

 PATHWORKS for VMS File Server

By Edward W. Bresnahan and Siu Yin Cheng

1 Abstract

The PATHWORKS for VMS file server integrates industry-standard personal
computers with VAX VMS systems over a communications network. It implements
Microsoft's server message block (SMB) core protocol, which provides
resource sharing using a client-server model. The server provides
transparent network access to VAX VMS FILES-11 files from a PC's native
operating system. The architecture supports multiple transports to ensure
interoperability among all PCs connected on an open network. Due to the
performance constraints of many PC applications, data caching and a variety
of other algorithms and heuristics were employed to decrease request
response time. The file server also implements a security model to provide
VMS security mechanisms to PC users.

2 Introduction

Coupled with the PATHWORKS for DOS or PATHWORKS for OS/2 product, PATHWORKS
for VMS creates a distributed computing environment, based on a client-
server model. This environment allows personal computer (PC) users to
access VMS system resources transparently. PC clients access the system
server from their native operating systems, typically MS-DOS, as if it
were local to the PC. The VAX VMS system resources to be shared, i.e.,
files or printers, are offered as services over the network to PC clients.
The computer systems providing the shared resources are referred to as
servers; and the PCs requesting the resources as clients. The SMB protocol
from the Microsoft Networks/OpenNET (MS-NET) Architecture was chosen to
provide file sharing from a VAX VMS system to MS-DOS and OS/2 clients.[1]
The SMB protocol is a command/response application-layer protocol designed
to provide file sharing in a PC network. Since SMB is an application-layer
protocol, it is transport independent and thus can be implemented over
heterogeneous networks.

Central to this environment is the file server, the component that
processes the SMB requests to provide file and print sharing along with
management functions. The file server maps SMB file requests to the
appropriate calls for the VAX VMS FILES-11 file system interface and
honors applicable security mechanisms. MS-DOS and VAX VMS systems have
different file systems and security models. To integrate these different
environments, mapping policies, along with an architecture appropriate for
the VMS system, had to be developed and implemented.

This paper describes the design and implementation of a nondedicated
personal computer file server (PCFS) on a VAX VMS computer system. It
details the PATHWORKS for VMS file system and discusses its transport layer

interface and performance considerations, including data caching effects
and disk space allocation. The paper then explains file sharing among

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 1

 PATHWORKS for VMS File Server

server processes in a cluster environment and concludes with a discussion
of the server configuration and management interface.

3 File Server Architecture

The file server is implemented as a single, multithreaded, nonblocking
detached process with an associated permanent DECnet object. This user-
mode process is privileged and has a high priority. Figure 1 shows the
architecture of the server. Only one file server process exists on any one
computer to handle all client requests. An alternative choice would be to
have multiple processes service the clients. The use of a single process
reduces system resource requirements and eliminates the latency that is
incurred from context switches among the multiple server processes. Also
eliminated is the latency that results from process creation at the time a
client connects.

A threads package with multiple independent threads of execution within
a single process supports multiple clients and periodic operations within
the file server. The file server creates a thread for a client when it
requests establishment of a virtual circuit to the file server. The thread
is deleted when the client terminates its connections. A client's thread
carries out the operation specified in the request SMB without blocking
the process. With this scheme, processing SMB requests is synchronous with
respect to the client, yet asynchronous with respect to the file server
process.

Since a server process may be processing the requests of hundreds of
clients simultaneously, the server operates in real-time. The threads
package contributes to these goals by providing an environment in which
the process never enters a wait state and a client thread is safe from
CPU starvation. Preventing the process from blocking is accomplished
by performing all file I/O asynchronously and by calling operating
system routines asynchronously when possible. Starvation is prevented
by scheduling clients using a nonpreemptive first-in, first-out (FIFO)
scheduling algorithm. With this policy, a thread executes until it
voluntarily yields, usually due to an I/O operation or an operating system
call. Using a nonpreemptive scheduling algorithm also eliminates the
latency that would result from a thread switch in a preemptive environment.

4 Pathworks File System

A file server needs to provide transparent file access to a VMS file
system and ensure file accessibility between DOS and VMS users. Since these
operating systems have different file systems, PATHWORKS for VMS must store
the files in VAX VMS FILES-11 format and provide a mapping algorithm to
bridge the two operating systems. Because the OS/2 and DOS systems use the
same file system, the mappings performed to address the difference between

the DOS and VMS systems can be applied to support transparent file access
from an OS/2 client.

2 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 PATHWORKS for VMS File Server

File Name Mapping

DOS and VMS FILES-11 support different naming syntaxes. DOS supports
8.3 naming format; that is, the file name is composed of a maximum of
eight characters with a maximum of three characters as the extension. In
contrast, the VMS FILES-11 file name supports 39.39 format and includes
a third component, the file generation number. In addition, the legal
character set for a file name is larger in DOS than it is in the VMS
system.

The PATHWORKS file server does not include a mapping algorithm to convert a
39.39 VMS file naming syntax to be accessible to DOS. Any VMS file that DOS
system users need to share must be created with a file name that conforms
to DOS 8.3 format. Since the 8.3 naming format maps directly to the 39.39
format, no mapping algorithm is required to guarantee a VMS system user
access to files named by a DOS system user.

To overcome the difference in character sets, a comprehensive mapping
algorithm was written to ensure shareability and transparency. Since
neither operating system is case sensitive, the file server changes the
file name to uppercase before any operation is performed on the file.
The legal character set for VMS FILES-11 file names includes uppercase
alphanumerics, dollar sign, hyphen, and underscore. The character set in
DOS includes all noncontrol characters with the exception of a few special
signs. The PATHWORKS server maps the character sets based on the following
rules:

o All alphanumeric characters are changed to uppercase letters; any
 character that is valid in a VMS file name is passed through unchanged.

o All other characters are changed to two underscores, followed by two
 hexadecimal digits that represent the ASCII code of the character being
 mapped.

VMS FILES-11 allows multiple versions of a file to be generated and stored
in a directory. These files are identified by the numeric component, which
represents the version number, of a file name. There is no equivalent
concept in the DOS system. The PATHWORKS server maps the highest version
(or most recent generation) to be accessible to DOS. Similarly, the server,
when creating a file on behalf of a DOS client, generates the file with
a version limit of 1. To preserve and honor the version limit information
for the VMS environment, the server preserves the VMS file attributes of
previous versions of the file. Consequently, if the file is created by a
VMS user, and is later updated by a DOS user, a new version of the file is
generated, and the version limit information is preserved.

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 3

 PATHWORKS for VMS File Server

Directory Mapping

The VMS system requires a directory name to end with "dir" as an extension,
but the DOS system does not post any restriction in this area. PATHWORKS
maps directory names in DOS by including the ".ext" characters as part
of a directory name. Since the period is not a legal character for a DOS
directory, it is mapped using the double underscore followed by the hex
digit rule. Any directory name in DOS that conforms to the VMS directory
naming syntax is passed through untouched.

DOS File Attribute Mapping

Both file systems associate a set of attributes to the files, but the
file attributes on a DOS file do not have a one-to-one correspondence with
those on a VMS file. A DOS file has four types of file attributes: archive,
system, hidden, and read-only. The concepts of archive, system, and hidden
are not recognized in the VMS file system. PATHWORKS software stores the
DOS file attributes in an application access control entry when creating a
file on behalf of a PC workstation. Furthermore, the read-only attribute of
a DOS file is mapped to the read-only bit of the record management services
(RMS) protection field for system, owner, and group.

File Organization

A DOS file is organized as a byte stream, but a VMS file is organized as
collections of records. Although the VMS system supports a form of stream
file, most VMS files are stored in record format. Furthermore, a VMS file
with a stream record format does not map directly to a DOS stream format.
This poses an interesting problem in integrating VMS and DOS file systems.

Since PATHWORKS software provides transparent access to the VMS host
system, a DOS client views all files on file services as streams of bytes,
just as if these files were stored locally. When the server creates a
file on behalf of a PC, it specifies the file organization as sequential
with stream record format. Thus, the byte stream characteristic of the DOS
system is preserved.

The more complex part of the problem is to resolve the shareability issues
between VMS and DOS applications. The PATHWORKS server is implemented to
provide the necessary conversion between VMS and DOS file organization on
stream files. The file server views a file as stream if it can read and
write the file without regard to any record boundaries. This includes any
files with file organization as sequential and record format as stream,
stream_cr, stream_lf, and undefined, as well as fixed. If a sequential file
has fixed record format, it must conform to record size and attributes as
follows: even with no record attribute; 512 with no block_span; and power
of 2 with no block_span. Thus, an RMS overhead in reading and writing these

files is avoided.

4 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 PATHWORKS for VMS File Server

Any file that does not meet the criteria of the stream category is said
to be nonstream. The PATHWORKS server provides read-only access to any VMS
nonstream file. This is achieved by using a VAX C run-time library call
that provides stream file semantics and a conversion algorithm to properly
map any carriage return and line feed information. The file server cannot
support writing to these files because the SMB protocol does not preserve
record boundary information. Thus, the protocol makes it impossible for the
file server to guarantee data integrity when updating a nonstream file.

Byte Range Locking

The MS-NET architecture allows for concurrent access to server-based files
by multiple clients. PC applications acquire this functionality through
the MS-DOS byte range locking calls. These calls allow PC applications
to lock and unlock ranges of bytes in a file and to detect conflicts.
Conflicts occur when part or all of a range specified to be locked has
been locked from a previous call. In contrast, the approach taken by RMS
provides locking on a record basis. RMS uses the VMS distributed lock
manager to implement this functionality. Unfortunately, the lock manager
is not well suited to implementing byte range locks because the byte range
is represented in a form that allows the lock manager to arbitrate access.
Therefore, the file server implements its own lock database and arbitrates
access to shared files. Internally, the server process maintains a list
of locks for each file the server has open and arbitrates access based on
these lock structures. Files opened by the file server cannot be shared
with other VMS processes because the file server has an exclusive mode lock
on each file it has open through the VMS lock manager. The exclusive mode
lock guarantees protection from other VMS processes.

Open Mode Mapping

The DOS file system defines open access modes to allow applications to
synchronize shared access to a file. The open modes are deny_none, deny_
read, deny_write, deny_read_write, and compatibility. Each provides a
different level of file sharing capability. Although these modes do not
map directly to the VMS file system, no mapping is needed to handle the
differences.

The PATHWORKS server opens a file that is being accessed by a client with
exclusive access on the VMS system. It assumes the responsibility to
arbitrate shared access among multiple clients. The server supports DOS
open access modes by implementing the shared access resolution algorithm
described in the SMB protocol specification.

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 5

 PATHWORKS for VMS File Server

5 Pathworks Transport Layer Interface

The PATHWORKS for VMS product supports multiple transports through a
common transport layer interface. These include the local area system
transport (LAST), the transmission control protocol/internet protocol
(TCP/IP), and the DECnet transport protocol over Ethernet and token ring
networks. This well-defined, uniform mechanism dynamically adds support
for network transports and protocols. By conforming to this specification,
transports can be added to a server platform without upgrading or changing
the existing file server.

The performance goals of the file server had an impact on the development
of the transport layer interface. The file server utilizes an optimized
transport layer interface that reduces buffer copies and eliminates some of
the standard VMS I/O paths. This optimized interface is used with the LAST
transport and is described in detail in "The Development of an Optimized
PATHWORKS Transport Interface" paper in this issue.[2]

6 Performance Considerations

Achieving an acceptable level of performance from a nondedicated file
server layered on a general-purpose operating system proved to be a
challenging task. One of the performance goals for the file server was that
it perform tasks within 10 to 20 percent of the speed of a dedicated PC
file server running on a similarly sized CPU performing the same tasks.
This goal was achieved by employing a variety of caches, algorithms,
and heuristics. Many of these heuristics were based on the analysis of
the SMB messages passed between the server and the client for typical PC
applications. As discussed in this section, the response time of the server
is improved if the memory contains the information necessary to satisfy a
request when it arrives.

Data Caching

An obvious approach to implementing the read and write functions in the
file server is to issue these operations to the FILES-11 file system, wait
for their completion, and then send a response to the client. This method
is simple and persistent, but does not perform well due to the bottleneck
formed at the FILES-11 interface and disk. The file server implements a
software write-behind data cache to reduce this bottleneck and to eliminate
waiting for disk writes to complete before returning a response to the
client. Caching is a technique used to decrease access time to information
by using a faster intermediate medium to store the most commonly accessed
pieces of information. The caching algorithm implemented by the server is
a logical block cache. The cache is a region of memory that is segmented
into fixed-sized buffers. Each file opened by the server has a dynamic set
of buffers that increase and decrease based on a least recently used (LRU)

algorithm.

6 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 PATHWORKS for VMS File Server

Effects on Client Read Requests. Although it is an optimal environment
for servicing read requests, reserving data in memory to satisfy all read
requests is not practical. A number of mechanisms were implemented to
approach the ideal. The data cache retains recently accessed data in memory
with the expectation that it will be referenced again soon. This is based
on the concept of locality of reference, both spatial and temporal. Once
the server receives a read request, it determines if the buffers associated
with the read request are in the cache by using a hashing algorithm for
the lookup function. If the data to satisfy the read request is in memory,
it is immediately returned to the client, and the file system access is
eliminated. If some of the data needed to satisfy the request is not in
the cache, then reads are started on each of the cache buffers needed to
satisfy the request. Once all of the data is read into cache memory, a
response is formed and returned to the client.

Effects on Client Write Requests. When a client write request is received
by the server, three processes are performed. The cache buffers needed
for the specified write range are located, the client data is copied to
the cache buffers, and a response is sent to the client. The data copied
to the cache is written to the disk at a later time. This write-behind
scheme allows write requests to be serviced quickly because the response
is returned to the client before the write to disk completes. By not
synchronizing on-disk write completions before returning a response, the
turnaround time of client write requests is greatly reduced. The cache
is also optimized when a client write request is received and a disk
read operation is in progress for the range. In this case, the data being
written to the cache is copied into an intermediate buffer and merged with
the data from disk after the read operation completes. These intermediate
buffers are known as ghost buffers, since they are not visible from the
buffer hash table.

Writing Data to Disk. Since the file server acknowledges write requests
before performing the write operation, a mechanism is needed to write the
cache buffers to disk and ensure data integrity. The file server implements
a permanent thread, the flush thread, dedicated to this task. The flush
thread starts disk write operations on buffers that contain modified data.
Flushing data to disk occurs (1) periodically, based on a user-configurable
interval; (2) when a file is closed; (3) when the ratio of dirty to free
cache buffers reaches a user-configurable threshold; and (4) when cache
buffers are not available to support the current request.

On the VMS system, RMS also employs a write-behind algorithm similar to
the one used by the file server. RMS is not used by the file server for
disk reads and disk writes for performance reasons. The crossing of the VMS
architectural boundary that occurs during RMS calls adds an unacceptable
amount of processing time to the read and write paths. The file server uses
the VMS queued I/O (QIO)/extended QIO processor (XQP) interface, which is

below the RMS layer, to read and write data to disk.

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 7

 PATHWORKS for VMS File Server

Disk Space Allocation

Sufficient disk space must be available for any write operation that is
performed as a background operation. To allow sufficient space, any disk
allocation must be completed when the write request is received. This
restriction slows down write operations which, in turn, results in file
expansion. Performance testing in this area shows that such expansion
operations can reduce the server's response time in the overall operating
environment. To alleviate this problem, the PATHWORKS server preallocates a
fixed amount of disk space, often much greater than required, to complete
the current write request, in anticipation of further file expansion. This
mechanism greatly reduces the system overhead incurred in disk allocation;
thus it improves the overall response time to write operations.

Read Ahead

Another mechanism used by the file server to improve the turnaround time
of read requests is read ahead. As with data caching, the goal is to
increase the probability that data referenced in the near future will
be in the cache. Read ahead is the process of prefetching previously
unreferenced data from the disk into the cache. Data is prefetched into
cache memory under several conditions. When a file is opened, the first two
cache buffers of the data are read from the disk into the cache. Data is
also prefetched when the server detects that the file is being accessed
sequentially. The SMB protocol also supports read ahead. The protocol
provides a field in the read request that specifies the amount of data
that the client intends to read in the future. This advisory field is used
by the server to initiate prefetches.

Directory Search-ahead Cache

A DOS directory operation can translate to multiple exchanges of request
and response operations between the server and client. This behavior
is inherent to the SMB protocol definition. The file server initiates
a search-ahead thread when the first request is received. While the PC
is processing the first response, the search-ahead thread accumulates
directory information in a circular buffer. Thus, this information is
available in memory for subsequent requests.

Open-file Cache

Operations, such as create, open, and close, impact performance in the VMS
system. Benchmark tests show that these operations become blocking factors
for a fast performance server. This problem is compounded by the inherent
behavior of many PC applications because they often use the result of an
open operation as a deterministic tool on file accessibility. Frequently,
files are opened and closed and reopened in consecutive requests. To

minimize the overhead incurred for these operations, the PATHWORKS server
implements a cache to store opened file information. This open-file cache
maintains the file header information after the file has been closed by
the user for a short duration. If a user requests to open a file that is

8 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 PATHWORKS for VMS File Server

already cached, no request to VMS FILES-11 system is required. This greatly
reduces the response time of the server on the second open request.

Furthermore, many DOS database applications use index files to synchronize
data access. These files are frequently accessed by many DOS users when
working in an networked office environment. Open-file caching is beneficial
to this environment because it incurs a minimal amount of open requests to
the VMS file system.

Byte Range Locking Back-off Algorithm

The file server implements an algorithm to improve overall performance of
the server and network when PC applications are sharing files and using
byte range locking to arbitrate access. The analysis of many networked
PC database applications revealed that a client typically entered a tight
retry loop when it detected a lock conflict. This spinning produces an
excessive amount of lock-related network traffic, especially for very
fast clients. The server also has to spend a significant amount of time
processing these numerous lock requests. The server attempts to regulate
this lock traffic and reduce its lock processing time by deferring the
return of the response when a lock conflict is detected. If a request to
lock a range conflicts with a previous lock, the server makes repeated
attempts to access the range using a pseudorandom exponential back-off
algorithm to determine the retry interval. If the lock conflict is not
resolved after a user-configurable time period, the server returns a
response indicating a lock conflict. By deferring this response to the
client, the server exercises flow control over clients spinning on locked
regions of the file. The implementation of the pseudorandom exponential
back-off algorithm prevents the server from using an excessive amount of
CPU time to determine if the locked byte range has been unlocked.

7 Security

The VMS operating system offers a well-defined security architecture, but
DOS has no comparable security scheme. Since the PATHWORKS file server
is implemented as a privileged process, it is necessary to control file
access on the VMS host system from a DOS client. There is no one-to-one
correspondence between a DOS user and a VMS user. That is, in the PATHWORKS
environment, each network client, much like a terminal in this respect, can
be multiple VMS users. The problem is to ensure maximum shareability among
PC clients and maintain the desired level of VMS security.

The PATHWORKS file server implements two types of securities: share and
user. It makes use of the PCFS$SERVICE_DATABASE to control access to a
share area; and the VMS user authorization file (UAF) database to control
access to directories and files based on a VMS user account. A share,
referred to as file service, is a VMS directory that can be accessed by

PATHWORKS clients. PATHWORKS software defines three types of file services:
system/application, common, and personal. Access to file services is
based on VMS user account information. A privileged system manager must
explicitly grant user access to system/application and common services.

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 9

 PATHWORKS for VMS File Server

The system manager must also specify the types of access: read, write, or
create. This information is stored in the PCFS$SERVICE_DATABASE. Access to
personal service is implicit with the existence of a user account.

To provide maximum shareability among PC clients, PATHWORKS software
includes a default user account. When accessing a file service that has
been granted to the default account, each PC assumes the identity of the
default account. Thus the access, though it might be issued by different PC
users, is viewed as the same user. This mechanism provides a "share level"
of security.

A more restrictive environment is achieved by providing access to a share
area based on individual user account. When a PC client establishes access
to a service, it presents a user account and its corresponding password.
This information is authenticated based on information returned by the
sys$getuai system service call. The PATHWORKS server then verifies that
this user has been granted access to the service.

Access to a file service does not necessarily imply access to any
individual files. In order to preserve the desired level of VMS security,
PATHWORKS honors access control entries. The server ensures access to a
share area as defined in the database by mapping the access types to two
identifiers: pcfs$read and pcfs$update. These identifiers are added to
the root directory of a share area, and to any files that are created,
when appropriate. As the server impersonates the user, the appropriate
identifier is associated when access privilege to files and directory is
checked. This security implementation is not applicable when servicing a
personal area. Access to files stored in a personal area is based on RMS
protections mask.

To ease system management tasks, PATHWORKS software implements "group"
support. A group is a collection of users. A PATHWORKS group has no
dependency on user group identification code. When a share is granted to a
group, each member of the group gains access. Note that authentication is
still performed based on an individual user account.

Since a DOS client can gain access to the VMS environment, it is imperative
that the file server support the VMS system's break-in evasion mechanism.
The server honors the login-related system parameters. These parameters
are read at the file server start-up, and the values are in effect for
the duration of the server process. The server tallies any failed or
unsuccessful login attempts. When the file server receives a connection
(login) request to service, the file server extracts the related counter
information from the UAF and adds it to its internal counter to determine
whether evasive action is to take place. When a break-in is detected, the
server takes the appropriate evasive action and signals the condition in
the server log file.

10 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 PATHWORKS for VMS File Server

8 Printing Support

The server process also implements the printing functionality specified in
the SMB protocol. The file server implements the print-related commands by
using $SNDJBC and $GETQUI system services to communicate with the VMS job
controller. Each print service available to clients has a VMS print queue
associated with it.

The VMS system has a much richer printing environment than the one provided
to the PC clients through the SMB protocol. The PATHWORKS server provides
VMS printing features to the clients by extending the SMB protocol to
accommodate PATHWORKS needs. These protocol extensions are described in
the section Digital Protocol Extensions.

9 File Sharing Among Server Processes

Each node on a VAXcluster system can be a host for the PATHWORKS server
process. One of the more challenging problems in supporting VAXcluster
systems is the synchronization of file access by multiple server processes.
As stated earlier, the PATHWORKS file server requires exclusive access to
files that are opened by PCs in order to support byte range locking in DOS.
Furthermore, in a cluster, each server process needs the ability to provide
identical access to the same resources.

PATHWORKS software implements its own lock management algorithm to resolve
file access conflicts in a VAXcluster system. Although multiple server
processes are allowed in the environment, only one process can handle the
requests to a file that is accessed by PC clients. By using the VMS lock
manager, the server process that services the first open request acquires
an exclusive mode lock on the file. It thus becomes the master of the file
and is responsible for synchronizing access requests to the file. When a
server process is requested to service a file that has another PATHWORKS
server as its master, it makes a network connection to the master process
and forwards the requests. This process serves as the routing agent. It
communicates both requests and responses between the master server process
and the PC client. The master releases ownership when no outstanding open
file handles are on the file. File mastering is established on a per file
basis.

The rerouting mechanism uses the DECnet transport because its existence on
the remote server host is guaranteed in a cluster environment. To minimize
the number of required DECnet sessions, the routing agent funnels all
forwarding SMBs through an existing session. The forwarding packets include
information that the master process can use to differentiate among the
clients' access requests.

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 11

 PATHWORKS for VMS File Server

10 Pathworks Server Configuration

The multithreaded PATHWORKS file server can be considered a small operating
system in which each PC is a process (or a thread). In addition to the
basic resource requirement that the server be activated, the server
requires a set of process resources to support each client thread. These
resources can be mapped to VMS process parameters which, in turn, translate
into system parameters.

The amount of VMS system resources which the file server consumes is
a function of the number of clients and the workload generated by the
individual PC. Mapping the PC resource requirement to the appropriate
VMS process and system parameters proves to be a complex problem. Since
the PC workload profile is unknown at the time of server initialization,
the amount of required system resources for the server process can only be
estimated.

PATHWORKS system managers include users with little VMS system management
experience. The level of VMS system expertise required to configure (or set
up) a PATHWORKS server is minimized by the addition of a "configurator."
This part of the management functionality is implemented to generate
information on required system and process resources when the desired
configuration is supplied. During the server start-up phase, the
configurator checks for availability of necessary resources and provides
appropriate run-time parameters for the launching of the server process.

11 Management Interface

To provide integration between different file systems, the file server
utilizes PATHWORKS specific databases (such as the service database),
standard VMS databases (such as the UAF and DECnet databases), and VMS
security mechanisms. These entities must work in harmony and be consistent
with each other to provide the desired integration. The PCSA_MANAGER
utility was designed to manage this environment. It allows users to perform
all management tasks related to PATHWORKS software through one utility from
a menu-driven user interface or a command line interface. The PCSA_MANAGER
utility allows system administrators to manage the following objects:
users, services, print queues, logical user groups, the event logger, and
the server process. The file server uses interfaces supported by VMS to
manipulate VMS specific databases, private interfaces to access PATHWORKS
specific databases, and SMB protocol extensions to interact with a server
process.

Digital Protocol Extensions

Management of a running server requires a method to send and receive
well-defined messages between the server and other processes. The PCSA_

MANAGER utility sends a management request to the server; the server
processes it, and sends an appropriate response back to the PCSA_MANAGER.
The communication channel used for server management is a DECnet logical
link. The PCSA_MANAGER issues a connection request to the DECnet object

12 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 PATHWORKS for VMS File Server

associated with the file server process. The file server receives this
request and creates a virtual circuit with a corresponding thread to
process requests for this management session. This is similar to a client
session.

Since the SMB protocol does not provide commands sufficient to manage a
PATHWORKS server, a Digital proprietary protocol was developed to provide
this functionality. This protocol is merely an extension of the SMB core
protocol; that is, the messages developed for server management have valid
SMB headers with command codes that are meaningful only to a PATHWORKS
server. This implementation allows remote management of the file server.
To manage a server, a management utility only has to establish a virtual
circuit and exchange these extended SMBs. Protocol extensions are also used
to integrate the VMS print system with PATHWORKS clients, along with other
PATHWORKS specific utilities.

Event Logging

The PATHWORKS server includes an event logging mechanism to provide an
error and event reporting facility to assist system management. Events
are categorized based on server operations, including errors, protocols,
security, management, and file-related functions (open/close, read/write).
The server uses an event code to determine whether a given event is to
be recorded. A Digital extended SMB command toggles these event codes
dynamically. The event messages are logged to the file server log file.
The overhead is minimized by caching the event messages in a data buffer,
which is periodically written out to the log file. A thread is created
at server start-up to handle the log file update function. The scheduling
of this thread is based on a time interval, with a default value of 60
seconds.

12 Summary

The PATHWORKS for VMS file server integrates the DOS, OS/2, and VMS
operating system environments on a network. The server architecture
achieves transparent integration of PCs connected on an open network over
multiple transports. Data caching, algorithms, and heuristics were used to
increase performance. The PATHWORKS for VMS file server provides PC users
with access to the VMS system's resources and security environment.

13 Acknowledgments

We thank the people, past and present, who contributed to the design
and development of the PATHWORKS for VMS file server. We specifically
acknowledge Robert Praetorius for his contribution in the design and
implementation of the cache component, Phil Wells for his design and
implementation of the network interface and transport support, and Jon

Campbell for his design and implementation of the network interface. We
also acknowledge Frank Caccavale for his work on performance analysis, Alan

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 13

 PATHWORKS for VMS File Server

Abrahams for his direction as architect, and Mark Olson for his leadership
of the PATHWORKS for VMS project.

14 References

1. X/Open Developer's Specification-Protocols for X/Open PC Interworking:
 SMB (Reading, U.K.: X/Open Company Limited, Document No. XO/DEV/91/010,
 1991).

2. P. J. Wells, "The Development of an Optimized PATHWORKS Transport
 Interface," Digital Technical Journal, vol. 4, no. 1 (Winter 1992, this
 issue):xx-xx.

15 Author Biographies

Edward W. Bresnahan Senior software engineer Edward Bresnahan has been
developing the PATHWORKS for VMS software since joining Digital's PCSG
Server Engineering Group in 1988. He is currently responsible for the
design and development of a high-performance data cache to be used in
future PATHWORKS server products. Prior to this, he was a co-op student at
General Electric Company and at Charles Stark Draper Laboratory. Ed holds
a B.S.C.S. (1988, honors) from Northeastern University and is pursuing an
M.S.C.S. part-time.

Siu Yin Cheng Since joining Digital in 1987, Siu Yin Cheng has worked
on server software in the Personal Computing Systems Group. As a senior
software engineer, she is responsible for the design and development of
the server configuration utility for future PATHWORKS products. Siu Yin
designed and developed the server collector process to extract performance
data from the file server; she also worked on server development. Prior
to this, she led the system testing of PATHWORKS server V2.0-2.2. Siu Yin
received a B.S.C.S. (1987, honors) from Brown University.

16 Trademarks

The following are trademarks of Digital Equipment Corporation: DECnet,
Digital, PATHWORKS, VAX, VAX C, VAXcluster, and VMS.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation.

OS/2 is a registered trademark of International Business Machines
Corporation.

14 Digital Technical Journal Vol. 4 No. 1, Winter 1992
===
Copyright 1992 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

