
Volume 50  • Number 1  • Article 5
November 1, 1998

  1998 Hewlett-Packard Company

29
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

New Approaches to Creating and Testing
Internationalized Software

Creating high-quality software that runs in any language is a big challenge. By

changing our development process to stress early defect detection and by using

the World Wide Web as a collaboration tool, we have dramatically improved

the quality of our internationalized software.

Most software companies want to sell their software in every country

in the world. Since users prefer to use software in their native language, it

makes good marketing sense to develop software that can run in those

languages. After the initial investment has been made to write and test

software in English, a software company can make significant profits by

reselling the same software to other countries if the cost of conversion into

other languages can be kept low.

Traditionally, software testing occurs at the end of the development cycle. This

kind of testing works against creating high-quality software. When bugs are

found late in the cycle, there is little time to fix them. This is especially true

in internationalized software development where the developers, testers, and

translators are spread all over the world. Our new approach allows a team 

�	��� �� ��
�����

A software design engi-

neer at the HP Corvallis

Imaging Operation, Harry

Robinson was a test engineer for the HP

Common Desktop Environment internation-

alization project. He recently left HP to be-

come a lead test engineer at Microsoft Corpo-

ration. He has a BA degree in religion (1980)

from Dartmouth College and BSEE (1985)

and MSEE (1988) degrees from Cooper

Union. He is interested in all aspects of soft-

ware testing. Born in Staten Island, New

York, he is married and has three children.

�	�	� �� ��	�	
	���

Sankar Chakrabarti is a

member of the technical

staff at the HP InkJet

Business Unit. Currently, he is responsible for

developing software for a print quality testing

tool. Sankar received a doctorate in chemistry

in 1974 from the Tata Institute of Fundamen-

tal Research in Bombay, India. He joined HP

in 1981 after receiving an MS degree in com-

puter science from Oregon State University.

Born in Azimganj, West Bengal, India, Sankar

is married, has two children, and enjoys

traveling and hiking.

�	��� �� ��
�����

�	�	� �� ��	�	
	���



Volume 50  • Number 1  • Article 5
November 1, 1998

  1998 Hewlett-Packard Company

30
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

to test the software during the entire process and to
release foreign language versions simultaneously with
the English version.

Developing Internationalized Software

The I18N Approach

One common method of creating internationalized soft-
ware at a reasonable cost is called I18N.* The essence
of the I18N approach is to separate the executable code
from any character strings that the user will see. User
messages are placed into files called message catalogs.
Two numbers, the set number and the message number,
index each string in the message catalog. The executable
code uses these numbers to retrieve strings.

For example, every C language programmer knows the
classic hello, world program:

 hello.c:

       main()

       {

            printf(”hello, world\n”);

       }

In the I18N methodology,1 this program would be written
as follows:

hello.c:

      main()

      {

        my_cat=catopen(”hello.cat”, NL_LOCALE);

        printf(catgets(my_cat, 1, 5, 

        ”hello, world\n”) );

        catclose(my_cat);

      }

The program accesses the string “hello, world\n” by retriev-
ing set 1, message 5 of the “hello.cat” message catalog file.

        hello.cat:

                $set 1

                5 hello, world\n

The string “hello, world\n” that appears in the printf state-
ment is a default string that is used if no message catalog
file can be found.

Separating executable code from user-visible strings is
very useful when working with translations. If we want to
run our hello, world program in French, a translator merely
changes the string in the message catalog to:

                $set 1

                5 bonjour, le monde\n

* I18N = I[nternationalizatio]N. 18 is the number of letters between the I and N.

Figure 1

A typical application Help menu in (a) English and (b) French.

(a) (b)

Users running the hello.c program with the translated
message catalog will see bonjour, le monde as their output.
No changes are made to the executable code to support
the French version. Only the user interface strings need to
be translated. The executable code remains unchanged.

Figure 1 shows an example of what a typical application
Help menu looks like in both English and French. The
same executable code was used to generate each menu,
and only the message catalog was changed.

Process Flow

The idea behind creating internationalized software is con-
ceptually simple, especially when the number of languages
is small and the application is as simple as hello.c. On the
other hand, producing real-world applications in a dozen
languages can pose several challenges to a development
team.

The shaded area in the diagram in Figure 2 shows the
traditional process flow for developing an international-
ized application.

1. The programmers write an application with the appro-
priate I18N calls for fetching strings from the message
catalog. They also produce the original message cata-
log in English.

2. The message catalog is sent to translators (called
localizers) who translate each string into a target
language, such as French.

3. The application (with the original message catalog) is
delivered to the test team, who verify that everything
works correctly.



Volume 50  • Number 1  • Article 5
November 1, 1998

  1998 Hewlett-Packard Company

31
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Figure 2

Process flow for developing an internationalized application.

Solution 1
Test with

Artificial Translations

Develop I18N Code
Using the Default
Message Catalog

Test I18N Code
Using the Default
Message Catalog

Solution 3
Create Language-
Independent Tests

Solution 4
Publish Translated
Images to WWW

Test I18N Code
Using the Translated
Message Catalogs

Translate the
Message Catalog into
Multiple Languages

Solution 2
Verify Message

Catalog Structures

Traditional Process Flow

Activities inserted into the traditional process flow to improve software quality.

4. The localizers provide the translated message catalogs
to the test team. The testers must now verify that the
application works in the intended languages.

The Team

Our development team designed and implemented the
graphical user interface for Hewlett-Packard’s UNIX

workstations. This interface is made up of several applica-
tions and runs in a dozen different languages: English,
French, Spanish, Italian, German, Swedish, Korean, two
forms of Japanese, and three forms of Chinese. The sheer
scale of our work causes problems in creating internation-
alized software because of the wide range of skills and
resources needed and the distances between involved
parties.

The Programmers. Our entire programming team is lo-
cated in Corvallis, Oregon. They are software specialists
and are not expected to know multiple languages. After
they have written their internationalized code, they must
wait for the message catalogs to be translated before
they can verify that their I18N features are correctly
implemented.

The Localizers. Our localizers live in widely separated
areas of the world. Most of them are contractors who
have never met the rest of our development team. The
localizers are not expected to have programming or test-
ing expertise. In fact, they may not even have UNIX work-
stations on which to run the applications. Often, because
the applications they are translating are still in develop-
ment, they are unlikely to be familiar with the application
when they are creating their translations.

The Testers. The test team is located in Corvallis. They
are test specialists and are not expected to speak multiple
languages. Although I18N methodology is a boon for pro-
grammers, it can be a nightmare for the testers. In regular
software testing, there is rarely enough time to test an
application thoroughly. In the I18N arena, the test team
must provide assurance that the software operates cor-
rectly in the dozen languages in which it will run. Further-
more, it is very difficult to verify correct operation in a
language that one does not speak because mistakes that
would be obvious to a native speaker can easily pass
unnoticed by the test team.



Volume 50  • Number 1  • Article 5
November 1, 1998

  1998 Hewlett-Packard Company

32
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Challenges and Solutions

We have developed several strategies to deal with many of
the challenges we have encountered while creating I18N-
enabled code.

Challenge 1: Developers cannot test the I18N-enabled
code easily. There are several common mistakes people
make when writing I18N-enabled code. One mistake is to
neglect to leave enough room in message buffers for the
translated message string. Some languages, such as Ger-
man, require more space than English for the same mes-
sage. The length of the translated message string cannot
be known until run time, though a good rule of thumb is
to allow for 60% text growth during translation. If a mes-
sage string still exceeds the buffer length provided, the
program should usually truncate the string.

A second common mistake is when developers neglect to
accommodate languages, such as Japanese, that require
two bytes to store a single character. Most Western lan-
guages require only one byte of storage per character,
but several Far Eastern languages have large character
sets and need more than one byte per character. If the
code does not handle double-byte characters, the results
could range from corrupted characters to a crash of the
application.

It would be very handy to provide a way to test I18N-
enabled code early in the development process, perhaps
even as soon as the code is written. The chief difficulty in
early testing of I18N-enabled code is that an actual trans-
lation may not be available. Message catalog translation
is time-consuming. The development team may have to
wait several weeks before getting a translated message
catalog back from a localizer, losing precious testing and
debugging time.

Solution 1: Test with artificial translations.2 Our solution
is to construct artificial message strings that mimic the
kinds of problems we see in real translated message
strings. This instantaneous creation of a translated mes-
sage string against which to test our software provides
us with quick feedback about how our application will
perform with translated components.

For instance, to simulate languages with long text strings,
we created a message catalog in a language we call the
Swedish chef. Using a freeware Internet utility called the
Encheferizer,3 we appended long nonsense strings onto
each English string. The results can be seen in Figure 3.

Figure 3

Nonsense strings appended to English words to create the
Swedish chef language.

Each Encheferized string is at least double the size of the
corresponding English string.

Likewise, to simulate double-byte characters such as
those used in Japanese, we used a small program that
maps ASCII characters into a double-byte format as
shown in Figure 4. This translation was easy to use and
allowed us to detect whether the code handled double-
byte strings properly.

Despite these tools, many developers still felt reluctant
to test in a language that they did not know. To overcome
this reluctance, we demonstrated that it is possible to test
even in the worst case imaginable: we created a Klingon
target language.4 Words, chosen at random from a Klingon
version of Shakespeare’s Hamlet, were inserted into an
application’s message catalog as shown in Figure 5. Even
though this version of the application might not make

Figure 4

Text strings mapped into a double-byte format to simulate
double-byte characters.



Volume 50  • Number 1  • Article 5
November 1, 1998

  1998 Hewlett-Packard Company

33
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Figure 5

An excerpt from a Klingon version of Hamlet.

sense to anyone, it can still be tested. This test case pro-
vided one more level of confidence to our testing.

In all three cases, we used small scripts to create message
catalogs from the default English catalog so that the
“pseudo-translated” messages were available as soon as
the code was ready to be tested (see Figure 2). Because
the translations we chose were simple to use, somewhat
whimsical, and not at all intimidating, programmers found
it easy to perform I18N testing.

Challenge 2: Translators can introduce structural defects
into the message catalogs. Each message catalog has a
structure. Sometimes the structure is as simple as the set
and message numbers, and at other times it can be com-
plex. If the structure of the message catalog is changed
during translation, the software will not behave correctly.
For instance, suppose the original English message cata-
log contains:

                $set 1

                5 hello, world\n

and the French translation contains:

                $set 1

                55 bonjour, le monde\n

The message number has been inadvertently changed
from 5 to 55. The application will not work correctly be-
cause it cannot find the translated string. These types of
mistakes are very hard to catch because of the complexity
of some message catalog structures.

Solution 2: Verify message catalog structures. We created
small utility programs to verify catalog structures auto-
matically.5 In our organization, we call these utilities
poka-yokes after the Japanese quality assurance method
that inspired their use.6 These programs often take less
than an hour to write. One typical poka-yoke program
might check that each message in the translated catalog
corresponds to a message in the original English catalog.
Such a check will detect the error in the above example
in which the message number is changed from 5 to 55.

These utilities are surprisingly effective. When we ran the
utilities on eight applications that had been translated into
twelve languages, we found 833 defects in the message
catalogs. An even bigger benefit was that the utilities did
not need an application. The message catalogs could be
checked as soon as they were received from the localizers,
and any defects could be fixed immediately.

Poka-yoke scripts are also very useful for finding mis-
takes overlooked by visual verification. For example, in
the French menu in Figure 1b there is an error in the
“shortcut keys” or mnemonics designated for the last two
items in the menu. Shortcut keys must be unique within a
menu. The letter A is designated as the shortcut key for
both of the last two items, violating the uniqueness rule.
People often miss these type of errors, but a poka-yoke
script can catch them automatically.

Challenge 3: Testers cannot manually test each applica-
tion in a dozen languages. After the localizers return the
translated message catalogs, it is time to system test the
applications in each language. Testing software applica-
tions thoroughly is always a challenge. Trying to test the
same application in twelve languages can be a catas-
trophe.

For instance, if we wanted to test the output of the hello.c
program listed above, we would typically create a test case
that looked something like this:

Step 1: Set the target language to English
Step 2: Run the hello.c program
Step 3: Verify that the output is hello, world

If we wanted to test the French version, we would need
to change the test case:

Step 1: Set the target language to French
Step 2: Run the hello.c program
Step 3: Verify that the output is bonjour, le monde



Volume 50  • Number 1  • Article 5
November 1, 1998

  1998 Hewlett-Packard Company

34
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

What do we do when we need to test the same program
in the other ten languages? Will we need to write a dozen
versions of each test? Also, how will we run the tests?
Hiring additional people to test the foreign language
versions is costly, and traditional record-and-playback
test methods do not port well across languages. What is
needed is an automated test method in which the cost
of testing does not become prohibitive as the number
of supported languages grows.

Solution 3: Create language-independent tests.7 We deter-
mined that I18N-enabled tests were needed to test I18N-
enabled applications. So, instead of creating a multitude
of static tests that would each check for a different string
such as hello, world or bonjour, le monde, we created tests
that could use the application’s own message catalogs
to verify output. When an internationalized test needs
to verify a program’s output, it retrieves the expected
message from the message catalog just as the application
does. The new I18N form of the automated test for the
hello world program would look as follows:

Step 1: Set the target to the desired language
Step 2: Run the hello.c program
Step 3: Retrieve the string stored in set 1, message 

of hello.cat
Step 4: Verify that the program’s output matches the

retrieved string
Step 5: Choose the next language to test
Step 6: Repeat until all languages have been tested

This approach can be used to verify that the program
is working correctly by iterating through all available
languages. Internationalized tests are particularly useful
in automatically verifying basic functionality.

Challenge 4: Testers cannot always detect errors in unfa-
miliar languages. One significant problem in testing inter-
nationalized software is that testers unfamiliar with a lan-
guage usually cannot see errors that might be obvious to

Figure 6

Part of an application window in Japanese containing the
correct string preceding the (V). 

a native speaker of the language. For example, Figure 6

shows part of an application window in Japanese. The
string in front of the (V) is transliterated Hyoji and means
View. Figure 7 shows that same window except that the
string in front of the (V) has been corrupted by a typo in
the script that was used to compile and build the applica-
tion. Thus, the string in Figure 7 is meaningless.

This corruption error is immediately apparent to someone
fluent in Japanese. Yet, how many non-Japanese speakers
would recognize the error, especially since the corrupted
form of the string is still in Japanese?

As mentioned above, we don’t require that our software
testers know multiple languages, and it is certainly un-
likely that we could find a test team fluent in the dozen
languages our software supports. On the other hand, the
localizers who do speak those languages are unlikely to
see the error because they do not have the current revi-
sions of the code or the UNIX workstations on which to
run the software. Even if they did have the code and a
workstation, it would be difficult to know whether they
had adequately exercised the application to display all
the relevant screens. Previously, one common solution
was to fly the translators to our Corvallis site and have
them spend several days watching testers execute tests
for their particular language. This method was inconve-
nient and costly.

How could we provide a medium of collaboration be-
tween the testers who run the software and the language
experts who could judge whether the output was correct?

Solution 4: Publish translated images to the World Wide
Web.8 The World Wide Web can be used to distribute test
outputs to those who can help judge if the output looks
correct. We call this approach a “traveler tour” because it
reminds us of a traveler who visits other countries and
then returns home and displays the pictures taken on the
trip.

Figure 7

The same character string shown in Figure 6 but with an
error in the string preceding the (V).



Volume 50  • Number 1  • Article 5
November 1, 1998

  1998 Hewlett-Packard Company

35
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Figure 8

HTML version of an English help page used for comparing
screen images during automated testing.

Using the I18N test techniques mentioned in solution 3,
we set the target language and drive the application to
display various user screens. As each screen is displayed,
we capture the image to a file. After all desired images
have been captured in all languages, we run a script that
creates HTML pages automatically from the images.

Figures 8 and 9 show the HTML version of English and
Japanese help pages. The format allows Web page visitors
to move easily between the different language versions of
an image, as well as move through the sequence of images
in a single language.

After the application’s images have been captured and
moved to the World Wide Web, we invite interested parties,
such as the translators and our partner labs, to access the
Web pages and give us feedback about whether the trans-
lated applications are correct. This arrangement is very
useful to all the teams. The testers can ensure that all the
relevant screens are displayed, and the language experts
can view the output without the expense and administra-
tive overhead of maintaining workstation test systems at
their sites.

Figure 9

HTML version of a Japanese help page used for comparing
screen images during automated testing.

The traveler tour approach also helps localizers translate
the original default English messages into the desired
foreign languages. Previously, the localizers were only
provided with the message catalogs, which were difficult
to translate because the user messages lacked the context
of the application. Now, we send the localizers a traveler
tour of the application in English along with the message
catalogs.

Results

By changing our development and testing processes and
creating tools to support early detection of defects, we
have revolutionized the way internationalized software is
developed at Hewlett-Packard. With these changes: 

� Developers can test the I18N features of their code
immediately.

� Poka-yoke utilities can catch message catalog defects
at the translation stage.

� Language-independent test suites permit automatic
testing in all languages.



Volume 50  • Number 1  • Article 5
November 1, 1998

  1998 Hewlett-Packard Company

36
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

� Traveler tours allow testers and localizers to work
together to detect subtle translation bugs.

This new approach to developing I18N software has re-
duced the resources needed for testing by a factor of five.
It has eliminated the travel costs previously incurred in
bringing translators to the development site to assist in
testing. The approach has dramatically increased the
quality of our internationalized software while at the
same time decreasing the time devoted to development,
translation, and testing.

Finally, our translators and our partner labs are so pleased
with the outcome of this work that they have asked that
these changes be incorporated into our regular delivery
mechanisms.

Conclusion

Internationalized software has great advantages for the
marketplace and is a worthwhile and growing trend, but
high quality levels can only be achieved if international-
ization is integrated with the rest of the software develop-
ment process. Current development models do not
encourage easy integration of coding, localizing, and
testing. We have designed tools to promote early detec-
tion of defects and collaboration among the different
groups involved in software creation.

Acknowledgments

The authors would like to thank Ken Bronstein, Arne
Thormodsen, Dan Williams, and Barbara Wingert-Burbach
for their help in developing and promoting the techniques
used in this testing program.

References

1. T. McFarland, X Windows on the World, Prentice-Hall, 1996.

2. H. Robinson and A. Thormodsen, “Parlez-Vous Klingon?
Testing Internationalized Software with Artificial Locales,”
Proceedings of the 1997 Pacific Northwest Software Quality

Conference, pp. 185-195.

3. J. Hagerman, Ze Sveedish Chef, http://www.almac.co.uk/chef/
chef.html

4. M. Okrand, The Klingon Dictionary: English/Klingon Klingon/

English, Pocket Books, 1992.

5. H. Robinson, “Using Poka-Yoke Techniques for Early Defect
Detection,” Proceeding of the Sixth Annual Conference on

Software Testing, Analysis and Review, 1997, pp. 119-142.

6. S. Shingo, Zero Quality Control: Source Inspection and the

Poka-yoke System, Productivity Press, 1986.

7. S. Chakrabarti and H. Robinson, “Testing CDE in Sixty Lan-
guages: One Test Is All It Takes,” Proceedings of the Fourteenth

International Conference on Testing Computer Software, 1997,
pp. 419-428.

8. S. Chakrabarti and H. Robinson, “Catching Bugs in the Web:
Using the World Wide Web to Detect Software Localization
Defects,” Proceedings of the Tenth International Software

Quality Week, 1997, p. 7A2.

UNIX is a registered trademark of The Open Group.


