
62 May 1998 • The Hewlett-Packard JournalArticle 9 • 1998 Hewlett Packard Company

Linking Enterprise Business Systems to the
Factory Floor

Information is the fuel that drives today’s business enterprises. The ability

to link different components in the enterprise together in a user-friendly and

transparent manner increases the effectiveness of companies involved in

manufacturing and production.

Computers have had a profound effect on how companies conduct

business. They are used to run enterprise business software and to automate

factory-floor production. While this has been a great benefit, the level of

coordination between computers running unrelated application software is

usually limited. This is because such data transfers are difficult to implement,

often requiring manual intervention or customized software. Until recently,

off-the-shelf data transfer solutions were not available.

HP Enterprise Link is a middleware software product that increases the

effectiveness of companies involved in manufacturing and production. It allows

business management software running at the enterprise level, such as SAP’s

R/3 product, to exchange information (via electronic transfer) with software

applications running on the factory floor. It also allows software applications

running on the factory floor to exchange information with each other.

HP Enterprise Link is available for HP 9000 computers running the HP-UX*

operating system and PC platforms running Microsoft’s Windows NT

operating system.

This article will discuss the evolution of the link between business software

systems and factory automation systems, and the functionality provided in HP

Enterprise Link to enable these two environments to communicate.

Background

Initially, only large corporations could afford computers. They ran batch-

oriented enterprise business software to do payroll, scheduling, and inventory.

���� �� ����	�

���� �� ����	�

Kenn Jennyc is a software

engineer at the HP Lake

Stevens Division. He

worked on the software design, development,

and quality assurance for the HP Enterprise

Link. Before that he worked on software design

and development for the RTAP (real-time appli-

cation platform) product. He received a BSEE

degree from the University of Calgary in 1983

and came to HP in 1989. Kenn was born in

Calgary, Alberta, Canada, is married, and has

two children. In his spare time he likes to fly

his home-built aircraft and dabble in analog

electronics.

63 May 1998 • The Hewlett-Packard JournalArticle 9 • 1998 Hewlett Packard Company

As the cost of computing dropped, smaller companies
began using computers to run business software, and
companies involved in manufacturing began using them
to automate factory-floor production.

Although factory-floor automation led to improved effi-
ciency and productivity, it was usually conducted on a
piecemeal basis. Different portions of an assembly line
were often automated at different times and often with
different computer equipment, depending on the capabil-
ities of computer equipment available at the time of
purchase. As a result, today’s factory-floor computers are
usually isolated hosts, dedicated to automating selected
steps in production. While various factory-floor functions
are automated, they do not necessarily communicate with
one another. They are isolated in “islands of automation.”
To make matters worse, the development of program-
mable logic controllers (PLCs) and other dedicated “smart”
factory-floor devices has increased the number of isolated
computers, making the goal of integrated factory-floor
computation that much harder to achieve.

While production software was generally used for smaller,
more isolated problems, business software was used to
solve larger company-wide problems. Furthermore, while

production software was more real-time oriented, busi-
ness software was more transaction and batch oriented.
These differing needs caused business systems to evolve
with little concern for the kind of computing found on the
factory floor. Similarly, production systems evolved with
little concern for the kind of computing found at the
enterprise level. As a result, many enterprise-level business
systems and factory-floor computers are not able to inter-
communicate. Figure 1 shows an example of the com-
ponents that make up a typical enterprise and factory-
floor environment.

The net effect is that today companies find it difficult and
expensive to integrate factory-floor systems with each
other and with business software running at the enterprise
level. This is unfortunate because the dynamic nature of
the marketplace and the desire to reduce inventory levels
have made the need for such integration very high.

Marketplace Dynamics

Over the last decade, the marketplace has become in-
creasingly dynamic, forcing businesses to adapt ever more
quickly to changing market conditions. Computer systems
now experience a continuous stream of modifications and

Figure 1

Computing at the enterprise and factory-floor levels.

Enterprise Business System

Payroll Scheduling Inventory

Factory 1 Factory 2

Component
Pick-and-Place

Station

Wave Solder
Station PLC Station

Mixing
Machine
Station

Electronic
Bottle

Inspector

Enterprise
Level

Factory-Floor
Level

64 May 1998 • The Hewlett-Packard JournalArticle 9 • 1998 Hewlett Packard Company

upgrades. Generally, this has forced business systems to
adopt more real-time behaviors and production systems to
become more flexible. It has also increased the frequency
and volume of data transferred between business and
production systems and between the many production
systems.

There has always been a requirement to transfer informa-
tion between computers in an organization, both horizon-
tally between computers at the same functional level, and
vertically between computers at different functional levels.
In the past, manual data entry was an often-used approach.
Hard-copy printouts generated by business management
systems would be provided to operators who manually
entered the information into one or more production
systems. Although this was an acceptable approach in the
past, such an approach is not sufficiently responsive in
today’s dynamic business environment. As a result, the
need for electronic data transfer capability between the
various business management and production level
computers is now very high.

Electronic Data Transfers

Integrated business software with built-in support for
data transfers between components is sometimes used
at the business management level. While this minimizes
the effort required to exchange data between the various
components of enterprise business systems, it is often
inflexible and restrictive with regard to what can be
exchanged and when exchanges occur.

Organizations that use a variety of business software
packages, rather than a single integrated package, have
typically developed custom software for electronic data
transfers between packages. Unfortunately, marketplace
dynamics require custom software to be constantly re-
worked. This ongoing rework forces companies to either
maintain in-house programming expertise or repeatedly
hire software consultants to implement needed changes.
As a result, custom data transfer software is not only ex-
pensive to develop but also costly to maintain—especially
if changes must be implemented on short notice.

On the factory floor, software programmers have been
employed to develop custom data transfer solutions that
allow the different islands of automation to communicate.
As previously noted, this approach is difficult to implement
and expensive to maintain. In addition, this approach is
often inflexible since the resulting software is usually

developed assuming that the configuration of factory-
floor systems is largely static.

When new equipment and application software are to be
integrated into the overall system, software programmers
don’t just prepare additional custom software. They must
also modify the existing custom software for all applica-
tions involved. For this reason, custom software is often
avoided, and electronic data transfer capability is fre-
quently confined to transfers between equipment and
software supplied by the same manufacturer.

Differences in hardware (and associated operating sys-
tems) and differences in the software applications them-
selves cause numerous application integration problems.
Here are a few examples:

� Data from applications running on computers that
have proprietary hardware architectures and operating
systems is often not usable on other systems.

� Different applications use different data types according
to their specific needs.

� Incompatible data structures often result because of the
different groupings of data elements by software applica-
tions. For example, an element with a common logical
definition in two applications may still be stored with
two different physical representations.

� Applications written in different languages sometimes
interpret their data values differently. For example
C and COBOL interpret binary numeric data values
differently.

What is needed, therefore, is an off-the-shelf product that
is specifically designed to interconnect applications that
were not originally designed to work together. That
product must automatically, quickly, efficiently, and cost-
effectively integrate applications having incompatible
programming interfaces at the same or different func-
tional levels of an organization. HP Enterprise Link is
such a product.

HP Enterprise Link is an interactive point-and-click soft-
ware product that is used to connect software applica-
tions (such as business planning and execution systems)
to control supervisory systems found on the factory floor.
HP Enterprise Link greatly reduces the cost and effort
required to interconnect such systems while eliminating
the need for custom software.

65 May 1998 • The Hewlett-Packard JournalArticle 9 • 1998 Hewlett Packard Company

The Data Transfer Problem

The problem of transferring data from one software appli-
cation to another is conceptually simple: just fetch the data
from one system and place it in another. In practice the
problem is more complex. The following issues arise when
trying to implement electronic data transfer solutions:

� There must be a way to obtain data from the software
application serving as the data source. Such access, for
example, might be provided by a library of callable C
functions.

� There must be a way to forward data to the software
application serving as the data destination. For example,
data might be placed in messages that are sent to the
destination application.

� There must be a specification of exactly what to fetch
from the source application and exactly where to place
it in the destination application.

� The data being transferred must be translated from
the format provided by the data source to the format
required by the data destination.

� There must be a specification of the circumstances
under which data should be transferred and a way to
detect when these circumstances occur.

All of these issues are addressed in HP Enterprise Link.

HP Enterprise Link

HP Enterprise Link product consists of the three compo-
nents shown in Figure 2:

� An interactive configuration tool. This interactive
window-based application allows users to direct the
movement of data between two software applications.

� A data server. This noninteractive process runs in the
background. It moves data in accordance with the direc-
tives that the user specified with the configuration tool.

� Configuration files. This is the set of mappings and
trigger criteria created by users. The data is stored in
configuration files. These files are created and modified
by the configuration tool and read by the data server.

Linking Components

The HP Enterprise Link components listed above have the
common goal of enabling users to create middleware that

Figure 2

The components of HP Enterprise Link.

Configuration
Tool

Data Server

Configuration
Files

Software
Application

Software
Application

maps components with different interfaces together for
data transfer.

In HP Enterprise Link, the combination of a single source
address and a single destination address is called a map-

ping. A unit of data at the specified source address is said
to be mapped to the specified destination address. In
other words, it can be read from the specified source
address and written to the specified destination address.

Although a mapping deals with the transfer of a single
unit of data, real-world situations usually require the
transfer of many units of data simultaneously. Therefore,
HP Enterprise Link collects mappings into groups called
methods. A method contains one or more mappings.

Mappings describe what to transfer and where to transfer
it, whereas triggers describe exactly when to do the
transfer. Data is actually transferred whenever a specified
trigger condition is satisfied. This condition is called the
trigger criterion. There are many possible trigger criteria
such as:

� Whenever a unit of data at a specified source address
changes value

� Whenever a unit of data at a specified source address is
set to a specified value

� Whenever the source data becomes available—such as
arriving in a message

� At a preset time of the day or a preset day of the week.

66 May 1998 • The Hewlett-Packard JournalArticle 9 • 1998 Hewlett Packard Company

HP Enterprise Link considers trigger criteria to be part of
the definition of a method. All the mappings for a single
method share the same trigger criteria. Whenever the
trigger criteria are met, HP Enterprise Link transfers—in
unison—all the data specified by the method’s mappings.

Multiple methods can simultaneously exist in HP Enter-
prise Link. For example, a user can create one method to
transfer a particular production recipe from a business
enterprise system down to a factory-floor control system.
Conversely, raw-material consumption information for
the recipe currently in production could be transferred
periodically from the factory-floor control system up to
the business enterprise system, using a second method.

The Configuration Tool

The HP Enterprise Link configuration tool provides users
with a view of each software application’s name space,
and the tool graphically depicts what data to transfer and
under what circumstances such transfers should occur
(Figure 3).

The HP Enterprise Link configuration tool is composed
of communication objects and a graphical user interface
(GUI). Communication objects are used to obtain name-
space data that is unique to each application and to pro-
vide application-specific windows. The configuration tool
provides the user with an easy-to-use point-and-click style
GUI.

Figure 3

The HP Enterprise Link configuration tool.

GUI

Configuration
Files

Software
Application

Software
Application

Communication
Object

Communication
Object

All dependencies on particular software applications are
encapsulated in communication objects. The configura-
tion tool’s communication objects provide the following
functionality:

� They fetch namespace information from communicating
software applications for presentation to the user.

� They provide routines to create and manage application
dependent control panel widgets, such as those used
to specify triggers unique to a particular software
application.

� They provide routines to tell the GUI exactly what func-
tionality is supported by a communication object. For
example, can the application software serve only as a
data source (supply data values), or can it serve as both
a data source and a data destination (both supply and
use data values)?

There are three important windows in the configuration
tool’s GUI: the Edit Method window, the Edit Mapping
window, and the Trigger Configuration window.

Edit Mapping. The Edit Mapping window is used to create
new mappings (Figure 4). The namespaces of both the
source software application and the destination software
application are shown. They are graphically displayed
as tree diagrams. This makes it easy for users to specify
which data to move where. They don’t have to remember
the names of data sources or data destinations. Instead
they just choose from the displayed list of possibilities.
The side-by-side display of application namespaces makes
it much easier to integrate the applications.

Tree diagrams are used because they make large name-
spaces manageable. A linear namespace display was
rejected early in the design of HP Enterprise Link because
a flat list representation would only be manageable with
software applications having a small namespace. Another
advantage of tree diagrams is that most users are already
familiar with them from file selector windows found in
many software applications.

To create a new mapping the user selects an item from
the Mapping Source tree diagram and an item from the
Mapping Destination tree diagram, and then clicks the Add
Mapping button. A new mapping is added to the mapping
table displayed on the Edit Method window (Figure 5).

67 May 1998 • The Hewlett-Packard JournalArticle 9 • 1998 Hewlett Packard Company

Figure 4

The Edit Mapping window.

Multiple static mappings can be created in a single step
using branch assignments. This requires that the last com-
ponent of the source and destination addresses be identi-
cal (so that appropriate mappings can be automatically
created). Mappings can also be automatically created at
the time methods are triggered. This is called dynamic
mapping and requires the user to specify algorithms that
can select source addresses and transform these addresses
to valid destination addresses.

Edit Method. The Edit Method window (Figure 5) displays
a method’s mappings as a two-column table titled Map-
pings. Source addresses appear in the left column and
destination addresses appear in the right. The data server
transfers mapped data from source addresses to destina-
tion addresses in the same order as the mappings are
listed in this table. The Mappings table makes mappings
both explicit and intuitive to the user.

This window allows the user to specify in which direction
to transfer data. All of a method’s mappings specify data
transfers in one direction—from one software application
to another. The Edit Method window also allows the user
to specify how to respond to errors that occur during data
transfers. This will be described later in more detail.

Trigger Configuration. The Trigger Configuration window
is used to define trigger criteria (Figure 6). This window
displays all possible triggers to the user, as well as the
currently configured trigger criteria. The Trigger Configura-
tion window is designed to make setting up trigger criteria
explicit and intuitive for the user.

The Trigger Configuration window is split into three groups:
time triggers, triggers unique to the source application,
and triggers unique to the destination application. Time
triggers allow the user to specify that data mapping start

68 May 1998 • The Hewlett-Packard JournalArticle 9 • 1998 Hewlett Packard Company

Figure 5

The Edit Method window.

at some specified time and repeat at a specified time
interval, but be synchronized to a specified hour/minute/
second of the day/hour/minute.

Triggers unique to the source application, such as the
RTAP (real-time application platform) triggers shown in
Figure 6, allow data to be mapped when something inter-
esting happens in the source application. For the RTAP
triggers in Figure 6 interesting events include a database
value change or the occurrence of an RTAP database
alarm. Data can also be mapped when something interest-
ing happens in the destination application.

Thus, triggers allow data transfers to be pushed from the
source application, pulled from the destination applica-
tion, or scheduled by time.

Summary. Using the windows just described, users can
create methods with the configuration tool. These methods
specify one or more mappings and associated trigger
criteria. This information is saved in one or more configu-
ration files. The data server then reads these configuration
files to implement the user’s methods.

The Data Server

The HP Enterprise Link data server is composed of com-
munication objects, a trigger manager, and a mapping

Figure 6

The Trigger Configuration window.

engine (Figure 7). Communication objects deal with the
problems of generating triggers and getting data into and
out of software applications. The trigger manager deals
with dispersing Trigger Configuration data, coordinating
trigger events, and notifying the mapping engine of trigger
events. The mapping engine deals with the problems of
reading configuration files, responding to triggers, mapping
source addresses to destination addresses, and transform-
ing the data as it is being mapped.

All software-application dependencies are encapsulated
in communication objects. Communication objects serve
as translators between external software applications and
the data server’s mapping engine—they translate the
software application’s native application program inter-
face (API) to the interface used by the mapping engine.

The interface between a communication object and the
mapping engine is standardized, with all communication
objects using the same interface. For data that is being
transferred, the interface consists solely of address-value
pairs, where the address is from the application soft-
ware’s namespace, and the value is encoded in a neutral
form. Thus a communication object only needs to be

69 May 1998 • The Hewlett-Packard JournalArticle 9 • 1998 Hewlett Packard Company

Figure 7

The components of the HP Enterprise Link data server.

Configuration
Files

Software
Application

Communication
Object

Trigger
Manager

Mapping
Engine

Software
Application

Communication
Object

Data Server

aware of its own namespace and how to convert between
the software application’s proprietary data formats and
the neutral HP Enterprise Link data format. For triggers,
the interface consists of well-documented interactions
between the trigger manager and the communication
objects.

Communication objects are usually distributed. They are
split into two parts that are interconnected by a communi-
cation channel such as a TCP/IP socket. One part of the
object is incorporated into the HP Enterprise Link data
server process, while the other runs on the same machine
as the corresponding software application. When a com-
munication object is not split into two parts, the object,
the data server, and the software application must run on
the same machine.

Communication objects communicate with their corre-
sponding software applications through whatever mecha-
nism is available. For example, this could be through a
serial port, shared memory, shared files, TCP/IP sockets,
or an application program interface (API).

When a communication object transfers data, it translates
data between the format used by the source software ap-
plication and the neutral format required by the mapping
engine. For example, for numeric values, a communica-
tion object may have to translate between binary IEEE-754
floating-point format and the mapping engine’s neutral
format.

In practice, not all data transfer attempts will be success-
ful. For example, a particular source address might have
been deleted, or a destination address may no longer
exist. The configuration tool is used to specify what the
mapping engine should do in this situation, and the data
server must detect the condition and deal with it appro-
priately. When data transfer attempts fail, the user can
have the data server do any one of the following:

� Continue mapping data (ignoring the error)

� Abort all subsequent mappings associated with the
current method

� Abort all subsequent mappings and all subsequent
methods triggered by the current trigger event (if
multiple methods were simultaneously triggered).

The interface between the communication object and
the mapping engine is designed to support transaction-
oriented data transfers, using commit and rollback. This
functionality comes into play when mapping attempts fail.
It allows the data server to undo (roll back) all data trans-
fers done in all currently processed mappings associated
with the method’s current trigger event.

The Running Data Server

When the HP Enterprise Link data server starts up, it reads
the configuration files that the user created with the con-
figuration tool. It then prepares to deal with the specified

70 May 1998 • The Hewlett-Packard JournalArticle 9 • 1998 Hewlett Packard Company

trigger criteria, usually by notifying the appropriate
communication object to detect it. Finally, it enters an
event-driven mode, waiting for the trigger criteria of any
configured method to be satisfied.

When either a source or destination communication
object in the data server detects that a method’s trigger
criteria have been satisfied, the object informs the data
server trigger manager that a method has been triggered.
This starts the mapping engine. Alternatively, if the data
server trigger manager detects that a method’s time-based
trigger criteria have been satisfied, the mapping engine
starts.

When triggered, the mapping engine requests that the
source communication object provide the current data
values at the method’s configured source addresses. The
source communication object obtains these values from
the software application, translates the format of all
fetched data values to a neutral format, and passes the
result to the mapping engine as address-value pairs, with
one such pair for each of the method’s defined mappings.

The data server mapping engine looks up the destination
address that corresponds to each source address. This
lookup results in a new list of address-value pairs, with
the address now being the destination address, and the
value unchanged (and still expressed in the mapping
engine’s neutral format). To minimize the impact on per-
formance, this lookup is implemented using a hash table.

The mapping engine sends the new list of address-value
pairs to the destination communication object. The des-
tination communication object converts the received
values into the format required by the destination software
application, and writes the converted result to the speci-
fied addresses in the destination software application.

Communication Objects and Software Applications

There are two fundamental ways for software applications
to provide communication objects access to their data:
the request-reply method and the spontaneous-message

method.

In the request-reply method, the communication object
sends a software application the address of a wanted data
unit in a request and receives its current value in a reply.
With this method the communication object controls the
data transfer. It determines which unit of data to read and
when to read it. Structured Query Language (SQL) and

real-time databases are two examples of software applica-
tions that employ the request-reply method.

In the spontaneous-message method, communication ob-
jects receive data, usually as messages, from the software
application whenever the application chooses to send it.
With this method the software application controls the
data transfer. It determines which data to provide and
when to provide it. SAP’s R/3 product is an example of
a software application using the spontaneous-message
method.

The method that a software application employs to provide
external data access determines the trigger criteria that
are possible for that application’s communication object.
The request-reply method allows event, value, and time-
based trigger criteria since the communication object
controls the data transfer. The spontaneous message
method is limited to value-based triggering (essentially
filtering) because the software application providing the
data controls the data transfer.

Spooling

The HP Enterprise Link data server’s communication
objects must cope with communication failures. This
means that outgoing data must be locally buffered until
a communication object verifies that the application soft-
ware, when acting as a destination, has successfully re-
ceived it. It also means that incoming data must either be
safely transferred through the mapping engine or locally
buffered when a communication object accepts data from
the source application software.

Spooling is especially important if the source application
is separated from the HP Enterprise Link data server by
a wide area network (WAN). WANs are considerably less
reliable than local area networks, and thus are more likely
to lose data.

In a typical HP Enterprise Link installation the data server
runs on a machine located near or on the factory floor.
Production orders are downloaded from the enterprise
level to HP Enterprise Link as soon as they are available.
The downloaded data is buffered at the factory until it is
needed. Using HP Enterprise Link in this way reduces the
probability that the factory would lack unprocessed pro-
duction orders if the WAN is down for a prolonged period
of time.

71 May 1998 • The Hewlett-Packard JournalArticle 9 • 1998 Hewlett Packard Company

Buffered data must be preserved even if the HP Enterprise
Link host machine is shut down or crashes. To do this, HP
Enterprise Link stores buffered data in disk-resident spool
files.

The amount of storage used to hold buffered data must be
restricted to protect the host computer from failure caused
by insufficient resources. HP Enterprise Link can limit the
size of spool files by controlling:

� The maximum size of spool storage

� The maximum number of messages buffered

� The age of the oldest message buffered.

The user can set any one or all of these limits, using the
HP Enterprise Link configuration tool.

Tracing

HP Enterprise Link allows the data being transferred
to be monitored by the user. The monitoring is called
tracing. Tracing is useful for creating an audit trail of the
transferred data and for debugging and testing methods.
Tracing does not affect the data being transferred.

The configuration tool is used to enable and disable trac-
ing, but it is the data server that generates trace messages
when tracing is enabled.

Data can be traced at a number of different internal loca-
tions within the data server (see Figure 8). Some of the
forms in which trace results can be expressed include:

� Data as received by a data server communication object
from a source software application. This trace data is
expressed using the source software application’s native

data format and includes the source address, the value
received or read, and the time of transfer.

� Data as sent by a data server communication object to
the destination software application. This trace data is
expressed using the destination software application’s
native data format and includes the destination address,
the value sent or written, and the time of transfer.

� Data being mapped by the mapping engine. This trace
data is expressed using the data server mapping engine’s
neutral data format and includes the source address, the
destination address, the value transferred, and the time
of transfer.

Error messages reported by the mapping engine or by
communication objects can also be included in the trace
output. This ability ensures that the relative sequencing of
data transfer messages and error messages is preserved,
which greatly aids the user when trying to troubleshoot
mapping problems.

Server Data Flow

HP Enterprise Link allows the flow of data in the data
server to be interrupted at a number of different internal
points (see Figure 9). This is useful for isolating the
effects of data mappings during debugging and testing.
When an information flow is interrupted, data does
not pass the point of interruption; instead, the data is
discarded.

The flow of information being transferred from a commu-
nication object to a software application can be inter-
rupted. Interrupting the flow here allows the data server

Figure 8

Tracing data that is transferred between applications.

Software
Application

Communication
Object

Mapping
Engine

Software
Application

Communication
Object

Error Trace
Output

SENT Data
Trace Output

RECEIVED Data
Trace Output

SENT Data
Trace Output

RECEIVED Data
Trace Output

Error Trace
Output

Error Trace
Output

MAPPED Data
Trace Output

72 May 1998 • The Hewlett-Packard JournalArticle 9 • 1998 Hewlett Packard Company

Figure 9

Interrupt locations in the data server.

Software
Application

Communication
Object

Mapping
Engine

Software
Application

Communication
Object

Receive
Interrupt Flag

Receive
Interrupt Flag

Transmit
Interrupt Flag

Transmit
Interrupt Flag

to read from mapped source addresses, map to new des-
tination addresses, and then discard the data just before
it would have been written to the destination software
application.

The flow of information being transferred from a software
application to a communication object can also be inde-
pendently interrupted. Interrupting the flow here allows
the data server to ignore all data sent to the communica-
tion object by the source software application.

Data Integrity

The HP Enterprise Link data server is carefully designed
to preserve the integrity of the data being mapped and
to map the data exactly once for each trigger event. The
design was influenced by considering how to react to
communication channel failures and data server process
terminations. The circumstances that could cause the
data server process to terminate are the following:

� If a person or software process explicitly kills the data
server process

� If the host machine suffers a hardware or software
failure, loses power, or is manually turned off.

Communication channel failures must be handled care-
fully. If the communication channel connecting a commu-
nication object to its software application fails, the data

being mapped at the time of failure must not be lost or
duplicated. Also, after normal operation of the communi-
cation channel is restored, communication between the
communication object and its application must be auto-
matically established again and all interrupted data trans-
fers restarted.

The following steps are taken to ensure data integrity
when communication channels fail:

� For data received from the source software application,
the communication object never acknowledges receipt
of the data until the data has safely been saved to a
disk-resident receive-spool file.

� Data received by the communication object from the
source software application is not removed from the
receive-spool file until the data has successfully passed
through the mapping engine and been forwarded to the
communication object responsible for sending it to the
destination software application.

� The communication object that sends data to the des-
tination software application only notifies the mapping
engine that it successfully received the data after the
data has been safely saved to a disk-resident transmit-
spool file. Also, it only removes data from the transmit-
spool file when the destination software application has
acknowledged successful receipt of the data.

73 May 1998 • The Hewlett-Packard JournalArticle 9 • 1998 Hewlett Packard Company

Conclusion

The HP Enterprise Link product greatly reduces the cost
and effort required to interconnect business management
systems (such as SAP’s R/3 product) and measurement and
control systems (such as Hewlett-Packard’s RTAP/Plus
product). HP Enterprise Link is an off-the-shelf product
that allows users to connect software applications using
an easy-to-use point and click graphical user interface.

With HP Enterprise Link, companies can minimize the
costs associated with changes made to computer systems
and adapt more quickly to changing market conditions.

Acknowledgments

The author wishes to thank Andrew Ginter and Andy Mah
for their significant contributions to the design and devel-
opment of the HP Enterprise Link product, John Burnell
for his comments during the design of the product, and
Steve Heckbert for his valuable feedback.

W W W

For more information about HP Enterprise Link, take a look
at the information located at the following URLs:

� http://www.tmo.hp.com/tmo/pia/Vantera/Index/
English/Index.html

� http://www.tmo.hp.com/tmo/pia/Vantera/Index/
English/Products.html

 Online Information

HP–UX 9.* and 10.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX 93
branded products.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open is a registered trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries.

Microsoft is a U.S. registered trademark of Microsoft Corporation.

Windows is a U.S. registered trademark of Microsoft Corporation.

� Go to Next Article
� Go to Journal Home Page

http://www.hp.com/hpj/98may/ma98a10.htm
http://www.hp.com/hpj/journal.html
http://www.tmo.hp.com/tmo/pia/Vantera/Index/English/Index.html
http://www.tmo.hp.com/tmo/pia/Vantera/Index/English/Products.html

