Thomas W. Hutchinson

Updating a UNIX Application Suite for the
Windows NT World

Ronald R. Derynck

A project team learned some useful lessons in porting a real-time software

platform for industrial applications to an environment that typically runs

desktop applications such as word processors, database programs, and

spreadsheet applications.

Thomas W. Hutchinson
An R&D project manager
at the HP Calgary Product
A Development Center,
Thomas Hutchinson is responsible for software
development of HP RTAP products. He has
been with HP since 1987. He received a BSc
degree in computer science in 1979 from the
University of Calgary. Tom was born in Taber,
Alberta, Canada. He is married and has five
children. In his leisure time he enjoys hiking,
camping, cross-country skiing, and researching
family history.

Ronald R. Derynck
Ronald Derynck is an R&D
section manager at the HP
d Calgary Product Develop-
ment Center. He was the R&D manager for the
HP Enterprise Link and HP RTAP development
programs and is now the business team leader
for both of these products. He holds BSc (1970)
and MSc (1972) degrees in electrical engineer-
ing from the University of Calgary. He came to
HP in 1986. Ron was born in Calgary, Alberta,
Canada, and his interests outside of work in-
clude biking and cross-country skiing in the
Canadian Rockies.

The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

ne of the remarkable trends in software in the 1990s has been the
influence of Microsoft! technologies on many industries. The area of industrial
automation and supervisory control is no exception. HP has updated a success-
ful UNIX"-based product to respond to this trend while maintaining many of
the product’s strengths. The product, HP RTAP (real-time application platform),
is an example of a real-world industrial application of component software

technology.

Background

HP RTAP is a complete software framework for building industrial automation
systems. It is used in a wide variety of industries and is sold mainly through
channel partners, such as system integrators, who focus on a particular
industry or geographical area. HP RTAP has been a successful product and

has been available on the UNIX operating system since 1990.

Figure 1 shows the architecture of the UNIX-based version of HP RTAP. The
core of HP RTAP is a high-performance real-time process database based on
object-oriented concepts. It contains a spreadsheet-like calculation engine.

It also has a master timekeeper, a scan system for remote devices, and
facilities for managing events, detecting alarms, recording historical data,

and determining the health of the system.

HP RTAP also contains a complete graphical user interface (GUI) including

alarm and trend displays, reports, schematics, control panels, and a suite of

Volume 50 « Number 1 < Article 3
November 1, 1998
[0 1998 Hewlett-Packard Company



Figure 1
The current UNIX-based HP RTAP architecture.

User Interface Tools
(Graphics, Plots,

Alarms)

Configuration
Tools

HP RTAP Core
(Environment
and Database)

J3jlod 9d

configuration tools for core and graphical components.
The GUI is built on an HP graphics library that is provided
for customers to build their own graphical applications.
The GUI library, in turn, is built on X-Windows and Motif.
Early versions of HP RTAP were on the X10 windows sys-
tem. Later, ports were done to X11 and Motif. Customers
were protected from changes because they were hidden
inside the HP graphics library.

The HP RTAP product was first introduced on the HP-UX
operating system and soon became known for its open
systems focus. It is now supported on several of the most
popular UNIX platforms.

This article describes some of the modifications we made
to the HP RTAP product to port it to the Windows"” NT
environment. The goals we had for this project were to:

m Offer the Windows NT market a supervisory control and
data acquisition system with the power and flexibility of
HP RTAP

= Enhance the usability of the UNIX product by allowing
full integration with the Microsoft desktop on the client
side

= Support HP corporate goals for growth and integration

of both UNIX and Windows systems, taking advantage
of the strengths of each.

Moving to Windows NT

Microsoft Windows NT has recently been gaining accep-
tance as a platform for industrial automation systems.
However, as is often the case, there is a difference of

opinion among users. Some users with mission-critical
applications are not ready to move to Windows NT. The
UNIX system, on the other hand, has been on the market
for over 10 years and is a mature, stable, and robust oper-
ating system. Other users are ready to embrace the Micro-
soft world fully because this environment better satisfies
their need to incorporate real-time information into the
decision making process. Still others want to keep the
UNIX operating system for their servers and provide the
benefits of the Microsoft world on their desktops.

We considered all this information in our plans for a
product on Windows NT. Our first major decision was to
split the product structure along client/server lines. There
was general agreement that since Microsoft dominates
the desktop world, HP RTAP needed a Windows interface.
On the other hand, opinion was still divided on the server
side, so we chose to support both UNIX and Windows NT
operating systems for servers and allow our Windows
clients to connect to both.

HP RTAP is well known and respected for its core data
server, so it was ported to Windows NT with existing
functionality but with a different graphical user interface.
Although third-party products are available to allow a
port with the Motif look and feel, we decided to rebuild

Glossary

ActiveX. A COM-based framework for software component
integration. An ActiveX Control is a prebuilt, reusable software
component that performs a particular function (often visual and
interactive) within the context of container applications such
as VisualBasic or a Web browser.

CORBA (Common Object Request Broker Architecture).
An object request broker that provides the services which
enable objects to make and receive requests and responses
in an object-oriented distributed environment.

COM (Component Object Model). A binary programming
interface standard that allows components written separately
(even in different languages) to communicate correctly.

DCOM (Distributed Component Object Model). The COM
distributed wire protocol.

OLE (Object Linking and Embedding). Windows’ compound
document protocol that allows one document to be embedded
within or linked to another document.!

Volume 50 « Number 1 « Article 3
November 1, 1998
[0 1998 Hewlett-Packard Company

The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html



parts of the HP RTAP user interface and purchase other
parts based on the new Microsoft model for component
software.

With this philosophy, we created a graphical user inter-
face based on Microsoft COM (component object model).
It provides powerful drawing and animation capabilities,
Visual Basic for applications, and a set of industrial
ActiveX controls that users can supplement by adding
their own components. For example, a user can select an
ActiveX control that looks and acts like a gauge to keep
track of filling a vessel. We also added a new configura-
tion tool that leverages from available Microsoft usability
features and emphasizes the class-based nature of the HP
RTAP database. This allows complete integration with
other tools on the Microsoft desktop. All client-side tools
use a new ActiveX component to communicate with the
HP RTAP server on either Windows NT or UNIX operating
systems.

In addition to ActiveX, another important Microsoft
technology is the ODBC (Open Database Connectivity)
standard for relational databases. Users want to create
reports using their regular spreadsheet, database, or word
processor tools. They do not want to learn a special report
generator. The new HP RTAP ODBC interface takes advan-
tage of the class-based nature of the HP RTAP database,
allowing useful queries of similar points as if they were
relational tables. For example, HP RTAP will now accept
an SQL SELECT statement for a query like “show me the
site locations for all gas wells having a flowing tempera-
ture greater than 20 degrees Celsius.”

We emphasize that the PC client-side environment is truly
a Microsoft world so that all the RTAP PC clients inte-
grate perfectly with Visual Basic 5, Visual C++ 5.0, Delphi,
Access, Excel, and all the other tools and applications
users expect. Access to the HP RTAP database and the
rest of the server environment is through ActiveX compo-
nents and ODBC. Users get all the benefits of integration
on the desktop and access to the servers on either NT or
UNIX systems. This allows existing customers with UNIX-
based HP RTAP systems to add the PC clients whenever
they are ready.

An important building block that enables this client/server
split is the HP RTAP API ActiveX control (see Figure 2).
This ActiveX control is the mechanism by which all PC
clients connect and communicate with the server. All HP
RTAP database components are represented as objects

Figure 2
New HP RTAP clients based on Microsoft OLE.

HP RTAP
Configurator

HP RTAP
Database

Development
Tools

RTAP API
ActiveX Control
Proxy Object Client (CORBA)

Third-Party
OLE Tools

Distributed Object Server (CORBA)

Win32 Clients UNIX or NT Server

with methods and properties like any other ActiveX object.
This enables the full power of the HP RTAP server-side
API, but with a much simpler object-oriented interface.
For example, Figure 3 shows a simple Visual Basic code
fragment for reading a database value. The API supports
more than simple reads and writes. It allows for more
complex operations such as caching and large grouped
data transfers. We chose to create a full object model,
allowing advanced functions such as configuration of the
database from a PC client through the ActiveX interface.

The interface seen by the user of the HP RTAP ActiveX
control is the familiar OLE-style interface seen in Visual
Basic and other desktop tools. Thus, a user, in say Visual
Basic, sees an OLE style API. On the other side of the
ActiveX control (hidden from the user) is the infrastruc-
ture for communicating with servers. We used CORBA
as the underlying platform because of its portability and
maturity.

Climbing the Learning Curve

Connecting PC clients was the largest technical challenge
that we faced in this migration project. Our development
team had years of UNIX experience, but ActiveX and
CORBA were new to us. We hired some local contractors
to alleviate this problem, but our collective learning curve
was still quite steep. The job turned out to be much bigger
and more difficult than we or the contractors expected.

One major challenge was to create an object model that
would represent all the aspects of HP RTAP and be ex-
posed to users (for example, database points and attrib-
utes). The interface had to be consistent and simple to
understand but powerful enough to support configuration

The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Volume 50 « Number 1 « Article 3
November 1, 1998
[0 1998 Hewlett-Packard Company



Figure 3

Simple Visual Basic code fragment for reading a database value.

'General declarations for the RTAP environment & db objects
Dim g_env as HPRTAPLib.Environment

Dim g_db As HPRTAPLib.Database

Dim g_pt As HPRTAPLIib.Point

Dim g_attr As HPRTAPLIb.Attribute

'Open a connection to the environment and the database when the

‘form is loaded. The environment name and host computer are
'specified in the properties of the RTAP Custom Control.

Private Sub Form_Load()

’Connect to the RTAP environment
Set g_env = HpRtapl1.Environment
g_env.Connect

’Connect to the database and read the current value

If g_env.Connected Then
Set g_db = g_env.Database
Set g_pt = g_db.PointByAlias("PT-101")
Set g_attr = g_pt.Attribute("process value”)
Labell.Caption = g_attr.Value

End If

End Sub

and fast access to values. The resulting object model has
about 40 classes and over 300 methods and properties.

After the object model was defined, we had to implement
it in the ActiveX control and CORBA layers. Aside from
learning how ActiveX and CORBA work, developing this
code was not particularly difficult. We were familiar with
the HP RTAP API, and programs that receive CORBA
requests on the server side were fairly straightforward to
write and implement.

Another challenging area was the memory allocation
model. Both COM and CORBA base their memory
schemes on the concept of reference counts. In principle,
it is simple: for every created object, a counter is main-
tained on how many times the object is used, and when
that count drops to zero, it is safe to delete the object.
However, in practice it is not so simple, and an error can
have serious consequences. Freeing an object too soon
can cause invalid memory references later, leading to a
disastrous failure of the program. Failing to free the object
can create a memory leak, which leads to a slower death
but is still fatal in a program that must run for weeks or

The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

months. In particular, CORBA implementations do not
automatically forward or synchronize reference counts
between the client and the server, which became quite
difficult for us to manage.

Our first implementation uses CORBA because it is a
mature technology and is available on Windows NT and
all the UNIX platforms that we support.

Scanning the Results

Porting the HP RTAP server to Windows NT maintains all
its UNIX functionality and existing API. It should be noted
that this server, even on a PC, still retains some of its UNIX
behavior. We believe this is a reasonable trade-off because
it provides the following advantages:

= It maintains compatibility with UNIX servers, allowing
the same clients to work with both.

m |t gives customers a migration path for their current
and future server-side applications.

= |t provides scalability that PC-only software cannot
match.

Volume 50 « Number 1 < Article 3
November 1, 1998
[0 1998 Hewlett-Packard Company



These modifications to HP RTAP met our goals for the
project.

Conclusion

This migration from UNIX to Windows NT has taught us
a lot about new technologies that will be useful in future
development efforts. In particular, we learned two sur-
prising lessons about this type of project.

First, it is not any easier to develop complex software
on Windows NT than it is on a UNIX operating system.
There is a tremendous framework available for making
applications easier for users to use, and the infrastructure
is definitely improving for developers as well—at least for
certain kinds of applications. For the kinds of industrial
automation software that we write, our development
schedules cannot be made significantly shorter just
because we are on Windows NT.

Secondly, we have learned useful lessons about using
third-party software to develop applications. We have
gone from an environment in which we are in control
of everything to one in which we rely on many pieces of

The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

software from at least six vendors (not including Micro-
soft). This has many implications for release scheduling,
documentation, and reliability of the end product. It has
caused problems and will undoubtedly continue to do so.
However, in the final analysis, we are convinced that
there are many gains to be made from Microsoft’s compo-
nent software model and from generally being able to use
software created by others.

1. A. Freedman, The Computer Glossary, AMACOM, 1995, p. 276.

UNIX is a registered trademark of The Open Group.
Microsoft is a U.S. registered trademark of Microsoft Corporation.
Windows is a U.S. registered trademark of Microsoft Corporation.

@ Online Information

Additional information about HP RTAP is available at:

http://www.hp.com/go/ais

Volume 50 « Number 1 « Article 3
November 1, 1998
[0 1998 Hewlett-Packard Company


http://www.hp.com/go/ais

