

 The Development of an Optimized PATHWORKS Transport Interface

By Philip J. Wells

1 Abstract

Digital's Personal Computing Systems Group developed an optimized transport
interface to improve the performance of the PATHWORKS for VMS version 4.0
server. The development process involved selecting a transport protocol,
designing appropriate interface test scenarios, and measuring server
performance for each transport interface model. The engineering team then
implemented the optimized design in the server and performed benchmark
testing for specified server workloads. Using an optimized transport
interface improved server performance by decreasing the time required
to complete the test while maintaining or decreasing the percent CPU
utilization.

2 Introduction

The PATHWORKS family of network integration software products includes
file servers that provide file and print services to personal computers
(PC) in local area networks (LANs). Developed by the Personal Computing
Systems Group (PCSG), the PATHWORKS for VMS version 4.0 server supports
the Microsoft LAN Manager network operating system. This server allows PC
clients transparent access to remote VMS files. With each new release of
the PATHWORKS for VMS product, the PCSG engineering team improved server
performance and thus accommodated an increasing number of time-critical PC
applications. In version 2.0, we introduced disk services as an alternative
to file services for read-only files. We included data caching in version
3.0 of our file server.

For version 4.0, our goal was to increase file server performance by
optimizing the transport interface and the data buffering algorithm. To
achieve this goal, we evaluated several transport interface designs and
measured server performance for various server workloads. We started with
the premise that using the standard buffered interface results in increased
overhead for each transaction and thus decreases overall CPU availability.
Figure 1 illustrates this interface design. The server copies a user data
buffer in process context across the kernel service interface to a system
buffer in system context, before transferring the data to the network
layer.

Prior analysis of PATHWORKS server performance over the DECnet transport
protocol revealed that when the file server request sizes were large,
i.e., 4 to 8 kilobytes (KB), file server performance met or exceeded the
performance of other vendors' transports. However, when the transfer sizes
were small, i.e., less than 256 bytes, file server performance degraded
significantly. Also with small request sizes, our server did not ramp well

when many clients were supported in this environment. As illustrated in
Figure 2, incremental increases in server workload cause dramatic increases

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 1

 The Development of an Optimized PATHWORKS Transport Interface

in CPU utilization once a certain workload is reached, i.e., at the knees
of the curves, denoted by points A and B. We wanted our server performance
to approach that represented by the curve containing point B. In this way,
we could support more clients at the same or less CPU utilization.

3 Server Performance Analysis

We based our analysis of PATHWORKS server performance on two initial
hypotheses:

o The CPU overhead associated with a buffered interface significantly
 degrades server performance.

o The variable transaction response times inherent in using the standard
 queued I/O (QIO) interface results in inefficient server performance.

Protocol Selection

To begin our performance analysis, we needed to choose a transport
protocol. We considered the DECnet and the local area system transport
(LAST) protocols and selected the LAST protocol for the following reasons:

o An advanced development effort on the DOS client software showed that
 file and print services over the LAST protocol decrease the client
 memory usage by one-third.

o The PATHWORKS engineering team maintains the LAST protocol and thus, can
 make any required modifications.

o The VMS operating system implementation of the LAST transport protocol
 is called LASTDRIVER. LASTDRIVER serves our purpose because it presents
 a buffering model that permits the passing of multiple noncontiguous
 data buffers as a single, logically contiguous buffer. Figure 3 shows
 two physical data buffers, of sizes N and M, being passed to LASTDRIVER
 as a single message. The second buffer descriptor contains a zero in the
 next buffer descriptor pointer word. This value indicates the end of the
 data stream.

Test Scenarios

After selecting the LAST transport protocol, we created four test scenarios
to measure server performance. The first scenario, the kernel model,
required developing a VMS device driver that was layered on top of
LASTDRIVER. In this model, when the driver receives request data, the data
is immediately transmitted back to the client. The driver does not copy
buffers and does not schedule a process. This model represents the optimum
in performance, because absolutely no work is performed in relation to the

request.

2 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 The Development of an Optimized PATHWORKS Transport Interface

The second test scenario required that we develop a user-mode test program.
This model performs similarly to the kernel model in that it loops receive
data directly back to the client without performing any copy operations.
This model differs from the first model in that the driver schedules a
VMS process to loop the data back to the client. We then developed the
following variations on this test scenario to accommodate three transport
interfaces to the VMS process:

o A standard VMS QIO interface model. This model uses the standard
 interface provided with the VMS operating system.

 The remaining two scenarios represent optimized transport interfaces
 with regards to two aspects of a request: the initialization and the
 completion.

o A model that incorporates the standard VMS QIO interface with a process
 wake-up completion notification. This QIO/WAKE model uses the standard
 QIO interface to initiate a transport request. However, the transport
 queues I/O completion notification directly to the receiving process by
 means of a shared queue and a process wake-up request. The purpose of
 this optimization was to avoid the standard postprocessing routines of
 the VMS operating system.

o A model that includes kernel mode initialization and wake-up completion
 notification. This CMKRNL/WAKE model uses the transport completion
 technique of the previously described model. However, we created an
 entry point into the driver for the test program to call, thereby
 initiating transport requests. The test program uses the change-mode-
 to-kernel (CMKRNL) system service to call the driver entry point. This
 optimization was made to avoid the standard QIO interfaces.

To support the optimized transport interfaces, the test program allocates
a buffer in process context and divides it into two sections: the first
contains shared queues for moving data between process context and system
context; the second contains the test program's shared data buffers. The
driver issues a system call to double map the shared buffer into system
context. Figure 4 shows this double-mapped buffer. Since the buffer is
contiguous, the difference between the start of the shared data region in
process context and the start of the shared region in system context is a
constant, and is used as an offset. The test program accesses the shared
region by using a process virtual address (PVA); device drivers access the
region by adding the offset to the PVA to compute a system virtual address
(SVA), as shown in Figure 5. To accomplish completion notification, the
driver inserts the data into the shared queue and issues a process wake-up
request for the test program.

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 3

 The Development of an Optimized PATHWORKS Transport Interface

Performance Measurements

Our hardware platform was a VAXstation 3100 workstation. Wee measured
server performance as the difference between the request arrival time
and the response departure time, as observed on the Ethernet. Times were
measured in milliseconds using a Network General Sniffer. Table 1 presents
the test results.

Table_1:_Server_Performance_over_Various_Interfaces________________________

Interface___________ Server_Performance_(Milliseconds)__________________

Kernel Model 0.8

Standard VMS QIO 2.2
Model

QIO/WAKE Model 1.7

CMKRNL/WAKE_Model_______1.6__

As Table 1 shows, we decreased server response time by using an optimized
transport interface. The kernel model yields the best possible performance
results. As we move from the standard VMS QIO interface to more optimized
interfaces, there is a decrease in transaction response time which
represents improved server performance.

Data collected during initial performance testing supported our decision
to optimize the transport interface. Occasionally while testing the
interfaces, server throughput dropped dramatically, i.e., 30 to 50 percent,
for a short time interval, i.e., one to two seconds, and then resumed at
its prior rate. Initially, we thought there was a problem with our code.
However, the anomaly persisted throughout the development period, so we
decided to investigate the cause of the dip in performance.

The VAXstation 3100 system that we used to perform the testing had a
graphics controller card installed, but did not include the graphics
monitor. Since the system included a graphics card, the DECwindows login
process frequently tried to display the initial DECwindows login screen.
This attempt failed because there was no monitor. Therefore, the process
was deleted and restarted a few minutes later. We concluded that the
temporary drop in server performance we had observed was the effect of
the DECwindows start-up process.

The significance of this observation became apparent when we optimized the

transport interface, and the effect of this background process activity
decreased to less than 10 percent. We concluded that the optimized
interface was less susceptible to concurrent I/O than was the standard
QIO interface.

4 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 The Development of an Optimized PATHWORKS Transport Interface

4 Implementation

Once the initial testing of prototypes was complete, we decided to
implement the double-mapped buffering algorithm with shared queues. The VAX
architecture provides inherent queuing instructions that allow the sharing
of data across dissimilar address spaces. It accomplishes this by storing
the offset to the data, rather than the address of the data, in the queue
header. This technique permits us to insert a system virtual address into
a queue in system context and later remove the address in process context
as a process virtual address. A second function that these instructions
perform is to interlock the queue structure while modifying it. This
procedure precludes concurrent access by other code and thus allows the
interface to support symmetrical multiprocessing.

We modified the file server to support this new optimized transport
interface. To ease the implementation, the QIO interface emulates the
DECnet interface in all aspects except one. Since the client-server
model is essentially a request/response model, we developed a transmit
/receive (transceive) operation that allows the server to issue read buffer
and write buffer requests at the same time. This variation reduces the
number of system boundary crossings. When the server transmits buffers,
these buffers return to the server process by way of a transmit complete
queue. When the server receives a new request message, the associated
buffer is transferred to the server process via a receive complete queue.
To facilitate a transceive operation, we defined a work element data
structure. As shown in Figure 6, a work element permits the passing of
two distinct data streams: one for transmit and one for receive.

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 5

 The Development of an Optimized PATHWORKS Transport Interface

As development of the client and server software modules continued,
we encountered some interesting problems. The following three sections
describe several of these problems and how we addressed them.

Microsoft LAN Manager Redirector I/O Behavior

When the Microsoft LAN Manager redirector, i.e., the DOS client protocol
equivalent of the VMS file server, generates a read request, it first
writes the request for service to the network. The redirector then issues a
read request and uses a short buffer to receive only the protocol header of
the response message. After verifying that the response was successful, the
redirector issues a second read request to receive the data associated with
the response message.

This behavior requires lower protocol layers to buffer the response data
until the redirector issues a read request to receive the data. In order
to buffer the response data for the client, the transport layer needs to
allocate an 8KB buffer. An alternative approach to maintaining a dedicated
transport buffer is to use the inherent buffering capacity of the Ethernet
data link software and the Ethernet controller card, which maintain a cache
of receive buffers. This technique requires the transport layer to retain
data link receive buffers while the redirector verifies the response
message protocol header and posts the actual receive buffer. Once the
redirector issues the second read request, the remaining data is copied
and the Ethernet buffers are released.

One problem with this approach is that each vendor's Ethernet card has
different buffering capacities. In some cases, the capacity is less than
the size of the maximum read request. To support such inadequate buffering
capability, we inserted a buffer management protocol (BMP) layer between
the file server and the redirector. The resulting process is as follows:

The client module communicates its data link buffering capacity to
the server module in the session connect message. When the application
generates data requests, the DOS redirector packages a server message block
(SMB) protocol message and passes it to the BMP layer. This layer adds a
small buffer management header to the message and pass it to the transport
layer to transmit to the server.

To complete the operation, the file server processes the request, formats
an SMB response message, and passes it to the BMP layer. At this interface,
the size of the response message is indicated by the transmit buffer
descriptors, and a protocol header that describes the response packet is
created. If the response message is larger than the client's data link
buffering capacity, the driver software segments the response packet
into smaller messages and passes these messages to the server transport

to transmit to the client. The client module copies the header to the
redirector's short buffer and completes the redirector's read request.
The BMP layer then waits for the second read to copy the remaining data to
the redirector's buffer and releases the data link buffers. At this point,
the client can request more data from the server.

6 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 The Development of an Optimized PATHWORKS Transport Interface

Response Buffering

The LAST protocol does not acknowledge the receipt of messages because
it relies on the integrity of the underlying LAN to deliver datagrams
without error. Consequently, the BMP layer must buffer all response data
transmitted to the client to protect against packets that are lost or
discarded. In such a case, the BMP layer transmits the original response
message back to the client without sending the message to the server
process.

For instance, consider the two cases shown in Figures 7 and 8. In Figure 7,
a client generates a read request at time T1. The server processes the
request and generates a response at time T2. The response is lost due
to congestion, so the client requests the same data again, as indicated
at time T3. The server rereads the file and generates a new response.
Since the read operation is naturally idempotent, i.e., it can be repeated
without changing the result, the operation completes successfully.

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 7

 The Development of an Optimized PATHWORKS Transport Interface

In the case depicted in Figure 8, we changed the operation from a disk read
to a delete file. Here, the client makes the delete request at time T1, and
the server successfully deletes the file at time T2. The response message
is again lost. When the client reissues the delete file request at time T3,
the server fails in its attempt to perform the operation because the file
no longer exists. The delete operation is not idempotent; thus, repeating
the operation yields a different outcome.

We cannot determine in advance the actual idempotency of any given request.
Therefore, the BMP layer must cache all response buffers. If a response
message is lost, the server transmits the original response message instead
of retrying the entire operation. If, as in the second example, the server
is able, at time T4, to transmit the actual buffer used at time T2 to store
the response message, the operation can complete successfully.

To facilitate the buffering of response data, the transport provides a
transaction identifier for request and response messages. This identifier
is set by the client BMP layer whenever a new request is received from
the redirector. The server stores this identifier and verifies it against
the identifier of the next request. If a received request has a duplicate
identifier, the request must be a retransmission and the server transmits
the message in the cached response buffer. If the identifier is unique,
the cached buffer is returned to the server by means of the shared queues,
and a new request is created. The client's single-threaded nature ensures
that the transaction identifier method is successful in detecting a
retransmission.

NetBIOS Emulation

The PATHWORKS transport interface implementation relies on the request
/response behavior of the DOS redirector. However, the redirector uses the
standard DOS network basic I/O system (NetBIOS) interface to communicate
with transports, and this interface does not exhibit request/response
behavior. Therefore, our implementation is not a true NetBIOS emulation
and can prevent common NetBIOS applications from operating correctly.

To resolve this problem, we developed a common NetBios interface between
the DECnet and LAST transports. After receiving a request, the client
first tries to connect over the LAST transport. If the connection attempt
fails, the request passes to the DECnet transport. Thus, standard NetBIOS
application requests operate over the DECnet transport; only redirector
requests are processed over the LAST transport.

8 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 The Development of an Optimized PATHWORKS Transport Interface

5 Final Benchmarks

At the completion of the project, we performed benchmark tests to measure
server performance for varied workloads and for a directory tree copy.
Table 2 shows the results for varied workloads. The first column of the
table describes the test performed. ALL I/O represents a raw disk I/O test
in which the measured client issues read and write requests of various
buffer sizes ranging from 128 bytes to 16KB. TP represents a transaction
processing test that measures random read and write requests of small units
of data. This test emulates a typical database application. The workload
value indicates the number of client systems used in the test to produce a
background workload. As one might expect, as the workloads increase, the
performance of the measured client degrades.

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 9

 The Development of an Optimized PATHWORKS Transport Interface

Table_2:_Final_Benchmark_Test_Results_for_Varied_Workloads_________________

 _________LAST_Protocol________ ____DECnet_Protocol___

Test Elapsed Time CPU Elapsed Time CPU
Description____ (seconds)____ Utilization (seconds)____
Utiliation
 (percent)____

(percent)

All I/O 0 840 4 961 4
Workloads

All I/O 2 943 69 1074 75
Workloads

All I/O 4 1091 100 1434 100
Workloads

TP 1 Workload 59 39 79 50

TP_5_Workloads_____163______________83_______________212______________93___

The entries in each row of the table are the elapsed time and percent CPU
utilization for the given test. We measured server performance over the
LAST protocol using our optimized interface and over the DECnet protocol
using the standard VMS QIO interface. For the All I/O tests, the resultant
elapsed time is the actual time it took to complete the test. For the TP
tests, the performance numbers are the average of all the PCs tested. As
Table 2 shows, we were able to decrease the elapsed time for each benchmark
while maintaining the same or decreased CPU utilization.

The two graphs in Figures 9 and 10 illustrate these results. In the ALL I/O
test, CPU utilization using the optimized interface increases steadily as
the workload increases. Using the standard QIO interface, CPU utilization
increases at a faster rate once a specified workload is reached. Although
the TP graph in Figure 10 contains only two data points, it is evident
that CPU utilization is proportionally higher for five workloads than it is
for one. We performed multiple tests to verify that the results could be
reproduced consistently.

The final benchmark test performed was a directory tree copy using the
DOS XCOPY utility. In this test, the utility copies the directory tree
first from the server to the client and then from the client to the server.

The bottleneck in this test is known to be the file creation time on the
server. Therefore, we expected a more efficient transport interface to have
no effect on server performance. The test results in Table 3 support our
theory. The I/O rate and the elapsed time over both the DECnet protocol
(using the standard transport interface) and the LAST protocol (using the
optimized transport interface) are nearly the same.

10 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 The Development of an Optimized PATHWORKS Transport Interface

Table_3:_Final_Benchmark_Test_Results_for_a_Directory_Tree_Copy____________

 _________LAST_Protocol_________ ____DECnet_ProtocolI____

Test Elapsed Time I/O Rate Elapsed Time I/O
Description_ (seconds)______ (KB/sec)____ (seconds)______ Rate
 (KB
 /sec)

XCOPY to 115 39 15 39
Client

XCOPY to 119 38 121 37
Server___

6 Acknowledgements

I wish to thank Jon Campbell for incorporating the interface design
modifications into the file server, Alpo Kallio for developing the client
software, and Alan Abrahams for designing the combined DECnet/LAST NetBIOS
interface and for his encouragement and support.

7 Biography

Philip J. Wells Phil Wells is the PATHWORKS server architect and is
responsible for coordinating the design and implementation of the PATHWORKS
server products. In previous positions at Digital, Phil worked for
Corporate Telecommunications designing Digital's internal network, the
EASYNET, and helped support data centers and networks while in the Internal
Software Services Group. Phil joined Digital in 1976 as a computer operator
in the Corporate Data Center.

8 Trademarks

The following are trandemarks of Digital Equipment Corporation:
ALL-IN-1, DEC, DECnet, DECwindows, Digital, the Digital logo,eXcursion,
LAT, PATHWORKS, ULTRIX, VAX, VAXcluster.

Network General and Sniffer are trademarks of Network General Corporation.

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 11
===
Copyright 1992 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

