DECdta - Digital's Distributed Transacti on Processing

Architecture

By Philip AL Bernstein, WIlliamT. Enberton, Vijay Treba

Abstract

Digital's Distributed
Transaction Processing
Architecture (DECdta)
descri bes the nodul es and

interfaces that are common
to Digital's transaction
processi ng (DECt p)
products. The architecture
al l ows easy distribution
of DECtp products. In
particular, it supports
client/server style

applications. Distributed
transacti on nmanagenent is
the main function that ties
DECdt a nodul es toget her

It ensures that application
programns, database systens,
and ot her resource managers
interoperate reliably in a
di stributed system

I nt roducti on

Transacti on processing
(TP) is the activity of
executing requests to
access shared resources,

typically databases. A
conmputer systemthat is
configured to execute TP

o Atomcity. Either al
of the transaction's
operations execute, or
the transacti on has no
effect at all

o Serializability. The set
of all operations that
execute on behal f of the
transacti on appears to
execute serially with
respect to the set of
operations executed by
every ot her transaction.

o Durability. The effects
of the transaction's
operations are resistant
to failures.

A transaction term nates
by executing the conmit

or abort operation.

Commit tells the system

to install the effect

of the transaction's

operations permanently.
Abort tells the systemto
undo the effects of the
transaction's operations.

For enhanced reliability
and availability, a
TP application uses

applications is called a TP
system

A transaction is an
execution of a set of
operations on shared
resources that has the
foll owi ng properties:

Digital Technica

transactions to execute
requests. That is, the

application receives a
request nessage (from

a di splay, conputer, or

ot her device), executes
one or nore transactions
to process the request,
and possibly sends a reply

Journal Vol. 3 No. 1 Wnter 1991

DECdta-Digital's Distributed Transacti on Processing Architecture

to the originator of the
request or to sone other
party specified by the
originator.

TP applications are
essential to the operation
of many industries, such as
finance, retail, health
care, transportation,
government, comruni cati ons,
and manuf acturi ng.

G ven the broad range of
applications of TP, Digita
offers a wide variety of
products with which to
build TP systens.

DECtp is an unbrella term
that refers to Digital's
TP products. The goa
of DECtp is to offer an
i ntegrated set of hardware
and software products that
supports the devel opnent,
execution, and managenent
of TP applications for
enterprises of all sizes.

DECt p systens include
sof tware conmponents t hat
are specialized for TP,
notably TP nonitors such as
the ACMs and DEC ntact TP
noni tors, and transaction
managers such as the DECdtm
transacti on manager. [1]
[2] DECtp systens al so
require the integration of
general - purpose hardware
products (processors,
st orage, communi cati ons,
and terninals) and software
products (operating
syst ens, database
systens, and communi cation

gateways). These products
are typically integrated as
shown in Figure 1.

2 Digital Technical Journal Vol. 3 No. 1 Wnter 1991

Architecture

DECdta-Digital's Distributed Transacti on Processing

Applications on DECtp
systenms can be designed
using a client/server
paradi gm This paradi gm

is especially useful

for separating the work

of preparing a request
fromthat of running
transacti ons. Request
preparati on can be done

by a front-end system

that is, one that is

close to the user, in

whi ch processor cycles are
i nexpensive and interactive
feedback is easy to obtain.
Transacti on execution

can be done by a | arger
back-end system that is,
one that nmnages | arge

dat abases and may be far
fromthe user. Back-end
systens may thensel ves be
di stri buted. Each back-end
system manages a portion

of the enterprise database
and executes applications,
usual |y ones that make
heavy use of the database
on that back end. DECtp
products are nodul arized to
al l ow easy distribution
across front ends and

back ends, which enabl es
themto support client
/server style applications.
DECt p systens thereby
sinmplify programing

and reconfiguration in a

di stributed system

Digital's Distributed
Transaction Processing
Architecture (DECdta)

P

and expl ai ns how DECdt a
conmponents are integrated
by distributed transaction
managenent .

Current versions of DECtp
products inpl enment nost,
but not all, nodul es and
interfaces in the DECdta
architecture. Gaps between
the architecture and
products will be filled
over tinme. DECtp products
that currently inplenent
DECdt a conponents are
referenced throughout the
paper .

Application Structure

By anal yzing TP
applications, we can see
where the need arises for
separat e DECdta conponents.
A typical TP application is
structured as foll ows:

Step 1. The client
application interacts
with a user (a person
or machine) to gather
input, e.g., using a
fornms manager.

Step 2: The client maps
the user's input into
a request, that is, a
nmessage that asks the
systemto perform some
wor k. The client sends
the request to a server
application to process
t he request.

A request nmay be direct
or queued. If direct,
the client expects a

defines the nodul ari z
and distribution stru

ation
cture

that is common to DECtp

products. Distributed
transacti on managenen

t is

the main function that ties

this structure togeth
Thi s paper descri bes
t he DECdta structure

Digita

er.

Techni ca

Jour na

server to process the
request right away.

I f queued, the client
deposits the request

in a queue fromwhich a
server can dequeue the
request |ater.

Vol. 3 No. 1 Wnter 1991

Step 3: A server

processes the request

by executing one or

nore transactions. Each

transacti on may

a. Access multiple
resources

b. Call prograns, sone
of which nmay be
renot e

c. Generate requests
to execute other
transacti ons

d. Interact with a user

e. Return a reply when
the transaction
finishes

Step 4: If the

transacti on produces
a reply, then the client
interacts with the user
to display that reply,
e.g., using a forns
manager .

Each of the above steps

i nvol ves the interaction

of two or nore progranms. |n

many cases, it is desirable
that these progranms be

di stributed. To distribute
them conveniently, it is

i mportant that the prograns
be in separate conponents.
For exanpl e, consider the
fol | owi ng:

0 The presentation
service that operates
the display and the
application that
controls which form
to display may be

DECdta-Digital's Distributed Transacti on Processing Architecture

One may want to off-

| oad presentation
services and rel ated
functions to front

ends, while allow ng
prograns on back ends to
control which forns are
di spl ayed to users. This
capability is usefu

in Steps 1, 3d, and 4
above to gather input
and di spl ay output.
To ensure that the
presentation service

and application can

be distributed, the
presentation service
shoul d correspond
to a separate DECdta
component .

The client application
that sends a request
and the server
application that
processes the request
may be distributed.
The applications may
comuni cate through a
network or a queue.

In Step 2, front-end
applications may want to
send requests directly
to back-end applications
or to place requests
in queues that are
managed on back ends.
Simlarly, in Step 3c,

a transaction, T, may
enqueue a request to
run anot her transaction,
where the queue resides
on a different system
than T. To maxim ze

the flexibility of

di stri buted. di stributing request

managenent, request
managenment shoul d
correspond to a separate
DECdt a conponent.

4 Digital Technical Journal Vol. 3 No. 1 Wnter 1991

Architecture

DECdta-Digital's Distributed Transacti on Processing

o Two transaction nmanagers
that want to run a
commit protocol may
be distributed.

For a transaction to

be distributed across

different systens, as in

Step 3b, the transaction

managenment services nust be

distributed. To ensure that
each transaction is atomc,
the transacti on nanagers on
these systenms nust contro
transacti on conmi t nent
usi ng a common conmit
protocol. To conplicate
matters, there is nore than
one wi dely used protoco

for transaction conmtnent.

To the extent possible,

a system shoul d al | ow

i nteroperation of these
protocol s.

To ensure that

transacti on nmanagers

can be distributed,

the transacti on nanager
shoul d be a conponent of
DECdt a. To ensure that

they can interoperate,
their transaction protocol
shoul d al so be i n DECdta.
To ensure that different
commit protocols can be
supported, the part of
transacti on nmanagenent that
defines the protocol for
interaction with renote
transacti on nanagers shoul d
be separated fromthe

part that coordinates
transacti on execution
across | ocal resources.

I nt eroperation of
transacti on managers and
resource managers, such
as dat abase systens, al so
af fects the nodul ari zati on
of DECdta conponents. A
transacti on may invol ve
di fferent types of
resources, as in Step 3a.
For exanple, it may update
data that is managed by
di fferent database systens.
To control transaction
conmitment, the transaction
manager nust interact
with different resource
managers, possibly supplied
by different vendors. This
requires that resource
managers be separate
conmponents of DECdta.

The DECdta Architecture

Havi ng seen where the
need for DECdta conponents
ari ses, we are now ready
to describe the DECdta
architecture as a whol e,

i ncludi ng the functions
of and interfaces to each
component .

Most DECdta interfaces are
public. Some of the public
interfaces are controlled
by official standards
bodi es and i ndustry
consortia; i.e., they are
"open" interfaces. Qthers
are controlled solely by
Digital. DECdta interfaces
and protocols will be
publ i shed and aligned with
i ndustry standards, as

In the DECdta architecture,
the fornmer is called a
communi cati on manager,

and the latter is called a
transacti on nanager.

Digital Technica

appropri ate.

DECdt a conponents are
abstract entities. They do
not necessarily map one-to-
one to hardware conponents,
sof tware conmponents (e.g.
progranms or products),
or execution environnents

Journal Vol. 3 No. 1 Wnter 1991

DECdta-Digital's Distributed Transacti on Processing Architecture

(e.g., a single-threaded DECdt a conponents are
process, a nultithreaded | ayered on services

process, or an operating that are provided by the
system service). Rather, underlying operating system
a DECdta conponent mmy be and distributed system

i mpl enmented as nultiple platform and are not

sof tware components, specific to TP, as shown
for exanple, as several in Figure 2.

processes. Alternatively,
several DECdta conponents
may be inplenmented as a

si ngl e software conponent.
For exanpl e, an operating
system or TP nonitor
typically offers the
facilities of nore than
one DECdta conponent.

The following are the
conmponent s of DECdta:

0o An application program
is any programt hat
uses services of DECdta
conmponents.

o A resource nmanager
manages resources that
support transaction
semantics.

o A transacti on nmanager
coordi nates transaction
termnation (i.e.,
comit and abort).

o A conmuni cati on manager
supports a transaction
communi cation protoco
bet ween TP systens.

0o A presentation manager
supports device-
i ndependent interactions
with a presentation
devi ce.

0 A request manager
facilitates the
submi ssi on of requests
to execute transactions.

6 Digital Technical Journal Vol. 3 No. 1 Wnter 1991

Architecture

DECdta-Digital's Distributed Transacti on Processing

Application Program

We use the term application
programto mean a program

t hat uses the services

provi ded by ot her DECdta
conponents. An application
program coul d be a
customer-witten program

a layered product, or a
DECdt a conponent .

In the DECdta architecture,
we di stinguish two specia
types of application
program request initiators
and transaction servers.

A request initiator is

a DECdta conponent that
prepares and submits a
request for the execution
of a transaction. To create
a request, the request
initiator usually interacts
with a presentation manager
that provides an interface
to a device, such as a
termnal, a workstation,

a digital private branch
exchange, or an autonmated
tell er machi ne.

A transaction server can
dermarcate a transacti on,
interact with one or nore
resource managers to access
recoverabl e resources on
behal f of the transaction,

i nvoke other transaction
servers, and respond

to calls fromrequest
initiators.

For a sinple request, a
transacti on server receives
t he request, processes

nmessages with the user,
usual |y through the request
initiator.

In principle, a request
initiator could al so
execute transactions
(not shown in Figure 2).
That is, the distinction
bet ween request initiators
and transaction servers
is for clarity only,

and does not restrict an
application from perfornmng
request initiation
functions in a transaction.
Architecturally, this
anounts to saying that
request initiation
functions can execute in

a transaction server.
Resour ce Manager

A resource nmanager
perforns operations on
shared resources. W are
especially interested
in recoverabl e resource
managers, those that obey
transaction semantics. In
particul ar, a recoverable
resource manager undoes
a transaction's updates
to the resources if the
transaction aborts. O her
recoverabl e resource
manager activities in
support of transactions
are described in the
next section. In the
rest of this paper, we
use "resource nmanager" to
mean "recoverabl e resource
manager . "

In a TP system the nopst

and optionally returns
a reply to the request

A conversationa
is like a sinple
except that while
processi ng the request,

the transaction server
exchanges one or

initiator.

conmon ki nd of resource
manager i s a database
system Sone presentation
managers and contuni cati on
managers may al so be
resource managers. A
resource manager may be

Journal Vol. 3 No. 1 Wnter 1991

Techni ca

written by a custonmer, a

third party, or Digital
Each resource mmnager type

of fers a resource-manager -

specific interface that

is used by application
prograns to access

and nodi fy recoverabl e
resources managed by

the resource manager.

A description of these
resource manager interfaces
is outside the scope

of DECdta. However,

many of these resource
manager interfaces have
architectures defined

by industry standards,
such as SQ (e.g., the

VAX Rdb/ VMS product),
CODASYL data mani pul ati on

| anguage (e.g., the VAX
DBMS product), and COBCL
file operations (e.g., RMS
in the VM5 system.

One type of resource
manager that plays a
special role in TP systens
i s a queue resource
manager. |t manages
recover abl e queues, which
are often used to store
requests. [3] It allows
application prograns to
pl ace el enents into queues
and retrieve them so that
application programs can
comuni cat e even though
t hey execute independently
and asynchronously. For
exanpl e, an application
program t hat sends
el ements can conmuni cate
with one that receives

DECdta-Digital's Distributed Transacti on Processing Architecture

A queue resource manager
i nterface supports such
operations as open-queue,
cl ose- queue, enqueue,
dequeue, and read-el ement.
The ACMsS and DEC nt act
TP monitors both have
gueue resource managers
as conponents.

Transacti on Manager

A transacti on manager
supports the transaction
abstraction. It is
responsi bl e for ensuring
the atomicity of each
transaction by telling
each resource manager

in a transaction when to
conmit. It uses a two-
phase commt protocol to
ensure that either al
resource nmanagers accessed
by a transaction conmit
the transaction or they
all abort the transaction.

[4] To support transaction
atomicity, a transaction
manager provi des the
foll owi ng functi ons:

o Transaction denmarcation
operations all ow
application prograns
or resource managers
to start and commit or
abort a transaction.
(Resource nanagers
sometines start a
transaction to execute
a resource operation
if the caller is not
executing a transaction.
The SQL standard
requires this.)

el enents even if the o Transaction execution

two application prograns operations all ow

are not operational resource nanagers and
si mul taneously. This communi cati on managers
communi cati on arrangenent to decl are thensel ves
i mproves availability and part of an existing
facilitates batch input of transaction

el ement s.

8 Digital Technical Journal Vol. 3 No. 1 Wnter 1991

Architecture

DECdta-Digital's Distributed Transacti on Processing

o Two-phase conmit
operations all ow
resource managers
and communi cation
managers to change a
transaction's state (to
"prepared," "commtted,"
or "aborted").

The serializability of

transactions is primrily
the responsibility of the
resource nmanagers. Usually,
a resource nmmnager ensures
serializability by setting
| ocks on resources accessed
by each transaction, and
by rel easing the | ocks
after the transaction
manager tells the resource
manager to conmt. (The
|atter activity mekes
serializability partly

the responsibility of

the transacti on nanager.)
If transactions become
deadl ocked, a resource
manager may detect

t he deadl ock and abort

one of the deadl ocked
transactions.

The durability of

transactions is a

responsi bility of
transacti on nmanagers

and resource nmmnagers.

The transacti on nanager

is responsible for the
durability of the conmt or
abort decision. A resource
manager i s responsible

for the durability of
operations of committed
transactions. Usually,

states while recovering
froma failure.

A detail ed description

of the DECdta transaction
manager conponent appears
in the Transacti on Manager
Architecture section.

Communi cat i on Manager

A conmuni cati on manager
provi des services for
conmuni cati on between
nanmed objects in a
TP system such as
application progranms and
transacti on managers. Sone
communi cati on managers
participate in coordinating
the term nation of a
transacti on by propagating
the transacti on nanager's
t wo- phase conmit operations
as nessages to renpote
communi cati on managers.

Ot her communi cation
managers propagate
application data and
transacti on context,

such as a transaction
identifier, fromone node
to another. Sone do both.

A TP system can support
nmul ti pl e comruni cati on
managers. These
communi cati on managers can
interact with other nodes
using different commit
protocol s or nessage-
passi ng protocols, and may
be part of different nanme
spaces, security donmins,
syst em managenent donai ns,
etc. Exanples are an | BM

it ensures durability SNA LU6. 2 comruni cati on
by storing a description manager or an | SO TP

of each transaction's communi cati on manager
resource operations and

state changes in a stable

(e.g., disk-resident) |og.

It can later use the log to

reconstruct transactions

Digital Technical Journal Vol. 3 No. 1 Wnter 1991

DECdta-Digital's Distributed Transacti on Processing Architecture

By supporting
nmul ti pl e comruni cati on
managers, the DECdta
architecture enhances
the interoperability of
TP systens. Different TP
systems can interoperate
by executing a transaction
using different commit
protocol s.

A conmuni cati on manager
of fers an interface for
application prograns to
conmuni cate wi th other
application prograns.

Di fferent comunication
managers may of fer

di fferent communi cation
par adi gns, such as renote
procedure call or peer-to-
peer message passing.

A conmuni cati on manager
al so has an interface
to its local transaction
manager. It uses this
interface to tell the
transacti on nmanager when
a transaction has spread
to a new node and to

obtain informati on about
transacti on conm t nent,
which it exchanges with
communi cati on managers on
renot e nodes.

Present ati on Manager

A presentation nmanager
provi des an application
programwith a record-
oriented interface to

a presentation device.
Its services are used
by application prograns,

usual ly request initiators.

A fornms nanager is one type
of presentation manager
Just as a database system
supports operations to
define, open, close, and
access databases, a forns
manager supports operations
to define, enable, disable,
and access forms. A form
i ncl udes the definition of
the fields (with different
attri butes) that nmake
up the form It also
i ncl udes services to nap
the fields into device-

i ndependent application
records, to performdata
validation, and to perform
data conversion to map
fields onto device-specific
frames.

One presentati on manager
is Digital's DECforns forns
managenment product. The
DECf ornms product is the
first inplenmentation of the
ANSI /1 SO Forns Interface
Managenment Systens standard
(CODASYL FIMs). [5]

Request Manager

A request nmmnager provides
services to authenticate
the source of requests (a
user and/or a presentation

device), to submit
requests, and to receive
replies fromthe execution
of requests. It supports
such operations as send-
request and receive-reply.
Send-request mnust provide
the identity of the source
device, the identity of

By using presentation
manager services, instead
of directly accessing

a presentation device,
application prograns becone

devi ce i ndependent.

10 Digital Technical Journa

t he user who entered the
request, the identity of
the application programto
be i nvoked, and rnust i nput
data to the program

No. 1 Wnter 1991

DECdta-Digital's Distributed Transacti on Processing
Architecture

A request nmnager can by Digital's DECdtm
ei ther pass the request di stributed transaction
directly to an application manager. [2]

program or it can store
regquests in a queue. In
the latter case, another
reguest manager can
subsequent|ly schedul e the
request by dequeuing the
request and i nvoki ng an
application program The
ACMS System Interface is
an exanple of an existing
request manager interface
for direct requests. The
ACMS Queued Transaction
Initiator is an exanple
of a request manager that
schedul es queued requests.

[1]

Transacti on Manager
Architecture

DECdt a conponents are tied
together by the transaction
abstraction. Transactions
al l ow application
prograns, resource
managers, request nmnagers
(indirectly through queue
resource nanagers), and
communi cati on managers
to interoperate reliably.

Si nce transactions play an
especially inportant role
in the DECdta architecture,
we describe the transaction
managenment functions in
nore detail.

The DECdta architecture
i ncludes interfaces between
transacti on managers and

11

application prograns,
resource managers, and
communi cati on managers,

as shown in Figure 3. It

al so includes a transaction
manager protocol, whose
nessages are propagated by
communi cati on managers.
This protocol is used

Digital Technica

Jour na

Vol .

3

No.

1 Wnter

1991

DECdta-Digital's Distributed Transacti on Processing Architecture

From a transaction
manager's viewpoint, a
transacti on consi sts of

manager to prepare,
commt, or abort a
transaction

transacti on demarcation - For a resource
operations, transaction manager or

execution operations, two- communi cati on manager
phase commt operations, to tell a transaction
and recovery operations. manager whet her

0 The transaction it has prepared,
demar cati on operations committed, or aborted
are issued by an a transaction
application program - For a conmuni cation
to a transacti on manager manager to ask
and i nclude operations a transaction
to start and either end manager to prepare,
or abort a transaction. conmit, or abort a

o Transaction execution transaction
operations are issued - For a transaction
by resource managers and manager to tel
communi cati on managers a communi cation
to a transaction manager whet her
manager. They incl ude it has prepared,
operations committed, or aborted
- For a resource a transaction

manager or 0o Recovery operations

communi cati on manager are issued by a

to join an existing resource nanager to

transaction its transacti on manager
- For a communication to determne the state

manager to tell a of a transaction (i.e.

transacti on nmanager committed or aborted).

to start a new branch In response to a start

of a transaction that operation invoked by

al ready exists at an application program

anot her node the transacti on nanager

o Two-phase conmit di spenses a uni que

operations are issued
by a transaction
manager to resource
managers, conmmuni cation
managers, and through

transaction identifier
for the transaction.
The transacti on nanager
t hat processes the
start operation is

communi cati on managers that transaction's hone

to other transaction transacti on manager
managers, and vice- When an application program
versa. They include i nvokes an operation
operations supported by a resource
- For a transaction manager, the resource
manager to ask a manager must find out the
resource nmanager transaction identifier of
or conmuni cati on the application prograns

12 Digital Technical Journal Vol. 3 No. 1 Wnter 1991

Architecture

DECdta-Digital's Distributed Transacti on Processing

transaction. This can
happen in different

ways. For exanple, the
application program

may tag the operation

with the transaction
identifier, or the resource
manager may | ook up the
transaction identifier in
the application prograns
context. When a resource
manager receives its first
operation on behal f of

a transaction, T, it

must join T, neaning

that it nmust tell a
transacti on nmanager that

it is a subordinate for T.
Al ternatively, the DECdta
architecture supports a
nodel in which a resource
manager nmay ask to be
joined automatically to al
transacti ons managed by its
transacti on manager, rather
than asking to join each
transacti on separately.

A transaction, T, spreads
from one node, Node 1, to
anot her node, Node 2, by
sendi ng a nessage (through
a communi cati on manager)
froman application program
that is executing T at
Node 1 to an application
program at Node 2. When T
sends a nessage from Node
1 to Node 2 for the first
ti me, the conmunication
managers at Node 1 and
Node 2 nust perform
branch regi stration.

This function nay be
performed automatically

case, the result is as

foll ows: the communication
manager at Node 1 becones

t he subordi nate of the
transacti on nanager at Node
1 for T and the superior of
t he comruni cati on nanager
at Node 2 for T; and the
communi cati on manager at
Node 2 becones the superior
of the transaction manager
at Node 2 for T. This
arrangenent allows the
commit protocol between
transacti on managers to

be propagated properly by
communi cati on managers.
After the transaction is
done with its application
wor k, the application
programthat started
transaction T nay invoke
an "end" operation at the
home transacti on nanager to
conmit T. This causes the
home transacti on nanager

to ask its subordinate

resource managers and
communi cati on managers
totry to commit T. The
transacti on manager does
this by using a two-
phase commt protocol

The protocol ensures that
either all subordinate
resource managers conmit
the transaction or they al
abort the transacti on.

In phase 1, the hone
transacti on manager asks
its subordinates for T to
prepare T. A subordinate
prepares T by doi ng what
is necessary to guarantee

by the comrunication
managers. O, it may

be done manual ly by the
application program which
tells the conmunication
managers at Node 1 and Node
2 that the transaction has
spread to Node 2. In either

Digital Technica

that it can either commt

T or abort T if asked to

do so by its superior; this
guarantee is valid even

if it fails immediately
after becom ng prepared. To
prepare T,

Journal Vol. 3 No. 1 Wnter 1991

o Each subordinate for T
recursively propagates
the prepare request to
its subordinates for T

o Each resource nmanager
subordinate wites all
of T's updates to stable

st or age

o Each resource manager
and transacti on manager
subordinate wites a
prepare-record to stable
st orage

A subordinate for T replies
with a "yes" vote if and
when it has conpleted its
stable wites and all of
its subordinates for T have
voted "yes"; otherw se,

it votes "no." If any

subordinate for T does not

acknow edge the request

to prepare within the

ti meout period, then the

home transacti on nanager

aborts T, the effect is the
same as issuing an abort
operation.

In phase 2, when the hone
transacti on nmanager has
received "yes" votes from
all of its subordinates for
T, it decides to commt T.
It wites a conmit record
for T to stable storage
and tells its subordinates
for Tto cormit T. Each
subordinate for T wites
a cormmit record for T
to stable storage and
recursively propagates
the comrit request to

DECdta-Digital's Distributed Transacti on Processing Architecture

for T. When the home
transacti on nmanager

recei ves acknow edgnents
fromall of its

subordi nates for T, the
transaction conmtnent is
conpl ete.

To recover froma failure

all resource managers

that participated in a
transacti on nmust exam ne
their logs on stable
storage to deterni ne what
to do. If the log contains
a conmt or abort record
for T, then T conpleted. No
action is required. If the
| og contains no prepare,
conmit, or abort record

for T, then T was active. T
nmust be aborted. If the |og
contains a prepare record
for T, but no comrit or
abort record for T, T was
bet ween phases 1 and 2. The
resource manager must ask
its superior transaction
manager whet her to conmit
or abort the transaction.

An inherent problemin al
t wo- phase comnmit protocols
is that a resource nanager
i s bl ocked between phases
1 and 2, that is, after
voting "yes" and before
receiving the comit
or abort decision. It
cannot commit or abort
the transaction until the
transacti on nanager tells
it which to do. If its
transacti on nmanager fails,
the resource manager may be

its subordinates for T.

A subordinate for T replies
wi th an acknow edgnent if
and when it has conmitted
the transaction (in the
case of a resource manager
subordi nate) and has

recei ved acknow edgnents
fromall subordinates

14 Digital Technical Journa

bl ocked i ndefinitely, unti
either the transaction
manager recovers or an
external agent, such as a
system manager, steps in to
tell the resource nanager
whet her to comit or abort.

1 Wnter 1991

Architecture

DECdta-Digital's Distributed Transacti on Processing

A transaction T may

spont aneously abort due

to systemerrors at any
time during its execution.
O, an application program
(prior to conpleting

its work) or a resource
manager (prior to voting
"yes") may tell its
transacti on manager to
abort T. In either case,
the transacti on nanager
then tells all of its
subordinates for T to undo
the effects of T's resource
manager operations.
Subor di nate resource
managers abort T, and
subor di nat e conmuni cati on
managers recursively
propagate the abort request
to their subordinates for
T.

The two-phase conmit
protocol is optimzed
for those cases in which
t he nunber of nessages
exchanged can be reduced
bel ow that of the genera
case (e.g., if there is
only one subordinate
resource nmanager, if
a resource nmanager did
not nodi fy resources,
or if the presuned-abort
protocol was used to save
acknow edgnents). [6]

Summary

We have presented an
overvi ew of the DECdta
architecture. As part
of this overview, we

nodel will be nmade public
via product offerings or
architecture publications.

Acknow edgnent s

This architecture grew
from di scussions with

many col | eagues. W t hank
themall for their help,
especially Dieter Gaw i ck,
Bill Laing, Dave Lonet,
Bruce Mann, Barry Rubi nson,
Di ogenes Torres, and the
TP archi tecture group,

i ncl udi ng Edward Bragi nsky,
Tony Del | aFera, George

Gaj nak, Per Gyllstrom and
Yoav Raz.

Ref erences

1. T. Speer and M Storm

"Digital's TP Monitors,"
Digital Technica
Journal, vol. 3, no.
1 (Wnter 1991, this
i ssue): 18-32.

2. J. Johnson, W
Lai ng, and R Landau,
"Transacti on Managenent
Support in the VMsS
Operating System
Kernel ," Digital
Techni cal Journal, vol
3, no. 1 (Wnter 1991,
this issue): 33-44.

3. P. Bernstein, V.
Hadzi | acos, and N.
Goodman, Concurrency
Control and Recovery
i n Dat abase Systens
(Readi ng, MA: Addi son-

15

i ntroduced the conponents
and expl ai ned the function
of each interface. W

al so described the DECdta
transacti on managenent
architecture in some
detail. Over time, many
interfaces of the DECdta

Digital Technical Journa

Wesl ey,

Vol .

3

No.

1987.

1 Wnter

1991

DECdta-Digital's Distributed Transacti on Processing Architecture

5. FI M5 Journal of
Devel opnent (Norf ol k,
VA: CODASYL FI Ms
Committee, July 1990).

4. P. Bernstein, M 6. C. Mhan, B. Lindsay,
Hsu, and B. Mann, and R Ober nar ck,
"I mpl emrent i ng "Transacti on
Recover abl e Requests Managenment in the R*
Usi ng Queues, " Di stributed Dat abase
Proceedi ngs 1990 ACM Management System " ACM
SI GMOD Conf erence on Transactions on Dat abase
Managenment of Data (My Systens, vol. 11, no. 4

1990). (Decenber 1986).

16 Digital Technical Journal Vol. 3 No. 1 Wnter 1991

Copyright 1991 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi pment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permtted. All rights reserved.

