

 X Window Terminals

 Björn Engberg and Thomas Porcher

 1 Abstract

 X window terminals occupy a niche between X window workstations
 and graphics terminals. The purpose of terminals in general is
 to provide low-cost user access to host computers or smaller
 dedicated systems. X window terminals further the advance in
 graphics terminals and provide new and interesting ways to
 utilize host systems. Ethernet cable provides for graphics
 performance previously not seen in terminals. The X Window
 System developed by MIT allows multiple applications to be
 displayed and controlled from the user's workstation. Now,
 with X window terminals, the same powerful user interface is
 available on host and other non-workstation computers. [The
 XTERMINALS paper starts here.]

 In mid 1987, the Video, Image, and Print Systems (VIPS) Group
 began the design of Digital's first X window terminal, the
 VT1000 terminal and its code upgrade, the VT1200 terminal.
 Our goal was to design and implement an X window terminal that
 would allow the use of windowing capabilities on large computer
 systems. In 1989, Digital developed the VT1300 X terminal and
 in 1991 the VXT 2000 X terminal. The designs of these X window
 terminals are all quite different. Our design approach changed
 as the underlying technology changed.

 This paper first compares host-system computing with applica-
 tions run on workstations. It summarizes the significance of the
 X Window System developed by MIT and discusses the client-server
 model. The paper then presents the need for X window terminals
 and follows their development stages. It compares and contrasts
 Digital's different design strategies for the VT1000, VT1200,
 and VT1300 X terminals. The paper concludes with a summary of
 the recently announced VXT 2000 X terminal.

 Digital Technical Journal Vol. 3 No. 4 Fall 1991 1

 X Window Terminals

 2 Background

 Before the development of the X Window System, there was very
 little overlap in functionality between workstations and other
 kinds of computers. Workstations had stunning and fast graph-
 ics, and many powerful applications were available on them.
 Those applications were not available to users of basic 80-
 by-24 character-cell text display terminals connected to a
 host system located in a clean room. Graphics terminals, of
 course, allowed the use of ReGIS or another protocol for math
 and business graphics, but their performance was far below the
 expectations of a workstation user. Few people have the patience
 to run, for example, a computer-aided design application on a
 VT240 terminal, assuming such a version of the application is
 available.

 Although a workstation offers fast graphics capabilities, its
 applications sometimes need more CPU power or more disk space
 to do calculations in a timely fashion. Graphics applications
 written for workstations could not run on faster host computers,
 which did not provide a display. Nor was there a standard way
 to get data from the host to display on a workstation. Each
 application required a unique solution to this problem.

 Since the introduction of the new client-server model of comput-
 ing and modern networks, many tasks can be divided into subtasks
 that can run on the most suitable processor. The X Window Sys-
 tem uses the client-server approach, as shown in Figure 1. The
 application is viewed as an X client, and a workstation or a
 terminal can run an X server that controls the display. The X
 server also controls input from the keyboard and mouse or other
 pointing devices.

 An X client and an X server use an X wire to communicate, as
 shown in Figure 2. The X wire is simply a two-way error-free
 byte stream, which can be implemented in many different ways.
 The X Window System architecture does not stipulate how the X
 wire should be implemented, but several de facto standards have
 emerged. Manufacturers have designed X wires usually based on

 2 Digital Technical Journal Vol. 3 No. 4 Fall 1991

 X Window Terminals

 the data transport mechanisms that were available and conve-
 nient when the X Window System was implemented. The X wires use
 transmission control protocol/internet protocol (TCP/IP), DEC-
 net, Local Area Transport (LAT), and other protocols, and even
 shared memory buffers as a transport to avoid protocol over-
 head. A single implementation often supports several transport
 mechanisms.

 The X server typically executes on a processor with display
 hardware. The X client can execute on almost any processor. It
 may execute on the same CPU as the X server, or it may execute
 on a host, another workstation, or a compute server. The X
 server can be connected to several X clients simultaneously,
 with any combination of local (running on the same CPU) or
 remote (running on another CPU) X clients. The X server treats
 local and remote clients equally.

 3 Workstation Environment

 Figure 3 compares a traditional non-X windowing workstation with
 an X windowing workstation. In both workstations the application
 must use a graphics library to communicate with the display
 hardware and software.

 In an X windowing client environment, the library of routines
 is called Xlib. An application designer can choose from a wide
 variety of toolkits, which are essentially a level of additional
 library routines between the application and Xlib. The use of
 a toolkit can significantly reduce the amount of work an ap-
 plication programmer has to do. The application software, Xlib,
 optional toolkit, and other libraries compose the X client, as
 shown in Figure 4.

 With few exceptions, the X server comes with the display hard-
 ware and input devices (keyboard and pointer) indicated in
 Figure 5.

 Digital Technical Journal Vol. 3 No. 4 Fall 1991 3

 X Window Terminals

 The X Window System with its flexibility neatly solves the prob-
 lems of CPU power and disk space versus display availability.
 Applications written for X can execute on a wide variety of com-
 puters, and the results can be displayed on any of a multitude
 of devices, even on a workstation that would not have the ca-
 pacity to run the application locally. Figure 6 shows how the X
 Window System fits into a network environment.

 The X Window System has already generated many useful appli-
 cations, and its widespread popularity ensures that many more
 applications will be made available in the future.

 4 Need for X Terminals

 In a study to determine how workstations are used, the VIPS
 Group found that many users did not take advantage of the full
 potential of their workstations. In a software development or
 document editing environment, the users often set up their work-
 stations as terminals. They usually created a few terminal emu-
 lation windows and used SET HOST or RLOGIN commands to connect
 to a host system on which they stored their working environment
 and files. Only two features of a workstation were frequently
 used. Users kept several terminal emulators on their screens
 at the same time, and set the terminal emulator windows to be
 larger than 80 by 24 characters. Only rarely did the average
 workstation user take advantage of the full power of graphics
 applications.

 The results of our study indicated a need for a cost-effective
 alternative to a workstation that would provide the features
 desired by a large number of users. We envisioned a new kind of
 terminal, one that would allow people to have multiple windows
 of arbitrary size, to connect with multiple hosts, and, since
 the X architecture allowed it, to be able to use the same kind
 of graphics as a workstation.

 4 Digital Technical Journal Vol. 3 No. 4 Fall 1991

 X Window Terminals

 From an X architecture standpoint, X terminals and X worksta-
 tions are quite similar. They can in fact use the same hardware.
 For example, Digital's VT1300 terminal runs on the same hardware
 as the VAXstation 3100 workstation. X terminal software can also
 be made to run well on hardware platforms that are not suitable
 for workstations.

 The main architectural difference between X terminal and X
 workstation software is that X terminals are closed systems
 that do not support local user applications. Although this
 may seem to be an unnecessary restriction, it does allow X
 terminals to be made for less money. An open system that allows
 any user application to run locally must have an established
 CPU architecture, a supported operating system, such as the VMS,
 UNIX, or ULTRIX system, and, subsequently, sufficient memory and
 /or disk space to support such an environment. A closed system,
 on the other hand, can be designed with simpler hardware, a
 smaller operating system, less memory, and thus lower cost. The
 absence of the ability to run user applications locally does
 not impact usability significantly since the user can run any
 desired application on another CPU. Digital's VT1000 and VT1200
 X terminals were designed based on this approach.

 5 X Terminal Environment

 X terminals often have local applications, but they must be
 built into the terminal by the designers. The VT1200 terminal
 has a video terminal emulator (VTE), a window manager, and a
 terminal manager as the local applications. The VTE allows the
 VT1200 terminal to make American National Standards Institute
 (ANSI) character-cell connections to a host, via the Ethernet
 or the serial lines. This capability makes the VT1200 terminal
 useful in an environment that does not have X window support.

 Although any X server can run windows software, it does not
 provide a user interface. To manipulate the windows, the user
 needs a window manager. The window manager creates window frames
 that allow the user to invoke functions to move windows, resize

 Digital Technical Journal Vol. 3 No. 4 Fall 1991 5

 X Window Terminals

 windows, change stacking order, and use icons. This capability
 also makes the VT1200 terminal useful when no host is available
 to run a remote window manager. A terminal with a local window
 manager generates less network traffic, and window management is
 not slowed by host congestion or network round-trip delays. The
 VT1200 X terminal allows use of a remote window manager, if the
 user prefers a different style of window management.

 The local terminal manager provides the user interface to initi-
 ate connections to host systems. It is also responsible for the
 terminal customization interface.

 All clients communicate with the X server using standard X wire
 commands only. Any window manager, remote or local, can manage
 all the windows on the screen, regardless of whether the clients
 are remote or local.

 6 Development of X Windor Terminals

 The development process of the VT1000 and VT1200 X terminals has
 important lessons to teach us. The knowledge we gained in 1987
 has helped us develop future generations of X terminals.

 When we designed the VT1000 X terminal and its code upgrade,
 the VT1200, we held many discussions within the group and with
 people from other groups. We planned many iterations before we
 arrived at the final architecture. It was by no means the only
 way to design an X terminal, and in 1989 we tried a different
 approach with the design of the VT1300 terminal. We knew that
 the best decision at a particular time might be very different
 from the best decision one year later, since the technical
 and marketing environment is constantly changing. New tools,
 standards, and practices enter the field while others become
 obsolete. Newer products must always have new features to meet
 changing technology requirements.

 6 Digital Technical Journal Vol. 3 No. 4 Fall 1991

 X Window Terminals

 Hardware Platform

 Our first step was to discuss the hardware platform and select
 the kind of CPU to use, memory size, I/O considerations, type of
 display, etc. We studied many different CPUs to determine which
 one would provide the most capabilities for the lowest cost.
 A VAX chip was rejected because, at the time, it was far too
 expensive for the required price range of the VT1000 terminal.
 The Motorola 68000 series CPUs are quite powerful, but we had
 to consider other factors such as availability of software and
 hardware tools, cross compilers and linkers that could run on
 VMS, and hardware debugging facilities of sufficient power.
 We finally selected Texas Instruments' TMS34010 microprocessor
 with video support and several built-in graphics instructions
 that made it a cost-effective solution. It also came with VMS
 development tools, a C compiler, an assembler and linker, a
 single-step, hardware trace buffer with disassembler, and a
 powerful in-circuit emulator that made it possible to control
 execution in detail, inspect registers and memory, and set
 break points and hardware watch points (for example, break when
 writing value x into location y).

 We further discussed the kind of I/O to use. A sample imple-
 mentation of the MIT X server on a VAXstation 2000 workstation
 and a primitive serial line protocol showed, as expected, that
 serial lines were clearly insufficient to carry the X wire pro-
 tocol without some compression of the wire protocol itself.
 We had to build Digital's first X terminal with an Ethernet
 interface.

 We needed to determine if this hardware platform could give us
 sufficient performance. We made several performance estimates,
 based on what little we knew then about the X server and other
 software components. We went through each step in as much detail
 as we could (before anything was built). We calculated how
 many instructions were necessary to perform each task in the
 chain of receiving a command and displaying it on the screen.
 By knowing the speed of the CPU, we could estimate performance
 in characters or vectors per second. Our estimates showed that

 Digital Technical Journal Vol. 3 No. 4 Fall 1991 7

 X Window Terminals

 the VT1000 X terminal would not be exceedingly fast, but the
 performance would most probably be sufficient, definitely faster
 than a VAXstation 2000 in most cases.

 In retrospect, actual performance of the VT1000 terminal and the
 later software upgrade, the VT1200, was close to our estimates,
 but it took several passes of code optimization to achieve such
 performance.

 We also discussed alternate hardware designs for performance
 improvements. One solution proposed two CPUs, the TMS34010
 microprocessor to handle the display and a 68000 microprocessor
 to handle I/O and other tasks. Unfortunately, we found no easy
 way to balance the workload between the two CPUs. We estimated
 that the different software components would have the following
 relative CPU demands:

 Interrupts, 5 percent
 Communications, 10 percent
 Operating system, 5 percent
 X server (minus display routines), 60 percent
 Display routines, 20 percent

 To equalize the load between the CPUs, we would have had to
 split the X server in two, a solution that was not feasible.
 Any other split of tasks would cause one CPU to spend most of
 its time waiting for the other, and the overall performance
 gain would be minimal. Communication between multiple CPUs is
 complex and is very difficult to debug. Therefore, we decided
 that two CPUs were not worth the trouble or the cost. The best
 way to double performance is to install a single CPU that is
 twice as fast. At that time, the TMS34020 was already being
 mentioned as a follow-up microprocessor. Since its software
 would be compatible with the TMS34010, we decided to keep it in
 mind for possible use in a future terminal.

 8 Digital Technical Journal Vol. 3 No. 4 Fall 1991

 X Window Terminals

 Code Selection

 The use of read-only memory (ROM)-based code versus downloaded
 code has been debated for some time. ROM-based code starts up
 faster and incurs less network traffic at startup time (espe-
 cially on a site with many X terminals), but is not flexible
 when software is upgraded. On the other hand, downloaded code
 can be easily distributed. An entire site can be upgraded with
 one or a few installations by a system manager as opposed to
 changing ROMs in a large number of terminals. (With the VT1200
 X terminal, customers can change ROM boards.) From the point
 of view of terminal business, it made sense to use ROM-based
 code in 1987. We reasoned that not all sites would have Eth-
 ernet, but with ROMs the X terminal would still be useful as a
 multiwindow terminal emulator. We realized that such concerns
 would change with time, and on the whole, downloaded code would
 become the better approach. The only exceptions would be in the
 home or small office markets where a boot host or an Ethernet
 might not be available. Subsequent X terminals are being made in
 both downloaded (for example, in the VT1300 terminal) and ROM
 versions.

 Operating System Selection

 Next we considered which operating system to use. We looked at
 other vendors' operating systems, but found they were either too
 complex and big or inadequate. One of our coworkers had written
 a very compact operating system for a VAX system used on another
 project. We used it in our prototype and then adapted it for the
 TMS34010 processor. We implemented additional functions to run
 the rest of the software with minimum changes.

 There are many advantages to working with "your own" operat-
 ing system. It is easy to make changes, to work around tricky
 problems, and to make special enhancements. But operating sys-
 tem code is difficult to debug. Timing is very critical, and
 throughout the project, we found strange bugs in code that had
 initially appeared to be all right to everyone involved. We
 found bugs under heavy load conditions after a rare sequence of

 Digital Technical Journal Vol. 3 No. 4 Fall 1991 9

 X Window Terminals

 events uncovered little timing windows and race conditions that
 had not been handled properly. Even with in-circuit emulators,
 such bugs could take weeks to track down.

 In the VT1300 we decided to use the VAXELN operating system. We
 wanted to avoid the possibility of time wasted on finding and
 patching holes in the design of a new operating system.

 Local Terminal Manager

 The VT1000 X terminal is self-starting at power-up, but without
 a host system, it needs a local user interface. We decided that
 this interface should resemble a workstation session manager and
 thus called it the local terminal manager. Although it covers
 a different set of functions, we wanted the local terminal
 manager to implement a similar set of objects and operations
 (the "look and feel" or style) of a workstation session manager.
 The style of the DECwindows session manager was chosen to make
 it easier for a user to switch between an X terminal and a
 DECwindows workstation. We wrote a subset toolkit for all the
 "customize" screens and ensured that the VTE could use the same
 subset toolkit for its "customize" screens. As DECwindows has
 progressed, subsequent X terminals have adapted the new user
 interface preferences, in this case Motif.

 Local Terminal Emulator

 We considered a local terminal emulator to be an important
 component. We knew that X-based terminal emulators could run on
 the host, but in 1987 hosts with X windowing support were rare.
 Since we were in the terminal group, a terminal that could not
 manipulate ordinary text by itself was considered unsellable.
 We wanted the ability to access both X and non-X hosts and we
 wanted to support multiple text windows. Therefore we defined
 the terminal emulator as an X client so that text windows could
 coexist with X client windows. This feature has proved to be
 exceptionally popular. A large number of users use nothing but
 video terminal emulator windows. They are not interested in

 10 Digital Technical Journal Vol. 3 No. 4 Fall 1991

 X Window Terminals

 X windowing graphics, but do want multiple and/or larger text
 windows on a large screen.

 Local Window Manager

 We debated whether or not to implement a local window manager.
 The DECwindows window manager was under development and was con-
 stantly changing. The DECwindows window manager contained far
 too many VMS dependencies to be ported easily. Also the X ter-
 minal did not have enough memory to run the DECwindows toolkit
 locally. We could have ported other window managers, but they
 lacked the essential characteristics of the DECwindows window
 manager. For a while we considered letting the local clients
 have a primitive way to manage their own windows, until a full-
 featured window manager could be started on a host. Again, this
 alternative lacked the DECwindows system's qualities. We even-
 tually decided to write a window manager based only on Xlib and
 our subset toolkit calls. It has the essential characteristics
 of the DECwindows product. Also, since the DECwindows window
 manager of necessity would keep changing, we wrote the local
 window manager in such a way that it could relinquish control to
 a remote window manager. This solution gave us the most flexi-
 bility for this hardware platform. The recently announced VXT
 2000 X terminal has been designed with virtual memory to accom-
 modate a well-established unmodified window manager, the Motif
 Window Manager.

 X Server

 We also needed to choose an X server. We could have based our
 code on the distribution tape from MIT, but at the time the X
 Window System was not yet a mature product. Every implementor
 had to spend considerable time stabilizing the implementation
 enough to yield a product and improve performance. Since the
 VMS DECwindows Group had been writing code for the server, we
 decided to use DECwindows code. Once the porting effort started,
 we found that most of the performance had been improved by VAX
 MACRO code. Consequently, we had to re-engineer all the modules
 or adapt new ones from the MIT tape. As we kept porting and

 Digital Technical Journal Vol. 3 No. 4 Fall 1991 11

 X Window Terminals

 enhancing performance, our code changed more and more until
 it became extremely difficult to track bug fixes made by the
 DECwindows Group. The MIT patches were also nearly impossible to
 use because of code changes and because our starting code was
 one step removed from the tape.

 Today the MIT X server is a mature product; patches and bug
 fixes are readily available from MIT and the X community. In our
 current X terminals, the high degree of portability of the MIT
 X server allows us to keep most of the MIT X server source code
 almost unchanged so patches are easily applied.

 Communications Protocol

 Many communications protocols were available, but our choice
 was dictated by market pressures rather than technical reasons.
 The market demanded TCP/IP. DECnet would have been acceptable,
 but it was running out of available addresses, at least within
 Digital. DECnet address space supports only 64,000 nodes and
 requires manual address and name assignments. After waiting
 weeks to get addresses for a few workstations, we realized that
 adding thousands of X terminals into Digital's internal network
 would not be possible. DECnet Phase V software has solved this
 problem.

 Next we looked at the LAT protocol used by Digital terminal
 servers and found that it had several advantages. First, the
 VMS operating system supports the LAT protocol. LAT uses unique
 48-bit Ethernet addresses to identify each node, which allows a
 large node address space. LAT also does not require any system
 management to add another terminal. A user can connect a termi-
 nal to a power source, and the terminal automatically becomes
 part of the network. Our performance evaluations found that the
 LAT interface on the host could be written to incur less host
 overhead than DECnet, which is important when many X terminals
 are connected to hosts.

 12 Digital Technical Journal Vol. 3 No. 4 Fall 1991

 X Window Terminals

 Changes were needed in the VMS LAT driver to accommodate X wire
 and font service connections. The VMS Software Engineering Group
 worked with us to ensure that we would have those changes on
 schedule and in the appropriate VMS releases. As a result, we
 chose the LAT protocol for the VMS community and TCP/IP for
 users of ULTRIX and UNIX systems.

 Font File System

 Storing fonts and changing font file formats were major prob-
 lems. Since the VT1000 X terminal did not have a local file
 system, some fonts had to be stored in ROM to allow the VT1000
 terminal to function in standalone mode. A quick review of the
 available DECwindows fonts showed that not all of them fit in
 the ROM space allowed for the terminal. Furthermore, customer-
 designed fonts or new font releases could not be accommodated.
 The solution was to be able to read fonts from a host system.
 This approach provided a font service on VMS, and enabled font
 files to be read over the Internet. We designed a process called
 the font daemon to run on the VMS operating system. This process
 could deliver font data on request to one or several VT1000 ter-
 minals. The VMS font daemon uses the LAT protocol to deliver the
 fonts and protects somewhat against font file format changes. In
 many ways, the design of the font daemon makes it a precursor
 to a general font server, and it is very similar to the X Font
 Server being delivered by MIT in the latest release of the X
 Windows System.

 To use the font service, the terminal user must specify a font
 path in the VT1200 local terminal manager. Specifying a host
 name is sufficient to access the default font path, although
 users with their own font files can optionally search other
 directories. At startup, the VT1200 terminal makes a font con-
 nection to the host's font service and delivers the font path
 specification to the font service. The font service sends font
 names and other basic font information about all the fonts in
 the selected path. When the VT1200 X server needs a font, the
 VT1200 first searches the ROM-based fonts; if it is not there, a
 request to read the font is sent to the font daemon. The daemon

 Digital Technical Journal Vol. 3 No. 4 Fall 1991 13

 X Window Terminals

 sends the required information to the VT1200, and the X server
 can display characters from that font. Since memory is limited,
 the VT1200 has font caching, a mechanism to discard fonts no
 longer used or to discard the least used fonts. Our current X
 terminals increase the robustness of the font mechanism; for
 example, they provide recovery should the font service or its
 host become unavailable.

 The special LAT code that we used on VMS systems for the font
 service was not available on UNIX and ULTRIX operating systems.
 Since internet protocol (IP) was available, we could use the
 trivial file transfer protocol (TFTP) to read a file from a host
 system, if the system manager set the proper protections. We
 chose TFTP for its ease of implementation and its wide avail-
 ability on UNIX and ULTRIX systems. The TFTP font path in a
 VT1200 terminal specifies a host IP address and a complete path
 to a file (usually named font.paths) that contains the complete
 path to all the font files that the VT1200 can use. The terminal
 can then access all those font files, again through TFTP, to
 obtain font names and other basic information about each font.
 When a client wishes to use a font, the proper font file can
 be read again, this time to load the complete font. Since this
 process is time-consuming, the font path pointing to the file
 has an alternate format in which the font name follows the com-
 plete path to each file. Using this alternate format, the VT1200
 terminal does not have to open and read the font file until a
 client actually intends to use it.

 7 Comparison of X Terminals

 The VT1200 and VT1300 X window terminals were built using dif-
 ferent approaches to solve the problems encountered during de-
 velopment. The X terminal is a new and flexible concept; there
 is no single "best" design. Table 1 compares the most impor-
 tant differences between the two terminals. We also include the
 specifics for the VXT 2000 X terminal.

 14 Digital Technical Journal Vol. 3 No. 4 Fall 1991

 X Window Terminals

 Digital Technical Journal Vol. 3 No. 4 Fall 1991 15

 X Window Terminals

 __

 Table_1:__Comparison_of_X_Window_Terminals______________________

 VT1200 VT1300 VXT 2000

 Monochrome only Color only Monochrome and
 color

 1 bit plane 4 or 8 bit planes 1 or 8 bit planes

 Code in ROM Code downloaded Code downloaded

 No virtual memory No virtual memory Virtual memory

 2 to 4MB RAM 8 to 32MB RAM 4 to 16MB RAM

 TMS34010 CPU VAX CPU VAX CPU

 Special operating VAXELN operating Special operating
 system system system

 Local clients: No local clients Local clients:
 Terminal manager Terminal manager
 Window manager Motif window
 Video terminal manager
 emulator DECterm terminal
 emulator

 Local customization Customized on host Local customiza-
 just as a worksta- tion
 tion Centralized cus-
 tomization

 Choice of host Automatic X window Choice of host(LAT
 (LAT only) login to boot host and TCP/IP using
 XDMCP)

 LAT protocol DECnet protocol LAT protocol

 TCP/IPgprotocolhnical JTCP/IP Vol.o3oNo. 4 FallC1991 protocol

 Special hardware Available on sev- Uses standard
 eral hardware
 workstation plat-
 _______________________forms____________________________________

 X Window Terminals

 The VT1200 is ROM-based; all its software is permanently resi-
 dent in the terminal. The VT1300 software is downloaded, so a
 host or bootserver on the same network must supply the terminal
 with a load image at power-up.

 Since downloaded terminals are dependent on the existence of
 at least one working host system, the user interface can be
 designed differently. While the VT1200 X terminal has a built-in
 user interface, the VT1300 does not need it. The VT1300 terminal
 automatically makes an X connection to a host at power-up, and
 the user is presented with the same DECwindows login box as on a
 workstation. The VT1300 has no local clients; all clients run on
 the host system.

 The VT1200 terminal uses the LAT protocol for its ease of use
 and minimal network management demands. The VT1300 terminal uses
 the DECnet software already implemented in the VAXELN operating
 system used internally. Both terminals support TCP/IP.

 8 VXT 2000 X Terminal

 One problem that has plagued all X terminals is limited memory
 space. Workstations usually have a virtual memory system, which
 provides large paging and swap areas on a disk, and applications
 and X servers can use more memory space than the hardware has.
 Until now X terminals have not had virtual memory systems. If
 too many applications made excessive demands, or if a client
 created large off-screen images (called "pixmaps" in the X Win-
 dow System) the terminals quickly used all memory space. If the
 X server implementation was correct, an error was reported and
 a client might try a less demanding approach. In other cases,
 the terminal or client might simply crash. One alternative was
 to install more memory in the X terminal, although this can be
 costly and offers no guarantees.

 Digital Technical Journal Vol. 3 No. 4 Fall 1991 17

 X Window Terminals

 In the next generation of Digital's X terminals, the VXT 2000,
 this problem has found a cost-effective solution. Based on the
 VAX architecture, the VXT 2000 terminal uses virtual memory and
 downloaded code. The Digital InfoServer, an Ethernet storage
 server, provides the load image, virtual memory paging space,
 fonts, and customization storage. The same InfoServer also
 solves another problem: now the X terminal has access to a file
 system. This allows more extensive customization, as well as
 centralized management of the customization of all X terminals
 on the network. Figure 8 shows the configuration for the VXT
 2000 X terminal.

 9 Conclusion

 X terminals are not intended to replace workstations. Nor will
 workstations replace host systems or completely displace X ter-
 minals in the foreseeable future. It is likely that host comput-
 ers will always be faster and have more memory and disk space
 than reasonably priced workstations of the same era. It is also
 likely that terminals can be built cheaper than workstations of
 reasonable performance for some time to come. As long as that is
 the case, there will be a market for X terminals and host sys-
 tems. Future X terminals will be faster, and have more built-in
 functionality, more local applications, X extensions, and most
 likely, additional hardware features. X terminals will be the
 networked terminals of the 1990s.

 10 Acknowledgements

 We wish to thank the members of the VT1200 development team
 who worked many long hours on this project. Thanks to everyone
 inside and outside the Video, Image and Print Systems Group who
 contributed helpful suggestions, constructive criticism, and
 important hours using and testing the products. Thanks to the
 LAT and VMS Software Engineering Groups for incorporating the
 changes needed for the VT1200 X terminal to be useful. Thanks to

 18 Digital Technical Journal Vol. 3 No. 4 Fall 1991

 X Window Terminals

 the VIPS Quality Group for ensuring that as few bugs as possible
 remained in the product when shipped.

 Björn Engberg As a principal software engineer in the Video,
 Image and Print Systems Group, Björn Engberg was the main ar-
 chitect and software project leader for the VT1000 and VT1200
 X window terminals. He joined Digital in 1978 and worked as
 a development engineer at CSS in Sweden, where he modified
 Digital's terminals for the European market. He relocated to
 the United States in 1982 to work on the VT240, the VT320, the
 LJ250, and several advanced development projects. Björn received
 an M.S.E.E. (honors) from the Royal Institute of Technology in
 Stockholm.

 Thomas C. Porcher Principal engineer Tom Porcher is a member of
 the Video, Image and Print Systems Group. He provided techni-
 cal leadership in the development of the VXT 2000 X terminal.
 Previously he was a technical leader for the VT240 terminal,
 VAX Session Support Utility, and the DECterm terminal emulator.
 Tom holds five patents for work on the VT240 terminal and on
 the multisession protocol used in the VT340 and VT400 series
 terminals. Tom received his B.S. in mathematics from Stevens
 Institute of Technology (1975). He is a member of the ACM.

 DECnet, DECwindows, Digital, LAT, ULTRIX, VAX, VAXELN, VMS,
 VT1000, VT1200, VT1300, and VXT 2000 are trademarks of Digital
 Equipment Corporation.

 UNIX is a registered trademark of UNIX System Laboratories, Inc.

 Digital Technical Journal Vol. 3 No. 4 Fall 1991 19
===
Copyright 1991 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital

Equipment Corporation's authorship is permitted. All rights reserved.
===

