

 1 Abstract

 With the recent introduction of the ACCESS.bus product, Digital
 has affirmed its commitment to open systems and thus to facil-
 itating better solutions for interactive computing. This open
 desktop bus provides a simple, uniform way to link a desktop
 computer to as many as 14 low-speed I/O devices such as a key-
 board, mouse, tablet, or three-dimensional tracker. ACCESS.bus
 features a 100-kilobit-per-second maximum data rate, hardware
 arbitration, dynamic reconfiguration, a mature capabilities
 grammar to support generic device drivers, and off-the-shelf,
 low-cost I²C microcontroller technology. [The BUS paper begins
 here.]

 As the cost of personal interactive computing decreases, the
 range of applications and the need for specialized I/O devices
 is growing dramatically. Traditional personal computers were
 designed to accept only a small number of standard devices;
 adding devices beyond those originally envisioned usually re-
 quires specialized hardware or software. This custom interfacing
 is expensive for both vendors and users and thus limits the
 availability of new devices.

 ACCESS.bus provides a simple, uniform way to link a desktop com-
 puter to a number of low-speed I/O devices such as a keyboard,
 a mouse, a tablet, or a three-dimensional (3-D) tracker. De-
 signed from the beginning as an open desktop bus, ACCESS.bus
 facilitates cooperative solutions using equipment from different
 vendors. This paper describes the ACCESS.bus design and gives
 some insight into how the idea was adopted at Digital.

 Digital Technical Journal Vol. 3 No. 4 Fall 1991 1

 ACCESS.bus, an Open Desktop Bus

 2 Design Goal, Process, and Advantages

 The design goal for the desktop bus follows from our experi-
 ence within the Video, Image and Print Systems (VIPS) Input
 Device Group with trying to support new devices on Digital ter-
 minals and workstations. While various new devices have been
 successfully prototyped over the years, the need for nonstandard
 hardware and custom software drivers was always an expensive,
 time-consuming obstacle. Even after successful prototyping,
 these devices could not be readily adapted to our standard sys-
 tems, limiting their use to custom applications. In designing
 the desktop bus, our goal was to make it as easy as possible
 to interface previously unavailable I/O devices to our systems
 in a way that was both practical and marketable. This section
 explains the benefits of using a desktop bus, describes the pro-
 cess we went through to convert to a new bus architecture, and
 summarizes the key advantages of the chosen design.

 The basic desktop bus concept is illustrated in Figure 1. The
 bus allows multiple, low-speed I/O devices to be interconnected
 and thus interfaced through a single host port. Desktop bus
 devices such as a keyboard or a tablet, which are not hand-
 held, provide two connectors and allow another device to be
 daisychained. A hand-held device such as a mouse can be placed
 at the end of the daisychain, or a connector expansion box
 can be attached to accommodate additional devices that do not
 provide two connectors.

 The desktop bus has the following benefits:

 Enables greater flexibility and variety of use
 Reduces the cost of connecting multiple devices
 Expedites bringing new technology to market
 Helps leverage third-party devices

 2 Digital Technical Journal Vol. 3 No. 4 Fall 1991

 ACCESS.bus, an Open Desktop Bus

 The first benefit, greater flexibility, can be simply achieved
 by allowing additional devices and more modular solutions. We
 further extended this benefit by designing a way for devices
 to be added at run time without disrupting system operation.
 Configuration should be automatic; connecting standard devices
 should not require powering down or rebooting the system before
 a new device can be used. The desktop bus supports multiple like
 devices without switches or jumpers.

 The second benefit, reduced cost, was crucial to having the
 bus accepted as a solution across a wide range of products from
 low-end video terminals to high-end workstations. We recognized
 that contemporary electrical techniques could eliminate the need
 for level translation circuits, -12 volt (V) power supplies,
 and perhaps some of the protective components used with RS-
 232 interfacing. Although many devices would now require two
 connectors, system cost would decrease because we would need to
 supply only as many connectors as the number of devices to be
 attached, or possibly one more.

 The third benefit, expediting the time to market for new tech-
 nology, allows us to better satisfy changing requirements. Key
 to this benefit is having the means to connect new devices with-
 out changing the system hardware or software. Based on our ex-
 perience with input devices, we developed the concept of device
 capability reporting and generic device protocols. Standard
 devices like keyboards and locators, e.g., mice, tablets, and
 trackballs, all work in similar ways. For this class of device,
 we define a simple device protocol and a way to parameterize and
 report device unique characteristics. A single generic driver
 can adapt itself to work with a class of similar devices so that
 no custom software is required for basic operation of standard
 devices.

 Leveraging third-party devices, the fourth benefit, is aimed
 at satisfying diverse customer requirements. Because the use of
 computers continues to proliferate, the range of applications
 far exceeds that which any one vendor can master. By making the

 Digital Technical Journal Vol. 3 No. 4 Fall 1991 3

 ACCESS.bus, an Open Desktop Bus

 bus truly open, we encourage third parties to add value to our
 systems.

 The benefits of a desktop bus are significant. But converting to
 a new architecture, especially one that is not backward compati-
 ble, is expensive in terms of the time and effort required. How
 does a large corporation build agreement to make such an invest-
 ment decision? The desktop bus project started as a grass roots
 engineering effort and gradually built momentum. The process
 was one of dialogue to attract partners. Initially, three groups
 with slightly different objectives worked together to develop
 the bus. The visibility of separate groups jointly supporting
 the bus concept was essential to transform the idea into action.
 People are more willing to accept an idea that others around
 them have already adopted.

 The three groups that initiated the desktop bus project were our
 VIPS Input Device Group in Westford, MA, mentioned previously;
 the Workstation Systems Engineering (WSE) Group, located in Palo
 Alto, CA; and the Video Advanced Development (A/D) Group in Al-
 buquerque, NM. Our Input Device Group was looking for ways to
 simplify the process of prototyping specialized input devices
 and of getting related software support for our video termi-
 nals and workstations. WSE was developing a low-cost, personal
 workstation and needed a flexible way to support multiple input
 devices without greatly increasing the cost of the base work-
 station. The Albuquerque A/D Group had been experimenting with
 next generation I/O devices, i.e., force-feedback joystick, 3-D
 tracker, and real-time audio and video, and was interested in
 having these technologies adopted by other Digital groups. This
 A/D Group had used I²C technology successfully in one of its
 previous video projects.

 In January of 1990, engineers from each group realized they were
 working on similar problems and began to collaborate. The WSE
 Group was to build the desktop bus host interface and software
 drivers into their workstation; the VIPS Group was to help de-
 fine the device protocols and supply desktop bus keyboards and

 4 Digital Technical Journal Vol. 3 No. 4 Fall 1991

 ACCESS.bus, an Open Desktop Bus

 mice; and the Albuquerque A/D Group was to support bus develop-
 ment and prototype additional devices. Within four months, VIPS
 had defined the basic protocols and could demonstrate a working
 I²C keyboard and mouse. These early prototypes helped persuade
 WSE to support the project and, in turn, helped reinforce the
 importance of the project to the VIPS Group.

 We began presenting the desktop bus idea to interested groups
 within Digital and received many useful suggestions including

 o Use the same keycodes as on the LK201 keyboard to eliminate
 the need to rewrite keyboard lookup tables.

 o Store the country keyboard variation inside the keyboard so
 users will not need to enter it manually.

 o Keep the devices simple, without modes.

 In addition, third-party input device vendors made the following
 suggestions.

 o Use a modular connector that is easy to plug and unplug
 correctly.

 o Provide enough power for several additional devices.

 o Allow vendors to supply their own device drivers; tuning
 their own device drivers is part of the value added by the
 vendor.

 The bus idea was elegant and generally well received. Most of
 the reservations centered around the likely impact on existing
 system components, the current problems, and whether conversion
 to the bus was feasible. Because we recognized that other groups
 were facing tight development schedules, we did not pressure
 these groups to support our desktop bus work. We presented the
 desktop bus as a possible solution to interface problems, made
 our design information available, and worked to incorporate sug-
 gestions. But as the development work progressed, more partners
 supported our effort.

 Digital Technical Journal Vol. 3 No. 4 Fall 1991 5

 ACCESS.bus, an Open Desktop Bus

 Once we decided to use a desktop bus, we looked at available
 designs, including the Apple DeskTop Bus, the Musical Instrument
 Digital Interface (MIDI), and serial buses offered by other
 semiconductor vendors, and evaluated these alternatives with
 respect to our design goal. Key advantages of the design chosen,
 i.e., the ACCESS.bus, are

 o Off-the-shelf interintegrated circuit (I²C) microcontroller
 technology with 100-kilobit-per-second (kb/s) maximum data
 rate. This technology is low-cost, yet fast enough for so-
 phisticated input devices like a 3-D tracker.

 o Built-in hardware arbitration, which simplifies the software
 and allows reliable communication without inventing a new
 protocol.

 o Dynamic reconfiguration. The hardware and software allow bus
 devices to be "hot-plugged" and used immediately, without
 restarting the system. The devices are recognized automati-
 cally and assigned unique addresses. This advantage results
 in a plug-and-play user interface.

 o A mature capabilities grammar to support generic device
 drivers. An extensible free-form grammar allows devices to
 describe their characteristics to a generic driver. Most
 common devices can work with standard drivers.

 Bus or network interconnection has become widely accepted as
 a means of providing flexible open solutions. To appreciate
 ACCESS.bus, it is helpful to position its performance capa-
 bilities with respect to those of other network interconnect
 technologies, as shown in Table 1.

 __

 Table_1:__Network_Interconnects_________________________________

 Bus Type Order of Magnitude Performance (kilobits per
 second)

 6 Digital Technical Journal Vol. 3 No. 4 Fall 1991

 ACCESS.bus, an Open Desktop Bus

 __

 Table_1_(Cont.):__Network_Interconnects_________________________

 Apple DeskTop 10-100
 Bus,
 ACCESS.bus

 LocalTalk 100-1,000

 Ethernet 1,000-10,000

 FDDI______________10,000-100,000________________________________

 At first glance, the 100-kb/s speed of the ACCESS.bus may seem
 adequate for large desktop devices like printers and modems.
 But these devices can transmit long data streams independent of
 any user activity and, if not restricted, could compromise the
 interactive performance of the bus. Thus, ACCESS.bus is intended
 for low-speed activities that people perform with their hands
 and is fast enough to handle multiple interactive devices like a
 keyboard, mouse, or 3-D tracker.

 3 Hardware Description

 Before discussing the ACCESS.bus design, we present a descrip-
 tion of the Philips I²C technology upon which the design is
 based. Details of the specific ACCESS.bus implementation follow.

 Integrate Circuit Fundamentals

 ACCESS.bus extends the Philips I²C bus to operate off-board
 and, thus, connect desktop devices. The I²C is a two-wire serial
 clock and serial data open-collector bus. An open-collector
 design means that the clock and data lines are normally in a
 high-impedance floating state and are pulled up to a logical
 high state.

 Digital Technical Journal Vol. 3 No. 4 Fall 1991 7

 ACCESS.bus, an Open Desktop Bus

 A device that wants to send a message waits for any message
 frame in progress to complete, then asserts a START signal
 to become bus master and begins to generate data and clock
 signals. The bus clock is synchronized among all devices by
 its wired AND connection. Each device, whether transmitting or
 receiving, stretches the low period of the clock until ready for
 the next bit to be transferred. When the last device is ready,
 the bus clock is allowed to go high, generating a rising edge
 on the serial clock. At this time, all active devices sense the
 state of the bus data line. For a receiving device, the state
 represents the received data bit. For a transmitting device, the
 state determines whether the device has successfully asserted
 its data on the bus. A transmitter that is sending a logical
 high state and detects that the data line is being held low by
 another sender, recognizes that it has lost arbitration and must
 try again later. When a "collision" or arbitration occurs, no
 data is lost, one message is transmitted and received, and the
 remaining messages must be sent again.

 I²C data messages are transmitted as 8-bit bytes, with each byte
 being acknowledged by a ninth ACKNOWLEDGE bit from the receiver.
 I²C technology also defines unique START and STOP signals to
 delimit message frames. The first byte of any message frame is
 always the destination address.

 ACCESS.bus Physical Implementation

 Details of the physical implementation of ACCESS.bus are as
 follows:

 o Basic electrical configuration. ACCESS.bus uses four-pin,
 shielded, modular-type connectors that feature positive
 orientation and locking tabs. Data and power for the bus
 are transmitted over low-capacitance, four-wire, shielded
 cable. The four conductors are used for ground, serial data,
 serial clock, and +12 V.

 8 Digital Technical Journal Vol. 3 No. 4 Fall 1991

 ACCESS.bus, an Open Desktop Bus

 o Available power. The maximum available power for all devices
 is 12 V at 500 milliamperes (mA). ACCESS.bus devices may
 supply their own power from a separate source, if needed. A
 power-up reset circuit must still be provided to reset the
 device when bus power is applied.

 o Cable length. The maximum cable length for the entire bus is
 8 meters. The limiting factor is a maximum capacitance not to
 exceed 700 picofarads (pF).

 o Number of devices. The maximum number of ACCESS.bus devices
 allowed on the bus is 14. Limiting factors are the device
 addressing range and the power distribution (a total of 500
 mA for all devices).

 o Hardware interfaces. ACCESS.bus hardware interfaces are im-
 plemented using standard I²C microcontrollers developed by
 the Signetics Company or under license from Philips Corpo-
 ration. (Signetics Company is a division of North American
 Philips Corporation.)

 4 ACCESS.bus PROTOCOL

 Every device on the bus is a microcontroller with an I²C in-
 terface and behaves as either a master transmitter or a slave
 receiver, exclusively, as defined by the I²C Bus Specification.

 Message Format

 A message transmits information between a device and the com-
 puter or between the computer and one or more devices. There is
 one exception: a device may attempt to reset other devices as-
 signed to the same address by sending a Reset message to itself.

 ACCESS.bus messages have the following format:

 Digital Technical Journal Vol. 3 No. 4 Fall 1991 9

 ACCESS.bus, an Open Desktop Bus

 Byte Bit Number
 Number [1 2 3 4 5 6 7 8]
 1 [destaddr |0]
 Destination address

 2 [srcaddr |0]
 Source address

 3 [P| length]
 Protocol flag, length
 (the number of data
 bytes from 0 to 127)

 4 through
 (length + 3) [body]
 Consists of 0 to 127
 data bytes

 length + 4 [checksum]

 Initially, devices respond to a default power-up address. Dur-
 ing the configuration process, the computer assigns a unique
 address to every device on the bus. Messages are either device
 data stream (P=0) or control/status (P=1), as indicated by the
 protocol flag. The minimum length of a message is 4 bytes; the
 maximum length is 131 bytes (127 data bytes and 4 bytes for
 overhead). The message checksum is computed as the logical XOR
 of all previous bytes, including the message address.

 Standard Messages

 The ACCESS.bus protocol defines the seven standard interface
 messages summarized in Table 2. Parameters defined within the
 body of the message are listed in parentheses.

 10 Digital Technical Journal Vol. 3 No. 4 Fall 1991

 ACCESS.bus, an Open Desktop Bus

 __

 Table_2:__Standard_ACCESS.bus_Protocol_Messages_________________

 Computer-to-device Purpose
 Messages

 Reset () Force device to power-up state and default
 I²C address.

 Identification Ask device for its "identification
 Request () string."

 Assign Address Tell device with matching "identification
 (identification string" to change its address to "new
 string, new ad- address."
 dress)

 Capabilities Ask device to send the fragment of its
 Request (offset) capabilities information that starts at
 "offset."

 Device-to-computer
 Messages

 Attention (status) Inform computer that a device has finished
 its power-up/reset test and needs to be
 configured; "status" is the test result.

 Identification Reply to Identification Request with
 Reply (identifica- device's unique "identification string."
 tion string)

 Digital Technical Journal Vol. 3 No. 4 Fall 1991 11

 ACCESS.bus, an Open Desktop Bus

 __

 Table_2_(Cont.):__Standard_ACCESS.bus_Protocol_Messages_________

 Capabilities Reply Reply to Capabilities Request with "data
 (offset, data fragment," a fragment of the device's
 fragment) capabilities string; the computer uses
 ______________________"offset"_to_reassemble_fragments._________

 Identification

 Since the ACCESS.bus is a bus-topology network, unique identi-
 fication strings are used to distinguish devices. These strings
 are structured as follows:

 protocol revision:
 1 byte (e.g., "A")
 module revision:
 7 bytes (e.g., "X1.3 ")
 vendor name:
 8 bytes (e.g., "DEC ")
 module name:
 8 bytes (e.g., "LK501 ")
 device number:
 32-bit signed integer

 The module revision, vendor name, and module name strings are
 left-justified ASCII character strings padded with spaces. The
 device number string is a 32-bit two's complement signed integer
 and may be either a random number (if negative) or a unique
 serial number (if positive).

 5 Configuration Process

 The configuration process is used to detect what devices are
 present on the bus, assign each device a unique address, and
 connect devices to the appropriate software driver. Configura-
 tion normally occurs at system start-up, or at any time when the
 computer detects the addition or removal of a device.

 12 Digital Technical Journal Vol. 3 No. 4 Fall 1991

 ACCESS.bus, an Open Desktop Bus

 Power-up/Reset Phase

 When reset or powered up, a device always reverts to the default
 address and sends an Attention message to alert the computer
 to its presence. At system start-up or reinitialization, the
 computer sends a Reset message to all I²C addresses in the
 ACCESS.bus device address range (14 messages) to ensure that
 all devices on the bus respond at the power-up default address.

 Identification Phase

 To begin address assignment, the computer sends an Identifica-
 tion message at the device default address. Every device at this
 address must then respond with an Identification Reply message.
 As each device sends its message, the I²C arbitration mechanism
 automatically separates the messages based on the identification
 strings. The computer can then assign an address to each device
 by including the matching identification string in the Assign
 Address message. When a device receives this message and finds a
 complete match with the identification string, it moves its de-
 vice address to the new assigned value. As soon as a device has
 a unique address, it is allowed to send data to the computer.

 The I²C physical bus protocol allows multiple devices on the
 bus at the same time if those devices are transmitting exactly
 the same message. In the rare event that two like devices report
 the same random number or are mistakenly assigned to the same
 address, each interactive device transmits a Reset message to
 its assigned address prior to sending its first data message
 after being assigned a new address. The self-addressed Reset
 message forces other devices at the same address back to the
 power-up default address, as if they had just been hot-plugged.
 The message guarantees that each device has a unique address,
 but not until the device is actually used. The pseudo-random
 number (or serial number, if available) distinguishes devices at
 identification time before they are used, allowing the host to
 inventory which devices are present.

 Digital Technical Journal Vol. 3 No. 4 Fall 1991 13

 ACCESS.bus, an Open Desktop Bus

 Capabilities Phase

 Device capabilities is the set of information that describes
 the functional characteristics of an ACCESS.bus peripheral.
 The purpose of capabilities information is to allow software
 to recognize and use the features of bus devices without prior
 knowledge of their particular implementation. By having locator
 devices report their resolution, for example, generic software
 can be written to support a range of device resolutions. Capa-
 bilities information provides a level of device independence and
 modularity.

 The structure of capabilities information is designed to be
 simple and compact for efficiency, but also extensible to sup-
 port new devices without requiring changes to existing software
 or peripherals. These objectives are supported by making the
 structure hierarchical and representing capabilities information
 in a form that applications (and humans) can use directly. The
 capabilities information is an ASCII string constructed from a
 simple, readable grammar. The grammar allows text strings to be
 formed into lists, nested lists, and lists with tagged elements.
 The capabilities string for a locator might read as follows:

 (prot(locator)
 type(mouse)
 buttons(1(L) 2(R) 3(M))
 dim(2) rel res(200 inch)
 range(-127 127)
 d0(dname(X))
 d1(dname(Y))
)

 After assigning a unique address to a device, the computer re-
 trieves the device's capabilities string as a series of frag-
 ments using the Capabilities Request and Capabilities Reply
 messages. The computer then parses the capabilities string to
 choose the appropriate application driver for the device. The
 parsed string is also made available to application programs
 using the device.

 14 Digital Technical Journal Vol. 3 No. 4 Fall 1991

 ACCESS.bus, an Open Desktop Bus

 Normal Operation

 During normal operation, the computer periodically requests
 inactive devices to identify themselves. If a device is found
 to be missing, or a new device appears by sending an Attention
 message at the default address, the computer sends an Iden-
 tification Request message to each device address previously
 recorded as in use (up to 14 messages) to confirm which devices
 are still present. The computer also sends a Reset message to
 each device address previously recorded as not in use. The com-
 puter then begins the address assignment process by sending an
 Identification message to the default address and assigning each
 device that responds to an unused device address.

 6 Generic Device Concepts

 ACCESS.bus uses the concept of generic device drivers to support
 familiar I/O devices using only a few drivers. Generic speci-
 fications for keyboards, locators, and text devices have been
 developed.

 Keyboards

 The keyboard device protocol attempts to define the simplest
 set of functions from which a Digital LK201 or a common per-
 sonal computer keyboard user interface can be built. A generic
 keyboard consists of an array of key stations assigned numbers
 between 8 and 255. When any key station transitions between open
 and closed, the entire list of key stations currently closed or
 depressed is transmitted to the host. This reporting scheme is
 functionally complete; the host can detect every key transition,
 and the scheme provides information about the full state of the
 keyboard on each report. No special resynchronization reports
 are required.

 In addition to reporting key stations, the generic keyboard de-
 vice can support simple feedback mechanisms such as keyclicks,
 bells, and light-emitting diodes. These mechanisms are con-
 trolled explicitly from the host so that minimal keyboard state

 Digital Technical Journal Vol. 3 No. 4 Fall 1991 15

 ACCESS.bus, an Open Desktop Bus

 modeling is required. The capabilities information is used to
 identify the keyboard mapping table and the feedback mechanisms
 available. The keyboard mapping table can also be stored in the
 keyboard itself as part of the capabilities string.

 Locators

 The locator device protocol is designed to accommodate a range
 of basic locator devices such as a mouse or tablet. More complex
 devices can be modeled as a combination of basic devices or can
 provide their own device driver, thus minimizing the burden on
 the protocol.

 A generic locator consists of one or more dimensions described
 by numeric values and, optionally, a small number of key
 switches. The standard driver requires the locator device to
 identify the type of data it will report from a small list of
 options and adjusts to handle this data type. These options are

 o Number of dimensions, e.g., two, for a mouse or a tablet

 o Dimension type: absolute, i.e., referenced to some fixed
 origin, like a tablet; or relative, i.e., changed since last
 report, like a mouse

 o Resolution in divisions per unit, e.g., counts per inch or
 counts per revolution

 o Dynamic range of values that can be reported, i.e., the
 minimum and maximum values

 o Number of key switches, from 0 to 15

 The assignment of scalar-value dimensions returned from one or
 more devices to the user interface functions is left to the
 application. However, to accommodate most conventions, the
 scalar dimensions and the key switches can be labeled in the
 capabilities string.

 16 Digital Technical Journal Vol. 3 No. 4 Fall 1991

 ACCESS.bus, an Open Desktop Bus

 Text Devices

 The text device protocol is intended to provide a simple way to
 transmit character data to and from character devices such as
 a bar code reader or a small character display. A generic text
 device transmits a stream of 8-bit bytes from a character set.
 Simple control messages are defined to support flow control and
 to select communication parameters that might be used to inter-
 face with a modem. The capabilities string contains information
 that identifies the specific character set and communication
 parameters used.

 7 Summary

 The ACCESS.bus network interconnect offers the possibility of
 a standardized, low-speed, plug-and-play serial communications
 channel that can untangle peripheral interfacing and open the
 way to new applications. As the advantages of this open desktop
 bus design become well known, we expect wider adoption of this
 product. The ACCESS.bus is currently implemented on Digital's
 Personal DECstation 5000 workstation, with implementations
 underway for the next generation of RISC workstations and video
 terminals.

 8 Acknowledgements

 Many people contributed to the design and development of AC-
 CESS.bus. I would especially like to acknowledge Tom Stockebrand
 and Tom Furlong for their vision and early support; Chris Cued,
 Mark Shepard, and Ernie Souliere for their contributions to the
 ACCESS.bus electrical design and protocols; and Robert Clemens
 for the excellent demonstration hardware and firmware develop-
 ment support.

 Digital Technical Journal Vol. 3 No. 4 Fall 1991 17

 ACCESS.bus, an Open Desktop Bus

 9 General References

 D. Lieberman, "Desktop Bus is Born Free," Electronic Engineering
 Times (September 2, 1991): 16.

 ACCESS.bus Developer's Kit (Palo Alto, CA: Digital Equipment
 Corporation, Workstation Systems Engineering TRI/ADD Program,
 1991).

 Signetics I²C Bus Specification (Sunnyvale, CA: Signetics Com-
 pany, a Division of North American Philips Corporation, February
 1987).

 Peter A. Sichel As a principal software engineer in the Video
 Terminals Architecture Group, Peter Sichel led the development
 of the ACCESS.bus architecture and device protocol specifi-
 cations, in addition to writing the initial ACCESS.bus device
 firmware. He worked on the VT420 video terminal and the DECterm
 DECwindows terminal emulator, and helps maintain Digital stan-
 dards for video terminals and keyboards. Peter joined Digital in
 1981 after receiving B.S. and M.S. degrees in computer engineer-
 ing from the University of Michigan.

 DECstation, DECwindows, Digital, and VT420 are trademarks of
 Digital Equipment Corporation.

 Apple DeskTop Bus is a trademark and LocalTalk is a registered
 trademark of Apple Computer, Inc.

 18 Digital Technical Journal Vol. 3 No. 4 Fall 1991
===
Copyright 1991 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital

Equipment Corporation's authorship is permitted. All rights reserved.
===

