The Devel opnment of an Optim zed PATHWORKS Transport Interface
By Philip J. Wlls
1 Abstract

Digital's Personal Conputing Systens Group devel oped an optin zed transport
interface to inprove the performance of the PATHWORKS for VMS version 4.0
server. The devel oprment process involved selecting a transport protocol
desi gning appropriate interface test scenarios, and nmeasuring server
performance for each transport interface nodel. The engineering teamthen

i mpl enmented the optim zed design in the server and perforned benchmark
testing for specified server workl oads. Using an optim zed transport
interface i nproved server performance by decreasing the tinme required

to conplete the test while maintaining or decreasing the percent CPU
utilization.

2 Introduction

The PATHWORKS fanmily of network integration software products includes
file servers that provide file and print services to personal conputers
(PC) in local area networks (LANs). Devel oped by the Personal Conputing
Systens Group (PCSG, the PATHWORKS for VMS version 4.0 server supports
the Mcrosoft LAN Manager network operating system This server allows PC
clients transparent access to renote VMS files. Wth each new rel ease of

t he PATHWORKS for VMS product, the PCSG engi neering teaminproved server
performance and thus acconmodated an increasing nunber of tinme-critical PC
applications. In version 2.0, we introduced disk services as an alternative
to file services for read-only files. W included data caching in version
3.0 of our file server.

For version 4.0, our goal was to increase file server performance by

optim zing the transport interface and the data buffering algorithm To
achieve this goal, we evaluated several transport interface designs and
measured server performance for various server workloads. We started with
the premise that using the standard buffered interface results in increased
overhead for each transaction and thus decreases overall CPU availability.
Figure 1 illustrates this interface design. The server copies a user data
buffer in process context across the kernel service interface to a system
buffer in systemcontext, before transferring the data to the network

| ayer.

Prior analysis of PATHWORKS server performance over the DECnet transport
protocol revealed that when the file server request sizes were |arge,

i.e., 4to 8 kilobytes (KB), file server performance nmet or exceeded the
performance of other vendors' transports. However, when the transfer sizes
were snmall, i.e., less than 256 bytes, file server performance degraded
significantly. Also with small request sizes, our server did not ranmp wel

when many clients were supported in this environnent. As illustrated in
Figure 2, increnental increases in server workload cause dramatic increases

Digital Technical Journal Vol. 4 No. 1, Wnter 1992 1

The Devel opnment of an Optim zed PATHWORKS Transport Interface

in CPU utilization once a certain workload is reached, i.e., at the knees

of the curves, denoted by points A and B. W wanted our server performance
to approach that represented by the curve containing point B. In this way,
we coul d support nore clients at the same or |less CPU utilization.

3 Server Performance Anal ysis

We based our anal ysis of PATHWORKS server performance on two initia
hypot heses:

0 The CPU overhead associated with a buffered interface significantly
degrades server perfornmance.

o The variable transaction response tinmes inherent in using the standard
queued 1/O (Q O interface results in inefficient server performance

Prot ocol Sel ection

To begin our performance anal ysis, we needed to choose a transport
protocol. We considered the DECnet and the |ocal area systemtransport
(LAST) protocols and sel ected the LAST protocol for the foll ow ng reasons:

0 An advanced devel opnent effort on the DOS client software showed that
file and print services over the LAST protocol decrease the client
menory usage by one-third.

0 The PATHWORKS engi neering team nai ntains the LAST protocol and thus, can
make any required nodifications.

0 The VMS operating systeminplenentation of the LAST transport protoco
is called LASTDRI VER. LASTDRI VER serves our purpose because it presents
a buffering nodel that permits the passing of multiple noncontiguous
data buffers as a single, logically contiguous buffer. Figure 3 shows
two physical data buffers, of sizes N and M being passed to LASTDRI VER
as a single nmessage. The second buffer descriptor contains a zero in the
next buffer descriptor pointer word. This value indicates the end of the
data stream

Test Scenari os

After selecting the LAST transport protocol, we created four test scenarios
to nmeasure server performance. The first scenario, the kernel nodel,

requi red devel oping a VMS device driver that was |ayered on top of

LASTDRI VER. I n this nodel, when the driver receives request data, the data
is imediately transmtted back to the client. The driver does not copy
buffers and does not schedul e a process. This nodel represents the optinum
in performnce, because absolutely no work is performed in relation to the

request.

2 Digital Technical Journal Vol. 4 No. 1, Wnter 1992

The Devel opnment of an Optim zed PATHWORKS Transport Interface

The second test scenario required that we devel op a user-npde test program
This nmodel perfornms simlarly to the kernel nodel in that it |oops receive
data directly back to the client without perform ng any copy operations.
This nodel differs fromthe first nodel in that the driver schedules a

VMS process to loop the data back to the client. W then devel oped the
following variations on this test scenario to accommbdate three transport
interfaces to the VMS process:

o0 A standard VM5 QO interface nodel. This nodel uses the standard
interface provided with the VMS operating system

The remaining two scenari os represent optim zed transport interfaces
with regards to two aspects of a request: the initialization and the
conpl eti on.

o A nodel that incorporates the standard VMs QO interface with a process
wake-up conpletion notification. This Q O WAKE nodel uses the standard
QOinterface to initiate a transport request. However, the transport
queues 1/ O conpletion notification directly to the receiving process hy
nmeans of a shared queue and a process wake-up request. The purpose of
this optimzation was to avoid the standard postprocessing routines of
the VMS operating system

o A nodel that includes kernel node initialization and wake-up conpl etion
notification. This CMKRNL/ WAKE nodel uses the transport conpletion
techni que of the previously described nodel. However, we created an
entry point into the driver for the test programto call, thereby
initiating transport requests. The test program uses the change-node-
to-kernel (CMKRNL) system service to call the driver entry point. This
optim zati on was nmade to avoid the standard Q O interfaces.

To support the optim zed transport interfaces, the test program all ocates
a buffer in process context and divides it into two sections: the first
cont ai ns shared queues for noving data between process context and system
context; the second contains the test program s shared data buffers. The
driver issues a systemcall to double map the shared buffer into system
context. Figure 4 shows this doubl e-mapped buffer. Since the buffer is
contiguous, the difference between the start of the shared data region in
process context and the start of the shared region in systemcontext is a
constant, and is used as an offset. The test program accesses the shared
region by using a process virtual address (PVA); device drivers access the
region by adding the offset to the PVA to conpute a systemvirtual address
(SVA), as shown in Figure 5. To acconplish conpletion notification, the
driver inserts the data into the shared queue and i ssues a process wake-up
request for the test program

Digital Technical Journal Vol. 4 No. 1, Wnter 1992 3

The Devel opnment of an Optim zed PATHWORKS Transport Interface

Per f or mrance Measurenments

Qur hardware platformwas a VAXstation 3100 workstation. We neasured
server performance as the difference between the request arrival tine

and the response departure tinme, as observed on the Ethernet. Tinmes were
measured in mlliseconds using a Network CGeneral Sniffer. Table 1 presents
the test results.

Tabl e_1: Server_Performance_over_Various_Interfaces

Interface. Server _Performance_ (M 1iseconds)
Ker nel Mbdel 0.8

St andard VMs Q O 2.2

Mode

Q O WAKE Mbdel 1.7

CMKRNL/ WAKE_Mbdel 1.6

As Table 1 shows, we decreased server response tinme by using an optim zed
transport interface. The kernel nodel yields the best possible performance
results. As we nove fromthe standard VM5 QO interface to nore optim zed
interfaces, there is a decrease in transaction response tinme which
represents inproved server performance

Data collected during initial performance testing supported our decision
to optimze the transport interface. Cccasionally while testing the

i nterfaces, server throughput dropped dramatically, i.e., 30 to 50 percent,
for a short tine interval, i.e., one to two seconds, and then resunmed at
its prior rate. Initially, we thought there was a problemw th our code.
However, the anomaly persisted throughout the devel opnent period, so we
decided to investigate the cause of the dip in performance.

The VAXstation 3100 systemthat we used to performthe testing had a
graphics controller card installed, but did not include the graphics
monitor. Since the systemincluded a graphics card, the DECw ndows | ogin
process frequently tried to display the initial DECwW ndows | ogin screen
This attenpt failed because there was no nonitor. Therefore, the process
was del eted and restarted a few ninutes later. W concluded that the
tenporary drop in server performnce we had observed was the effect of

t he DECwW ndows start-up process.

The significance of this observation becane apparent when we optim zed the

transport interface, and the effect of this background process activity
decreased to | ess than 10 percent. W concluded that the optim zed
interface was | ess susceptible to concurrent |/O than was the standard
QO interface.

4 Digital Technical Journal Vol. 4 No. 1, Wnter 1992

The Devel opnment of an Optim zed PATHWORKS Transport Interface

4 | nplenentation

Once the initial testing of prototypes was conplete, we decided to

i mpl ement the doubl e-mapped buffering algorithmw th shared queues. The VAX
architecture provides inherent queuing instructions that allow the sharing
of data across dissimlar address spaces. It acconplishes this by storing
the offset to the data, rather than the address of the data, in the queue
header. This technique permts us to insert a systemvirtual address into
a queue in systemcontext and |ater renpove the address in process context
as a process virtual address. A second function that these instructions
performis to interlock the queue structure while nmodifying it. This
procedure precludes concurrent access by other code and thus allows the
interface to support synmetrical multiprocessing.

We nodified the file server to support this new optinized transport
interface. To ease the inplenentation, the QO interface enmulates the
DECnet interface in all aspects except one. Since the client-server

nodel is essentially a request/response nodel, we devel oped a transmt
/receive (transceive) operation that allows the server to issue read buffer
and wite buffer requests at the same tinme. This variation reduces the
nunber of system boundary crossings. Wien the server transmits buffers,
these buffers return to the server process by way of a transnmit conplete
gueue. When the server receives a new request nessage, the associated
buffer is transferred to the server process via a receive conplete queue.
To facilitate a transceive operation, we defined a work el ement data
structure. As shown in Figure 6, a work elenent permits the passing of
two distinct data streams: one for transmt and one for receive.

Digital Technical Journal Vol. 4 No. 1, Wnter 1992 5

The Devel opnment of an Optim zed PATHWORKS Transport Interface

As devel opnent of the client and server software nodul es conti nued,
we encountered sone interesting problens. The follow ng three sections
descri be several of these problens and how we addressed them

M crosoft LAN Manager Redirector |/ O Behavi or

When the M crosoft LAN Manager redirector, i.e., the DOS client protoco
equi valent of the VMS file server, generates a read request, it first
writes the request for service to the network. The redirector then issues a
read request and uses a short buffer to receive only the protocol header of
the response nessage. After verifying that the response was successful, the
redirector issues a second read request to receive the data associated with
the response nmessage.

Thi s behavior requires |ower protocol layers to buffer the response data
until the redirector issues a read request to receive the data. |In order
to buffer the response data for the client, the transport |ayer needs to
allocate an 8KB buffer. An alternative approach to nmintaining a dedicated
transport buffer is to use the inherent buffering capacity of the Ethernet
data |ink software and the Ethernet controller card, which maintain a cache
of receive buffers. This technique requires the transport layer to retain
data link receive buffers while the redirector verifies the response
nmessage protocol header and posts the actual receive buffer. Once the
redirector issues the second read request, the remaining data is copied
and the Ethernet buffers are rel eased.

One problemwith this approach is that each vendor's Ethernet card has
different buffering capacities. In some cases, the capacity is less than
the size of the maxi numread request. To support such inadequate buffering
capability, we inserted a buffer managenment protocol (BMP) |ayer between
the file server and the redirector. The resulting process is as foll ows:

The client nodul e conmuni cates its data |link buffering capacity to

the server nodule in the session connect nessage. \Wen the application
generates data requests, the DOS redirector packages a server nessage bl ock
(SMB) protocol nmessage and passes it to the BMP layer. This |ayer adds a
smal | buffer managenent header to the nessage and pass it to the transport
layer to transmit to the server.

To conmpl ete the operation, the file server processes the request, formats
an SMB response nessage, and passes it to the BMP layer. At this interface,
the size of the response nessage is indicated by the transnit buffer
descriptors, and a protocol header that describes the response packet is
created. If the response nessage is larger than the client's data |ink
buffering capacity, the driver software segnents the response packet

into smal |l er nessages and passes these nessages to the server transport

to transmt to the client. The client nodul e copies the header to the
redirector's short buffer and conpletes the redirector's read request.

The BMP | ayer then waits for the second read to copy the renmaining data to
the redirector's buffer and rel eases the data link buffers. At this point,
the client can request nmore data fromthe server.

6 Digital Technical Journal Vol. 4 No. 1, Wnter 1992

The Devel opnment of an Optim zed PATHWORKS Transport Interface

Response Buffering

The LAST protocol does not acknow edge the recei pt of nessages because
it relies on the integrity of the underlying LAN to deliver datagrans

wi t hout error. Consequently, the BMP | ayer must buffer all response data
transmitted to the client to protect against packets that are |ost or

di scarded. In such a case, the BWMP |layer transmits the original response
nmessage back to the client w thout sending the nmessage to the server
process.

For instance, consider the two cases shown in Figures 7 and 8. In Figure 7,
a client generates a read request at time Tl. The server processes the
request and generates a response at tine T2. The response is |ost due

to congestion, so the client requests the same data again, as indicated

at tinme T3. The server rereads the file and generates a new response.

Since the read operation is naturally idenpotent, i.e., it can be repeated
wi t hout changing the result, the operation conpletes successfully.

Digital Technical Journal Vol. 4 No. 1, Wnter 1992 7

The Devel opnment of an Optim zed PATHWORKS Transport Interface

In the case depicted in Figure 8 we changed the operation froma disk read
to a delete file. Here, the client nakes the delete request at tinme T1, and
the server successfully deletes the file at tinme T2. The response nessage
is again lost. Wen the client reissues the delete file request at tinme T3,
the server fails inits attenpt to performthe operation because the file
no |l onger exists. The delete operation is not idenpotent; thus, repeating
the operation yields a different outcone.

We cannot determ ne in advance the actual idenpotency of any given request.
Therefore, the BMP | ayer nmust cache all response buffers. If a response
nmessage is lost, the server transmits the original response nmessage instead
of retrying the entire operation. If, as in the second exanple, the server
is able, at time T4, to transnmt the actual buffer used at tinme T2 to store
the response nessage, the operation can conplete successfully.

To facilitate the buffering of response data, the transport provides a
transaction identifier for request and response nessages. This identifier
is set by the client BMP | ayer whenever a new request is received from
the redirector. The server stores this identifier and verifies it against
the identifier of the next request. |If a received request has a duplicate
identifier, the request nust be a retransm ssion and the server transnits
the nmessage in the cached response buffer. If the identifier is unique,
the cached buffer is returned to the server by neans of the shared queues,
and a new request is created. The client's single-threaded nature ensures
that the transaction identifier nmethod is successful in detecting a
retransm ssi on.

Net Bl OS Enul ati on

The PATHWORKS transport interface inplenentation relies on the request

/ response behavior of the DOS redirector. However, the redirector uses the
standard DOS network basic |/O system (NetBI OS) interface to comunicate
with transports, and this interface does not exhibit request/response
behavi or. Therefore, our inplenentation is not a true NetBlI OS enul ation
and can prevent common Net Bl OS applications from operating correctly.

To resolve this problem we devel oped a cormon Net Bi os i nterface between
t he DECnet and LAST transports. After receiving a request, the client
first tries to connect over the LAST transport. |If the connection attenpt
fails, the request passes to the DECnet transport. Thus, standard NetBlI OS
application requests operate over the DECnet transport; only redirector
requests are processed over the LAST transport.

8 Digital Technical Journal Vol. 4 No. 1, Wnter 1992

The Devel opnment of an Optim zed PATHWORKS Transport Interface

5 Final Benchnarks

At the conpletion of the project, we performed benchmark tests to nmeasure
server performance for varied workloads and for a directory tree copy.
Table 2 shows the results for varied workl oads. The first colum of the
tabl e describes the test perforned. ALL I/O represents a raw disk I/O test
in which the neasured client issues read and wite requests of various
buffer sizes ranging from 128 bytes to 16KB. TP represents a transaction
processing test that neasures randomread and wite requests of small units
of data. This test enulates a typical database application. The workl oad
val ue indicates the nunmber of client systens used in the test to produce a
background workl oad. As one m ght expect, as the workl oads increase, the
performance of the neasured client degrades.

Digital Technical Journal Vol. 4 No. 1, Wnter 1992 9

The Devel opnment of an Optim zed PATHWORKS Transport Interface

Tabl e_2: Final _Benchmark_Test _Results_for_Vari ed_Workl oads

_________ LAST_Pr ot ocol DECnet _Protocol __
Test El apsed Ti e CPU El apsed Ti e CPU
Description___ (seconds) Utilization (seconds)
Utiliation

(percent)__

(percent)
Al 1/00 840 4 961 4
Wor k1l oads
Al 1/02 943 69 1074 75
Wor k1l oads
Al 1/04 1091 100 1434 100
Wor k1l oads
TP 1 Workl oad 59 39 79 50
TP_5_Wor kl oads 163 83 212 93

The entries in each row of the table are the el apsed tinme and percent CPU
utilization for the given test. W neasured server performance over the
LAST protocol using our optimzed interface and over the DECnet protoco
using the standard VMs QO interface. For the All 1/Otests, the resultant
el apsed tinme is the actual tinme it took to conplete the test. For the TP
tests, the performance nunbers are the average of all the PCs tested. As
Tabl e 2 shows, we were able to decrease the el apsed tine for each benchmark
whi l e nmai ntaining the same or decreased CPU utilization.

The two graphs in Figures 9 and 10 illustrate these results. In the ALL I1/0O
test, CPU utilization using the optim zed interface increases steadily as
the workl oad i ncreases. Using the standard Q O interface, CPU utilization
increases at a faster rate once a specified workload is reached. Although
the TP graph in Figure 10 contains only two data points, it is evident

that CPU utilization is proportionally higher for five workloads than it is
for one. We perforned nultiple tests to verify that the results could be
reproduced consistently.

The final benchmark test perforned was a directory tree copy using the
DOS XCOPY utility. In this test, the utility copies the directory tree
first fromthe server to the client and then fromthe client to the server.

The bottleneck in this test is known to be the file creation time on the
server. Therefore, we expected a nore efficient transport interface to have
no effect on server performance. The test results in Table 3 support our
theory. The I/Orate and the el apsed tine over both the DECnet protoco
(using the standard transport interface) and the LAST protocol (using the
optim zed transport interface) are nearly the sane.

10 Digital Technical Journal Vol. 4 No. 1, Wnter 1992

The Devel opnment of an Optim zed PATHWORKS Transport Interface

Tabl e_3: _Final _Benchmark_Test _Results_for_a Directory_Tree_Copy

_________ LAST_Pr ot ocol DECnet _Protocol I __
Test El apsed Ti e I/O Rate El apsed Ti e /0O
Description_ (seconds) (KB/sec) (seconds) Rat e
(KB
/ sec)
XCOPY to 115 39 15 39
cient
XCOPY to 119 38 121 37
Server

6 Acknow edgenents

I wish to thank Jon Canpbell for incorporating the interface design

nodi fications into the file server, Alpo Kallio for devel oping the client
software, and Al an Abrahanms for designing the conmbi ned DECnet/LAST Net Bl OS
interface and for his encouragenent and support.

7 Bi ography

Philip J. Wells Phil Wells is the PATHAWORKS server architect and is
responsi bl e for coordinating the design and inplenmentati on of the PATHWORKS
server products. In previous positions at Digital, Phil worked for
Corporate Tel ecomruni cations designing Digital's internal network, the
EASYNET, and hel ped support data centers and networks while in the Interna
Software Services Goup. Phil joined Digital in 1976 as a conputer operator
in the Corporate Data Center

8 Trademarks

The foll owing are trandemarks of Digital Equi pment Corporation
ALL-IN-1, DEC, DECnet, DECw ndows, Digital, the Digital |ogo, eXcursion
LAT, PATHWORKS, ULTRI X, VAX, VAXcl uster.

Net work General and Sniffer are trademarks of Network General Corporation.

Digital Technical Journal Vol. 4 No. 1, Wnter 1992 11

Copyright 1992 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi pment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permitted. All rights reserved.

