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A Low-Complexity, Fixed-Rate Compression
Scheme for Color Images and Documents

Based on one-dimensional differential pulse code modulation, the coder is

multiplication-free, codes each pixel as soon as it is available, and outputs a

fixed number of bits for each pixel. Hence, there is no need for any buffering of

the input image or coder output bitstream. The compression scheme is visually

lossless and yields a modest compression ratio of 3 to 4. Because of its

simplicity, it is useful when hardware is limited and coding delays cannot be

tolerated.

There is often a need for some level of data compression in many imaging

devices and products, such as scanners and facsimile machines. The reason

can be the limited bandwidth of the data bus connecting the scanner to the

host computer or the size of the memory available in the product. In addition,

strict hardware limitations can preclude the use of compression schemes that

are computationally intensive.

A desirable feature of a compression scheme is that it be a fixed-rate coder.

Specifically, it is desirable for the compression scheme to produce the same

number of bits in compressing an 8.5-by-11-inch sheet of paper regardless of

its content. This guarantees that the memory of the device will never overflow

and that the data is always transmitted to the host in a fixed time. Many popular

compression schemes, such as the lossy JPEG and its newly adopted lossless

JPEG-LS algorithms, are variable-rate coders. They have the advantage that

they yield higher compression ratios than fixed-rate coders of comparable

complexity. However, their variable-rate nature implies that in compressing

a sheet of paper, there can be a large variation in the number of bits they

generate, depending on the content of the sheet.

In this paper we present a very simple compression scheme that adequately

addresses all the issues raised above. It compresses a given sheet of paper
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(which may contain images, text, graphical art, etc.) pixel
by pixel without any need for buffering the image data as
it is being scanned. It produces a fixed number of bits for
every pair of pixels, which can be stored or sent to the
host over the data bus. An equally simple algorithm de-
compresses the received bits to produce a visually loss-
less rendition of the image data. The coder is lossy, but
the loss level is so small that it is perceptually negligible.
The coder is based on one-dimensional differential pulse
code modulation (1D DPCM) using fully integer operation
predictors and quantizers.

Proposed Compression Scheme

In this section we describe the various components and
aspects of the compression scheme.

Differential pulse code modulation (DPCM) is a classical
lossy data compression technique originally developed at
Bell Laboratories for compressing the television signal.1 It
is the next level of sophistication in the compression tech-
nique hierarchy after pulse code modulation (PCM), which
is the same as nonuniform scalar quantization.

The block diagram for a DPCM coder with a first-order
predictor is shown in Figure 1. The task of the binary

encoder is to map the output E
^

n of the scalar quantizer to
a binary codeword in a one-to-one fashion. For example,
if the quantizer has 16 output levels, then the binary en-
coder will assign a four-bit distinct codeword to each pos-
sible quantizer output level. The binary decoder is simply
the inverse of the binary encoder and maps a given binary
codeword back to its respective quantizer output level. In

other words, the input to the DPCM decoder is simply E
^

n.
Also note that there is a copy of the DPCM decoder at the
DPCM encoder as shown by the shaded box in Figure 1.

The main idea of DPCM is to decorrelate the source data
before coding it. Correlations exist in many data sources,
such as images. DPCM removes these correlations by

making a prediction X
~

n of the next source sample Xn on
the basis of the past reconstructions and then coding the
prediction error En instead of Xn itself. (A PCM system
codes Xn directly.) In the system of Figure 1, the predic-
tor uses the reconstruction for the most recent source
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sample to predict the next one. That is, X
~

n� �X
^

n–1,

where ρ is a constant coefficient. A key property of
a DPCM coder, even those employing higher-order
predictors, is that:

Xn� X
^

n� En� E
^

n. (1)

Hence, the mean squared error (MSE) distortion of the
system is given by:

D� E[(Xn� X
^

n)2]� E[(En� E
^

n)2]. (2)

If the predictor does a good job of predicting the source,
then En will have a small variance (or effective dynamic
range) compared to Xn. Consequently, an N-level optimal
scalar quantizer for En will yield a smaller average distor-
tion than one for Xn.

The predictor coefficient ρ depends on the samplewise
correlation in the source; a larger value of ρ is used when
the source is highly correlated. From a theoretical point
of view, ρ should always be smaller than one so that the
decoder filter remains stable. From a practical point of
view, however, it is advantageous to use ρ�1. We have
opted for this choice in this work in the interest of making
the coder as simple as possible. We have not experienced
any instability problems in our experiments with the coder
presented here.

We also note that two-dimensional DPCM, in which each
pixel is predicted based on reconstructions for the pre-
vious pixel on the same image row and a couple of pixels
on the previous row just above the present pixel, is a
better choice for image compression. The predictor in 2D
DPCM performs better than the one in 1D DPCM, making
it possible to achieve better coded image quality at the
same compression ratio. Using a 2D predictor requires
buffering the reconstruction for the previous row of the
image and the part of the present row that has already
been encoded. In the interest of keeping the memory
requirements of our coder at a minimum, we use the 1D
predictor.

Quantization

In this work we assume that each output level of the scalar
quantizer is assigned a binary codeword of length log2N
by the binary encoder. (It is also possible to entropy-code
the quantizer output. Since that would lead to a variable-
rate coder, we are not interested in entropy-coded DPCM

in this work.) If the probability distribution of the pre-
diction error En is known, then an optimal N-level non-
uniform scalar quantizer for En can be designed. Such
quantizers are called Lloyd-Max quantizers and there are
algorithms for their design based on a training sequence
of samples from the source.2,3 We used the Lloyd algo-
rithm to design the quantizers needed in this work.

The problem of quantizer design in a DPCM system is
complicated because the probability distribution of En

depends on the quantizer and vice versa. This problem
has been addressed by Arnstein,4 who describes an
iterative design algorithm for the case of a first-order
Gauss-Markov source. Arnstein’s work, however, cannot
be readily extended to the case of a DPCM system for
images. Therefore, we use an open-loop approach to quan-
tizer design. Since we are interested in a visually lossless
compression scheme, it is reasonable to assume that

X
^

n� Xn. This approximation can be used to generate
a training sequence of samples of the prediction error.
Using a set of training images, we form the training
sequence for En by simply subtracting each image pixel
from the next one. Note that:

En� Xn� X
~

n� Xn� �X
^

n–1� Xn� X
^

n–1

� Xn� Xn–1.
(3)

Finally, to make the coder as simple as possible, we force
the quantizer output levels to be integers by properly
modifying the centroid condition in the Lloyd algorithm.
Specifically, we replace each centroid by the integer
closest to it. It is easy to show that this is indeed the
optimal way of designing integer valued scalar quantizers.
The problem that has to be solved is the following:

Problem: Given a random variable X, find an integer C that
minimizes E[(X�C)2].

Solution: For any integer C we can write:

E[(X� C)2]� E[({X� E[X]}� {E[X]� C})2]

� E[(X� E[X])2]� (E[X]� C)2

� 2(E[X]� C)E[X� E[X]]

� �
2
X� (E[X]� C)2,

(4)
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where �2
X is the variance of X. The righthand side is mini-

mized by choosing C to be the integer closest to E[X].
In addition, since the input to each quantizer is integer
valued, we implement each quantizer with a small lookup
table.

DPCM for Image Compression

It is straightforward to design a compression system for
monochrome images based on the simple ideas presented
above. Usually the system specifications (bus bandwidth
and memory size) dictate a maximum rate r in bits per pixel
(bpp) for the images that are to be compressed by this
system. We assume that the rate is integer valued. (Other-
wise, several quantizer outputs should be grouped togeth-
er before being assigned a binary codeword. This would
imply a need for some buffering.) The number of quantiz-
er output levels is then given by N�2r, and the quantizer
is designed according to the procedure outlined earlier.

In the case of color images the situation is more compli-
cated. Of course, it is always possible to compress the
image data in the RGB color space. However, it is advan-
tageous to first transform the data into some other color
space and then code it. Such transformations result in
energy compaction in the data, which makes it possible
to achieve better compression performance. For our work
we picked the YUV color space. (The image data in some
HP scanner pipelines is already in the YUV format.) It is
well known that most of the image information is in the
Y signal. Hence, in many color image compression algo-
rithms, such as JPEG, the U and V signals are subsampled
by a factor of 2 in both the horizontal and vertical direc-
tions before being coded. This subsampling compresses
the U and V data by a factor of 4 even before any coding
is done. In this work we have investigated both alterna-
tives—subsampling the U and V signals and not doing any
subsampling. In the latter case we have to use quantizers
of lower rate for the U and V signals so that the overall
coding rate (or compression ratio) is the same as in the
subsampling case.

Yet another crucial factor in color image compression is
the allocation of the available bit rate to the three color
planes. There are optimal bit allocation algorithms that
maximize the peak signal-to-noise ratio (SNR) and are
commonly used in monochrome image coding.5,6 In the
case of color images there are three color planes to worry
about, and the peak SNR is even less relevant than in the

monochrome case. In this work we have taken an experi-
mental approach for finding the best rate allocation. Our
criterion is to get the best possible subjective image quali-
ty for a given overall rate. We are interested in rate values
that yield visually lossless coded image quality. Since
we have restricted quantizer rates to be integers, there
are only a small number of bit allocations possible for
any given overall rate. We found the best bit allocation
experimentally and by trail and error.

Experimental Results

We designed a compression system for color images based
on the ideas presented in the previous section and tested
it on a test image we obtained from the HP Greeley Hard-
copy Division. This is a compound image having photo-
graphic content, text, line art, and a rainbow ramp. In cod-
ing the U and V signals we investigated three alternatives:

(i) Coding these signals at full resolution

(ii) Subsampling them in the horizontal direction by
simply discarding every other pixel and using pixel
replication after the coding process

(iii) Replacing each pair of successive samples by
their average and then using a 3-tap area-based
interpolation filter7 after coding.

Since the choice of the subsampling strategy or lack
thereof affects the samplewise correlation of the U and V
signals, hence influencing the probability distribution of
the prediction error, we had to design two quantizers for
each of the above alternatives. Since the Y signal is not
subsampled, one quantizer is sufficient for that signal.
Therefore, we designed a total of seven sets of quantizers,
each set containing quantizers with 2, 4, 8, 16, 32, and 64
output levels. We used a training sequence consisting of
the above test image and four other large images to de-
sign the needed quantizers. We transformed these images
into the YUV color space, formed three mother training
sequences for the Y, U, and V signals by taking differences
of successive samples as described under “Quantization”
above, and formed two more sequences from each of the
mother sequences for U and V signals by properly sub-
sampling them according to the alternatives (ii) and (iii)
above. Using these seven training sequences we designed
the needed seven sets of quantizers. Then we experimen-
ted with different systems, with or without U and V
subsampling and with various choices of quantizers, to
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code the test image. Table I shows the compression per-
formance obtained with various choices for compressing
the 24-bit test image at 12, 11, 10, 9, and 8 bits per pixel
(bpp). The first two lines in the table correspond to trans-
mitting certain numbers with infinite precision to the
receiving end. This is not practical, of course, but it sets
an upper bound on the best performance that can be
expected from strategies (ii) and (iii).

For all the coders in the table designated with an asterisk
(*), the quality of the coded image is visually lossless.

(Of course, the image quality is somewhat better at 12 bpp
than at 8 bpp when the image is scaled.)

In reading the bit rates in Table I, note that with strategies
(ii) and (iii) there are half as many U and V samples to be
coded as there are Y samples. Also note that the test
image is a particularly difficult image to work with. With
other photographic images, such as the other four images
in the training set, we were easily able to get a compres-
sion ratio of 4 to 6 and yet maintain visually lossless image
quality.

Table I
Bit Rate and Peak SNR (Signal-to-Noise Ratio) of the Proposed Coder with Various Test Image Parameters

Overall
Coder
Rate
(b )

Subsampling
Strategy for

a d

Subcoder Rate
(bpp)

Peak SNR (dB)
YUV Color Space

Peak SNR (dB)
RGB Color Space

(bpp) U and V Y U V Y U V Avg. R G B Avg.

∞
∞

(ii)
(iii)

∞
∞

∞
∞

∞
∞

∞
∞

33.73
37.91

33.77
37.72

∞
∞

31.21
35.07

35.28
38.75

29.22
33.39

31.90
35.73

12
12
12
12

(i)
(i)
(ii)
(iii)

6
4
6
6

3
4
6
6

3
4
6
6

45.26
38.27
45.26
45.26

39.54
44.84
33.60
37.42

40.06
45.14
33.65
37.39

41.62
42.75
37.51
40.02

36.58
36.81
30.95
34.41

40.56
37.85
34.76
37.61

34.53
36.08
29.01
32.65

37.22
36.91
31.57
34.89

∗

11
11
11
11
11

(i)
(ii)
(ii)
(iii)
(iii)

5
6
5
6
5

3
5
6
5
6

3
5
6
5
6

42.48
45.26
42.48
45.26
42.48

39.54
33.50
33.60
36.94
37.42

40.06
33.43
33.65
37.07
37.39

40.69
37.40
36.58
39.76
39.10

36.07
30.71
30.82
34.08
34.10

39.46
34.61
34.42
37.36
37.03

34.21
28.91
28.92
32.20
32.43

36.58
31.41
31.39
34.54
34.52

∗

10
10
10
10
10
10
10

(i)
(ii)
(ii)
(ii)
(iii)
(iii)
(iii)

4
6
5
4
6
5
4

3
4
5
6
4
5
6

3
4
5
6
4
5
6

38.27
45.26
42.48
38.27
45.26
42.48
38.27

39.54
33.24
33.50
33.60
37.02
36.94
37.42

40.06
33.41
33.43
33.65
36.84
37.07
37.39

39.29
37.30
36.47
35.18
39.71
38.83
37.30

34.72
30.73
30.58
30.37
33.93
33.79
33.21

36.97
34.57
34.29
33.44
37.29
36.82
35.41

33.24
28.67
28.82
28.63
32.33
31.99
31.79

34.98
31.32
31.23
30.82
34.52
34.20
33.47

∗

9
9
9
9
9
9

(ii)
(ii)
(ii)
(iii)
(iii)
(iii)

6
5
4
6
5
4

3
4
5
3
4
5

3
4
5
3
4
5

45.26
42.48
38.27
45.26
42.48
38.27

32.37
33.24
33.50
35.16
37.02
36.94

32.35
33.41
33.43
34.92
36.84
37.07

36.66
36.37
35.07
38.45
38.78
37.43

29.80
30.61
30.15
32.11
33.65
32.93

33.88
34.25
33.35
36.07
36.74
35.29

27.88
28.59
28.54
30.64
32.14
31.40

30.52
31.15
30.68
32.94
34.18
33.21

∗

8
8
8
8

(ii)
(ii)
(iii)
(iii)

5
4
5
4

3
4
3
4

3
4
3
4

42.48
38.27
42.48
38.27

32.37
33.24
35.16
37.02

32.35
33.41
34.92
36.84

35.73
34.97
37.52
37.38

29.70
30.19
31.91
32.83

33.61
33.31
35.66
35.21

27.81
28.31
30.50
31.56

30.37
30.60
32.69
33.20 ∗

The asterisks in the rightmost column designate the coder that gave the best image quality for each rate.
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Table II
Number of Arithmetic Operations per Image Pixel Needed by the Encoder

and Decoder With Each of the Three U and V Subsampling Strategies

Encoder Decoder

Strategy
Adds,

Subtracts
Table

Lookups Shifts
Adds,

Subtracts
Table

Lookups Shifts

(i) 6 3 0 3 3 0

(ii) 4 2 0 2 2 0

(iii) 5 2 1 5 2 3

It can be seen from the table that the naive subsampling
strategy (ii) of the U and V signals is always inferior to the
more careful strategy (iii). This is also true in terms of
coded image quality. However, implementing strategy (iii)
adds a little bit to the computational requirements of the
coder. We also note that strategy (iii) is in some cases
inferior to strategy (i), namely not subsampling at all. In
fact, we made the observation that at high bit rates, even
if no quantization at all is done after subsampling with
either strategy (ii) or (iii), the quality of the reconstructed
image can be inferior to an image obtained with coding
and strategy (i). This can be seen by comparing the first
two lines of Table I with the third line, for example. The
reason is the inherent loss of the subsampling and recon-
struction operations. Finally, strategy (iii) seems to be
better than strategy (i) at bit rates 10, 9, and 8 bpp. This
might be because in our experiments we restricted our
attention to cases where the U and V signals get equal
shares of the available bit rate and the quantizer rates are
all integers.

Finally, we like to stress that all three coding strategies
proposed in this paper are very simple. Table II shows
the exact number of encoding and decoding operations
required by each strategy. All three methods have negligi-
ble computational complexity and hence would have a
very simple implementation and would run very fast. The
amount of memory needed at the encoder is simply that
for the three lookup tables implementing the three quan-
tizers. Each method would need three tables of 511 bytes
each with a conservative allocation of one byte per table
entry. Each decoding method would also need three look-
up tables to map the quantizer indices to the quantizer
output levels. These tables would be on the host and not
on the scanner. They are even smaller than those needed

at the encoder, because each would have as many entries
as the number of quantizer output levels.

Conclusion

In this paper we have presented a compression scheme for
color images based on one-dimensional differential pulse
code modulation (DPCM). The image data is assumed to
be in YUV or YCrCb color space, and the chrominance
information may or may not have been subsampled. There
is one DPCM coder for each of the three color components,
and an optimal nonuniform scalar quantizer (a Lloyd-Max
quantizer) for each coder. The three quantizers have been
designed in such a way that all their output levels are inte-
ger valued. Therefore, the coder uses integer operations
exclusively. The quantizers are implemented by lookup
tables and the predictors are simple. Consequently, the
coder is multiplication-free. The coder operates in real
time in the sense that each pixel is coded as soon as it is
available (this would be useful in a scanner). In addition,
the coder outputs a fixed number of bits for each pixel.
Hence, there is no need for any buffering of the coder
output bitstream before transmission. All these features
make the coder very simple and easily implementable
with minimal hardware. Even the memory requirement of
the coder is negligible because the lookup tables are small
and there is no need to buffer the image pixels.

This compression scheme has been tested on several
images of different types and contents. The coded image
quality is very good and visually lossless in all cases.
The coder yields a modest compression ratio of 3 to 4.
The coder’s compression performance is not as high as
the industry-standard JPEG algorithm, but then JPEG is
a variable-rate coder that is orders of magnitude more
complex. Because of its extreme simplicity, the coder is
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suitable for applications in which there is limited hard-
ware capability and coding delays cannot be tolerated.
It may be the simplest coder that achieves modest com-
pression without compromising the image quality.
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