
Volume 50 • Number 1 • Article 2
November 1, 1998

 1998 Hewlett-Packard Company

13
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

OTDR APIs Enable Customers to Build Their
Own Systems

In the past few years, OTDRs have evolved from being used only as standalone

measurement instruments with limited functionality to become key instruments

for servicing and characterizing global fiber-optic communication links. This

trend has spurred the creation of standard file formats for OTDR data and

standard software interfaces to control OTDRs remotely.

Optical Time Domain Reflectometers (OTDRs) have become key

instruments for characterizing fiber-optic communication links. They are

used to test the transmission performance of optical fibers by an optical

pulse-response measurement method. During installation and maintenance of

networks, OTDRs are primarily used to verify fiber and component parameters

like optical loss and reflectance. The basic result from an OTDR measurement

is the characteristic signature of the link called a trace, which is the amount of

reflected light recorded versus time and distance. For an OTDR measurement,

parameters such as pulse width, wavelength, range, and refractive index have

to be defined. The trace can be postprocessed by a scantrace algorithm, which

is used to detect faults, bad connections, and so on.

Today, optical network operators are driven by the need for high-quality service

and high flexibility for quickly evolving the network according to market needs.

The ability to access information about the fiber plant is essential for configura-

tion, fiber network upgrade, and cost-effective maintenance.

Thus, many network operators archive installation data to be used as a

reference for later comparisons during the lifetime of the network. OTDR

measurement files form the core of this data collection. The total amount of

data increases exponentially each year because of the worldwide deployment

of optical fibers.

�
���	 �
�	

���� ��
��

�
���	 �
�	

A software engineer at the

HP Optical Communication

Measurements Operation,

Torsten Born is presently the technical supervi-

sor for the OTDR toolkit and other projects and

is the HP contact for the Bellcore SOR (stan-

dard OTDR record) file format. He joined HP

after graduating from the University of Pader-

born in 1994 with a Diplom Ingenieur in electri-

cal engineering (focus on computer science).

He was born in Hamburg, Germany, and his

recreational interests include photography,

music, traveling, volleyball, and inline skating.

���� ��
��

Peter Thoma is an R&D

project manager for the

mini-OTDR HP E600A. He

is currently investigating future optical network

testing. He came to the HP Böblingen Instru-

ment division in 1993. He received a Diplom

Ingenieur in technical optics and control sys-

tems from the University of Stuttgart in 1984.

Peter was born in Tuebingen, Germany. He is

married and has three children.

Volume 50 • Number 1 • Article 2
November 1, 1998

 1998 Hewlett-Packard Company

14
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Figure 1

Remote OTDR control.

Rack OTDR

Rack OTDR

Rack OTDR

Rack OTDR

RS-232 Multiport Card

Mainframe OTDR

RS-232

Via Modem

In some networks, OTDRs are not only being used as
operator-based instruments but are also being integrated
as monitoring probes at the terminal and are controlled
remotely (see Figure 1). With this approach the link
quality of fibers and cables can be checked online. Res-
toration and repair can be optimized in case of a failure.
Degradation can even be detected before the transmission
quality suffers.

These trends call for a broader use of standards in OTDRs,
such as standard file formats, standard remote interfaces,
and application support with these standards.

Hewlett Packard provides a range of products (for exam-
ple, the HP E6090A OTDR toolkit and the HP 81700 Series
remote fiber test system) that offer complete solutions for
monitoring OTDR measurement data during the complete
network life cycle. These solutions are based on the TMN
(Telecommunications Management Network) approach
and use standard databases and interfaces.1

Market Needs

The telecommunications environment has a number of
requirements for customers and solution providers like
Hewlett-Packard. For system software that works with
OTDR measurement data, these requirements include:

� Data portability. Over the lifetime of an optical fiber
(greater than 20 years), all acquired measurement
data must be accessible. Thus, old data formats must
be supported. This also implies compliance with indus-
try standards such as the Bellcore OTDR file format.2

� Multivendor capability. Measurement data is typically
generated by instruments from various vendors.

� Quality. The software volume covered by tests grows
with every new product generation.

� Cost-effective development. Since the general principles
of the software remain the same when developing a
new product, it is very important to offer a large reuse
potential to save development resources and allow cost-
effective development.

� Knowledge concentration. Most customers do not have
expertise in OTDR measurement data analysis.

� Integration into customer-specific systems. Besides
integrating OTDR data into existing customer asset
management systems, the software should also be able
to:

� Establish communication with an instrument

� Provide instrument control

� Decode and encode OTDR measurement data

� Perform offline analysis of measurement data.

� Long-term consistency. To follow the technological
evolution of operating systems or measurement cap-
abilities, a solid platform (operating system) is required
for future migrations.

To address these market needs, HP offers two libraries:
OTDRAPI and OTDRCAPI, which are application program-
ming interfaces that are based on HP’s OTDR design and

Volume 50 • Number 1 • Article 2
November 1, 1998

 1998 Hewlett-Packard Company

15
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

application knowledge. These libraries allow customers
to postprocess measurement results and control the
OTDRs from their own software environment. These
libraries are compiled as 16- or 32-bit Windows DLLs
(dynamic link libraries) and offer interfaces to standard C
and Visual Basic. Both libraries are designed to work to-
gether and offer customers a transparent programming
environment that can be integrated into any proprietary
system software.

The rest of this article describes the features and imple-
mentation details of the OTDRAPI and OTDRCAPI
libraries.

Solutions

Features offered in the OTDRAPI library include loading
and storing measurement data in standard Bellcore format,
performing analysis operations (scantrace, loss calcula-
tions), and creating configuration* files and templates.
The OTDRCAPI provides complete encapsulation of the
serial interface and the SCPI (Standard Commands for
Programmable Instruments) command language. Both
libraries provide access to all measurement data and
parameters on the remote OTDR.

The hardware component is a faceless OTDR for system
integration, the HP E605x rack OTDR, which offers maxi-
mum measurement accuracy at a minimum price. The
OTDR APIs help customers to write their own system
software around this measurement hardware without the
need to be OTDR specialists or have intricate serial inter-
face knowledge. By encapsulating the communications
functions, it is possible to offer optimal connectivity and
data transmission performance as well as transparent
error handling.

Standards

The OTDR libraries support two industry standards: the
Bellcore file format for optical data and the SCPI com-
mand language for communicating with the instrument.

Bellcore File Format. In the past, every OTDR manufac-
turer had at least one file format of its own for storing
OTDR measurement results. This has been a problem for
the customers who have to cooperate with companies

* The configuration file contains a subset of all instrument settings, including measurement
parameters that are needed to configure a measurement. This allows all necessary
parameters to be sent in just two commands (file transfer and load setting) in a very
compact format to the OTDR.

that use different measurement equipment and data for-
mats. Since several companies are involved in manufactur-
ing, installing, monitoring, and servicing optical fibers, a
common data format and documentation standard has
become necessary. The Bellcore SOR (standard OTDR
record) format is the first attempt to create a common,
portable OTDR data format and overcome these problems.

Although the SOR format solves the data exchangeability
problems, it generates some new tasks for those customers
who need to decode the data because SOR:

� Is in binary format

� Is a “living” standard in that it will experience regular
updates

� Represents a superset of OTDR data from different
manufacturers, so that its structure is complicated, and
it contains data that may not be relevant to all customers

� Stores data in uncommon formats for portability.

Why would a customer want to decode the SOR? The main
reason for decoding a binary data file is to create docu-
mentation. Typically, customers have their own documen-
tation rules (for example, how to organize the different
OTDR data on a printed report). There is no standard rule
about which data to use and how to interpret it.

SCPI Remote Language. SCPI is a standard that is being
driven by Hewlett-Packard. Many HP instruments support
SCPI for remote control via HP-IB (IEEE 488.1, IEC 625),
RS-232, or LAN.

SCPI uses ASCII commands to offer a functional interface
to the instrument. Therefore, long-term and multivendor
compatibility are taken care of by design. The complete
programming language is organized in a tree structure in
which each root represents a different view of the instru-
ment’s measurement or configuration data. Branches
allow for accessing the relevant data of any particular
view. For example, changing the instrument’s serial baud
rate is achieved by using a command from the SYSTEM
tree, which allows for accessing configuration data. For
example:

SYSTEM:COMMUNICATE:SERIAL:BAUDRATE 57600

where COMMUNICATE indicates that the data is related to
communication, SERIAL accesses data for the serial inter-
face, and BAUDRATE indicates the actual value.

Volume 50 • Number 1 • Article 2
November 1, 1998

 1998 Hewlett-Packard Company

16
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Since commands can become quite large using such
syntax, SCPI defines a short form that only uses the first
three or four characters of each branch:

SYST:COMM:SER:BAUD 57600

If the instrument supports more than one serial interface,
the command can be adjusted to address the correct port.
For example,

SYST:COMM:SER2:BAUD 57600

addresses serial port 2.

Querying the instrument’s configuration is achieved by
the same command with a “?” instead of a value appended
to the command string.

SYST:COMM:SER2:BAUD?

For more detailed information about SCPI see reference 3.

SCPI also defines the instrument’s behavior for such things
as syntax errors and parameter overflows and underflows.
Higher-level interfaces have been defined on top of the
SCPI language (for example, the VISA plug-and-play
drivers that offer an interface to applications such as
HP VEE or LabView from National Instruments).

Although remote control of an OTDR instrument mainly
serves the needs of a monitoring application, it also helps
to reduce the need to maintain an engineering staff with
a lot of knowledge about fiber-optic measurements. For
example, one engineer can set up and control several
measurements from the central office, while field techni-
cians can focus on setting up the equipment at various
measurement sites. This allows instrument control to be
done by modem.

The OTDRCAPI library allows controlling an OTDR
without even knowing the SCPI language because the
library offers a high-level functional interface for the
most common applications. For special applications,
the OTDRCAPI library offers pass-through functions,
which allow sending commands directly to the instrument
without checking or processing. This provides complete
transparency.

Software Architecture Considerations

When designing system software, several aspects have to
be considered. First the operating system and hardware
platform play an important role. Since the WINTEL com-
bination (Microsoft Windows/95/NT � Intel processor)
is becoming more and more standard, we have focused

on the Windows operating systems for our APIs. However,
since most of the API libraries’ implementation is done in
standard C and C++, a port to a real-time or HP-UX oper-
ating system would be quite easy.

The interfaces to both API libraries are standard C, C++,
and Visual Basic. Visual Basic enables customers to rap-
idly prototype applications, while standard C allows the
creation of a very elaborate software system with good
performance.

Implementation Details

Both libraries are subject to regular updates because the
Bellcore and SCPI standards are living standards. There-
fore, a major focus has been put into a generic definition
for the API function calls because these interfaces will
probably stay constant while some dynamic link libraries
may change.

OTDRAPI. The core of the OTDRAPI library is a C++
library called OTDRLIB. This library is also an important
element of all OTDR products such as the HP E4310A
mainframe OTDR, the HP E6000 mini OTDR, the HP
E6090 OTDR toolkit, the HP E605x rack OTDR, and the
HP 81700 Series 200 remote fiber test system. This library
provides all the mathematical and file access functions,
which guarantees that all changes to the instruments’
firmware can easily be updated in the OTDRAPI library.

Figure 2 shows HP OTDR products and their associated
operating systems that are already covered by the OTDR-
LIB. The data storage shown in Figure 2 contains the
following OTDR measurement data:

� Trace data points

� Measurement parameters

� Hardware-specific data

� Event and landmark tables

� Trace information such as cable and fiber identifiers.

All OTDRLIB internal definitions (such as structures and
constants) are encapsulated by the OTDRAPI library, so
that even major changes to internal data handling will not
affect the library’s external interfaces such as function
calls and data types.

We decided not to offer an object-oriented C++ interface
because standard C is already a subset. We chose to give

Volume 50 • Number 1 • Article 2
November 1, 1998

 1998 Hewlett-Packard Company

17
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

HP E4310A OTDR HP E4320A
PC Software

HP E6000A OTDR
HP E605xA OTDR

HP E5510A RFTS HP E6090A
OTDR Toolkit

HP OTDRAPI C and
Visual Basic Library

OTDRLIB:
• Data Storage
• Scantrace Algorithm
• Loss Calculation Routines
• Bellcore File Format Reader and Writer
• HP 8146 Reader

Windows 95 Windows 95
Windows NT 4.0

pSOS HP-UX Windows 3.x
Windows 95
Windows NT

Windows 3.x
Windows 95
Windows NT

Operating
Systems

Figure 2

HP OTDR products and their associated operating systems covered by OTDRLIB.

customers the flexibility of defining their own objects
depending on the available software structure.

Figure 3 shows the internal architecture for the OTDRAPI
library. The OTDRAPI library allows read access to all
data in the internal Bellcore data storage. However, it
is not possible to modify core measurement data such
as trace data, measurement parameters, and hardware-
specific data. This guarantees measurement data integ-
rity under all circumstances. It is possible to modify all
documentation data such as the event table or the trace
comments.

Figure 3

The internal architecture for the OTDRAPI library.

Scantrace

Trace
Mathematics

Bellcore
Read/Write

HP 8146
Reader

Internal
Bellcore

Data
Storage

OTDRAPI
(C and Visual Basic Calls)

OTDRLIB (C)

The library can also be used to define a set of measure-
ment parameters for a new measurement that can then be
stored in a configuration file.

Because of the large amount of data handled internally,
MS-DOS is not supported. The size of one Bellcore trace
normally exceeds 32K bytes, and we prefer to use flat
memory internally. For 16-bit Windows, we were able to
minimize the restrictions by using a large memory model,
which is unfortunately not possible with standard MS-DOS.

OTDRCAPI. One major problem that we had to overcome
with the OTDRCAPI library is the cumbersome implemen-
tation of serial communications under different operating
systems. Even the different Windows operating systems
do not have a consistent interface. To have a stable level,
we decided to use CommLib from GreenLeaf as a serial
interface abstraction layer. The CommLib offers a consis-
tent function layer for initializing, opening, closing, and
communicating over a serial interface. However, the cus-
tomer will not see any of the GreenLeaf functions because
the OTDRCAPI library encapsulates the instrument’s SCPI
remote language (see Figure 4).

For example, opening a communication with an OTDR
instrument using the OTDRCAPI library involves:

� Configuring the baud rate, handshake, and parity

� Opening the serial interface

� Reading the instrument’s identification

� Configuring some of the OTDRCAPI functions
regarding the detected instrument type

Volume 50 • Number 1 • Article 2
November 1, 1998

 1998 Hewlett-Packard Company

18
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Figure 4

The OTDRCAPI library encapsulates the SCPI calls.

OTDRCAPI

SCPI Abstraction
Layer

GreenLeaf CommLib
Serial Abstraction Layer

RS-232

Internal
Data

Storage

� Reading the instrument’s status (for example,
measurement running)

� Switching to a higher transfer baud rate if necessary

� Returning an error when one of the above operations
fails.

The same error handling applies to all other functions
such as accessing trace data, measurement parameters,
and event tables (see Figure 5). Using a higher transfer

Figure 5

OTDR function calls from the host accessing information
from the OTDR instrument.

OTDRCAPI Function Calls
from Host Software

OTDR

Measurement
Parameters

Hardware-
Specific Data

Event and
Landmark

Table

Trace
Information

Trace Data
(Maximum

16,000 Points)

Measurement
Parameters?

Event Table?

RS-232

baud rate is useful if the instrument always boots at a de-
fault baud rate (19.2 Kbits/s) because transferring large
amounts of measurement data requires a higher transfer
rate (115.2 Kbits/s). The OTDRCAPI library takes care of
all synchronization, necessary delays, error handling, and
returning to the default baud rate when the port is closed.

Unlike the internal data storage for the OTDRAPI library,
the OTDRCAPI library holds only a part of the Bellcore
file. The OTDRCAPI library only provides a window to
the Bellcore data stored on the instrument. Therefore,
because all data structures are automatically handled
between the OTDRCAPI and OTDRAPI libraries, the pro-
grammer receives the same data structures when reading
from a remote instrument as when reading data from a
Bellcore file. Communication between the two libraries
can be handled by either using the same data structures
for items such as parameters and trace data or passing a
storage pointer from the OTDRAPI library to the OTDR-
CAPI library.

By combining both APIs, it is possible to read a complete
Bellcore trace from a remote instrument into the OTDR-
API’s internal Bellcore storage and then perform all data
and mathematical operations on this data locally using
the functions in the OTDRAPI library. This capability
allows distribution of the steps of an OTDR measurement
between the OTDR and the controlling host software. The
following steps illustrate this concept:

� Perform the measurement on the OTDR without
scantrace

� Upload the data to the host

� Perform the scantrace on the host (this will help to im-
prove performance)

� Postprocess the event table on the host

� Edit trace comments, event comments, and
landmarks on the host

� Download the data back to the OTDR

� Store the measurement on the host and OTDR.

Figure 6 shows a programming example that demon-
strates how simple the implementation of the steps listed
above can be using the two APIs. All calls with the prefix
OTDRCOM are from the OTDRCAPI library, and all calls
with the prefix OTDR are from the OTDRAPI library.

Volume 50 • Number 1 • Article 2
November 1, 1998

 1998 Hewlett-Packard Company

19
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

// declarations ...
COMDEV pComdev; // the communications
 // device pointer
OTDRP pOTDRapi; // the OTDRAPI pointer
short status; // holds the status of
 // function calls

// initialize OTDRCAPI ...
if(OTDRCOMInitLib(NULL))
 {
 printf(”Unable to initialize
 OTDRCAPI!\n”;
 exit(0);
 }

// initialize port ...
pComdev = OTDRCOMInitPort(&status, ”COM1”);
if(status)
 {
 printf(”Error: %s\n”,
 OTDRCOMStatusMessage(pComdev));
 exit(0);
 }

// ... code for setting up the port goes
// here ...

// open the port ...
if(OTDRCOMOpenPort(pComdev))
 {
 printf(”Error opening the serial
 port!\n”);
 exit(0);
 }

// initialize the OTDRAPI; further error
// checking not listed!
pOTDRapi = OTDRInitLib (&status);

// start a remote measurement and wait
// for 30 sec...
OTDRCOMStartMeasurement(pComdev);
Sleep(30)

Figure 6

Example of code using OTDRAPI and OTDRCAPI library functions.

// stop the measurement ...
OTDRCOMStopMeasurement(pComdev);

// check if the measurement is stopped ...
BOOL bRunning=TRUE;
OTDRCOMIsMeasurementInProgress(pComdev,
&bRunning);
while (bRunning)
 {
 Sleep(500);
 OTDRCOMIsMeasurementInProgress(pComdev,
 &bRunning);
 }

// load the measurement data into the
// OTDRAPI ...
OTDRCOMGetFileToAPI(pComdev, pOTDRapi,
NULL);

// perform a scantrace locally; maybe set
// parameters before ...
OTDRScanTrace(pOTDRapi, NULL);

// send the data back to the OTDR ...
OTDRCOMSendFileFromAPI(pComdev, pOTDRapi,
NULL);

// store locally ...
OTDRSaveTrace(pOTDRapi, ”LOCAL.SOR”);

// store remotely ...
OTDRCOMSaveCurrentTrace(pComdev,
”REMOTE.SOR”);

// clean up all pointers ...
OTDRCOMClosePort(pComdev);
OTDRCOMFreePort(pComdev);
OTDRFreeLib(pOTDRapi);

Volume 50 • Number 1 • Article 2
November 1, 1998

 1998 Hewlett-Packard Company

20
The Hewlett-Packard Journal
An Online Publication
http://www.hp.com/hpj/journal.html

Outlook

Both libraries will be subject to regular updates, as the
Bellcore and the SCPI standards develop further. Bellcore
plans to release a new revision of the SOR format before
middle of 1998, which must be updated in the OTDRAPI
library. Also the remote function set of the HP E60xx and
HP E4310 OTDRs is growing.

Another area of development is the number of supported
platforms. Currently, all Windows platforms are supported
(16-bit only with a large memory model). There might
emerge a need for UNIX versions or even real-time
operating systems like pSOS�.

The OTDRAPI library uses no Windows-specific functions,
so a port to other 32-bit platforms will be quite easy. For
the OTDRCAPI library, the RS-232 abstraction layer will
need to be replaced when porting to another operating
system. For example, the GreenLeaf CommLib approach
might not work on a UNIX operating system.

Other elements such as the scantrace algorithm or the loss
calculation routines will experience regular improvements
that will also be updated in the OTDRAPI library.

Conclusion

The OTDRAPI and OTDRCAPI libraries offer a cost-effec-
tive, high-quality solution for fiber-optic system integrators.
This was achieved by reuse of the software modules de-
veloped for our OTDR products.

This approach provides a fast development time for cus-
tomers and guarantees that they will benefit from future
enhancements of the remote control facilities and the data
handling (Bellcore file format and scantrace algorithm) of
Hewlett-Packard’s OTDRs.

By offering these APIs, we enable the customers to maxi-
mize the benefit obtained from their OTDRs.

Acknowledgments

The authors would like to thank the OTDR software team,
especially Jürgen Sang, Alf Clement, Joachim Winkler,
Jonathan McEwan, and Oliver Berger for their contribu-
tions. We also want to thank John Peters at Bellcore.

References

1. J. Nemeth-Johannes, “A Standardized Instrument Programming
Language Based on IEEE Standard 488.2,” Autotestcon ’89.

URL: hpswtsvr.lvld.hp.com/goodstuff/standards/scpi/index.html

2. Generic Requirements for Optical Time Domain Reflectome-

ters, GR-196, no. 1, Bellcore, 1995 (Rev. 1, December 1997).

URL: www.bellcore.com

3. P. Ghadayammuri, “A Platform for Building Integrated Tele-
communications Network Management Applications,” Hewlett-

Packard Journal, Vol. 47, no. 5, October 1996.

Bibliography

1. T. Born, “OTDR Measurements Harmonize With Bellcore
Standard”, Test & Measurement World, August, 1997, pp. 37-38,
Test & Measurement Europe, November, 1997, pp. 21-24.

LabView a registered trademark of National Intruments..

HP–UX 10.20 and later and HP-UX 11.00 and later (in both 32- and 64-bit configurations) on all
HP 9000 computers are Open Group UNIX 95 branded products.

UNIX is a registered trademark of The Open Group.

Windows is a U.S. registered trademark of Microsoft Corporation.

Microsoft and MS-DOS are U.S. registered trademarks of Microsoft Corporation.

W W W

 Online Information

Additional information about the OTDR is available at:

� http://www.tmo.hp.com/tmo/datasheets/English/
HPE6090A.html

� http://www.tmo.hp.com/tmo/datasheets/English/
HPE6000A.html

� http://www.tmo.hp.com/tmo/datasheets/English/
HP8147.html

� http://www.tmo.hp.com/tmo/datasheets/English/
HP81700_Series_200.html

http://www.tmo.hp.com/tmo/datasheets/English/HPE6090A.html
http://www.tmo.hp.com/tmo/datasheets/English/HPE6000A.html
http://www.tmo.hp.com/tmo/datasheets/English/HP8147.html
http://www.tmo.hp.com/tmo/datasheets/English/HP81700_Series_200.html

