecture

the DNP component. The number of source lines was reduced from 73,000 (the
DOS version only) in PATHWORKS version 4.0 to 53,000 (the DOS and OS/2
versions combined) in PATHWORKS version 4.1. Rewriting the component also
improved its compatibility with third-party NetBIOS applications.

Debugging features were added to the DNP component in PATHWORKS version
4.1 that allow customers to adjust their DECnet configuration easily and
precisely. The DNP component now collects statistics on the maximum number
of REQ, LSB, and LDB structures allocated, and on the size of each pool.
Using this feature, we found that the version 4.0 DNP component allocated
nearly twice as many REQ data structures as it needed under normal client
workloads. As a result, we lowered the default allocations to further
reduce memory consumption.

7 Conclusion

The DECnet transport component project for the version 4.1 release of
the PATHWORKS client software was a success; we came very close to our
original goals for memory, performance, and software development costs. In
addition, many of the techniques, algorithms, and data structures used for
this effort can be applied to future network transport development.

8 General References

IBM NetBIOS Application Development Guide (Armonk, NY: International
Business Machines Corporation, 1987).

Microsoft/3Com Network Driver Interface Specification, version 2.0.1
(Redmond, WA: Microsoft Corporation, 1990).

PATHWORKS Programmer's Reference, version 4.1 (Maynard, MA: Digital
Equipment Corporation, 1991).

DECnet Phase IV General Description (Maynard, MA: Digital Equipment
Corporation, Order No. AA-N149A-TC, 1983).

Microsoft MS-DOS Programmer's Reference (Redmond, WA: Microsoft
Corporation, 1990).

Microsoft OS/2 Device Driver Reference (Redmond, WA: Microsoft Corporation,
1989).

9 Trademarks

The following are trandemarks of Digital Equipment Corporation:
ALL-IN-1, DEC, DECnet, DECwindows, Digital, the Digital logo,eXcursion,
LAT, PATHWORKS, ULTRIX, VAX, VAXcluster.

OS/2 is a registered trademark of International Business Machines
Corporation.

10 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 DECnet Transport Architecture

10 Author Biographies

Mitchell P. Lichtenberg Mitch Lichtenberg is a principal software engineer
in the Personal Computing Systems Group. He is responsible for the design
and implementation of the PATHWORKS network client transport architecture
and for various other aspects of Digital's PATHWORKS PC integration
products. Before joining Digital in 1986, he was employed by the Xerox
Palo Alto Research Center as a software engineer in the Xerox Artificial
Intelligence Systems Division. Mitch holds a B.S. (1986) from Worcester
Polytechnic Institute.

Jeffrey R. Curless As a principal software engineer in the Personal
Computing Systems Group, Jeff Curless worked on the OS/2 data link driver
and on the PATHWORKS token ring implementation. He is currently developing
a new configuration utility to support the future direction of the
PATHWORKS product set. Since joining Digital in 1986, he has contributed to
the development of PATHWORKS software under both the DOS and OS/2 operating
systems. Jeff holds a B.S. in computer science from the University of New
Hampshire.

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 11
===
Copyright 1992 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

