
51 May 1998 • The Hewlett-Packard JournalArticle 8 • 1998 Hewlett Packard Company

Delivering PCI in HP B-Class and C-Class
Workstations: A Case Study in the Challenges
of Interfacing with Industry Standards

In the highly competitive workstation market, customers demand a wide range

of cost-effective, high-performance I/O solutions. An industry-standard I/O

subsystem allows HP workstations to support the latest I/O technology.

Industry-standard I/O buses like the Peripheral Component Interconnect

(PCI) allow systems to provide a wide variety of cost-effective I/O functionality.

The desire to include more industry-standard interfaces in computer systems

continues to increase. This article points out some of the specific methodolo-

gies used to implement and verify the PCI interface in HP workstations and

describes some of the challenges associated with interfacing with industry-

standard I/O buses.

PCI for Workstations

One of the greatest challenges in designing a workstation system is determining

the best way to differentiate the design from competing products. This decision

determines where the design team will focus their efforts and have the greatest

opportunity to innovate. In the computer workstation industry, the focus is

typically on processor performance coupled with high-bandwidth, low-latency

memory connections to feed powerful graphics devices. The performance of

nongraphics I/O devices in workstations is increasing in importance, but the

availability of cost-effective solutions is still the chief concern in designing an

I/O subsystem. Rather than providing a select few exotic high-performance I/O

solutions, it is better to make sure that there is a wide range of cost-effective

solutions to provide the I/O functionality that each customer requires. Since

I/O performance is not a primary means of differentiation and since maximum

flexibility with appropriate price and performance is desired, using an

��� 	� 	����

���� �� ������

������ �� ���������

���� �� ��������

52 May 1998 • The Hewlett-Packard JournalArticle 8 • 1998 Hewlett Packard Company

industry-standard I/O bus that operates with high-volume
cards from multiple vendors is a good choice.

The PCI bus is a recently established standard that has
achieved wide acceptance in the PC industry. Most new
general-purpose I/O cards intended for use in PCs and
workstations are now being designed for PCI. The PCI
bus was developed by the PCI Special Interest Group
(PCI SIG), which was founded by Intel and now consists
of many computer vendors. PCI is designed to meet today’s
I/O performance needs and is scalable to meet future
needs. Having PCI in workstation systems allows the use
of competitively priced cards already available for use in
the high-volume PC business. It also allows workstations
to keep pace with new I/O functionality as it becomes
available, since new devices are typically designed for the
industry-standard bus first and only later (if at all) ported
to other standards. For these reasons, the PCI bus has
been implemented in the HP B-class and C-class work-
stations.

PCI Integration Effort

Integrating PCI into our workstation products required
a great deal of work by both the hardware and software
teams. The hardware effort included designing a bus
interface ASIC (application-specific integrated circuit)
to connect to the PCI bus and then performing functional
and electrical testing to make sure that the implementa-
tion would work properly. The software effort included
writing firmware to initialize and control the bus interface
ASIC and PCI cards and writing device drivers to allow
the HP-UX* operating system to make use of the PCI
cards.

The goals of the effort to bring PCI to HP workstation
products were to:

� Provide our systems with fully compatible PCI to
allow the support of a wide variety of I/O cards and
functionality

� Achieve an acceptable performance in a cost-effective
manner for cards plugged into the PCI bus

� Create a solution that does not cause performance
degradation in the CPU-memory-graphics path or in any
of the other I/O devices on other buses in the system

� Ship the first PCI-enabled workstations: the Hewlett-
Packard B132, B160, C160, and C180 systems.

Challenges

Implementing an industry-standard I/O bus might seem
to be a straightforward endeavor. The PCI interface has
a thorough specification, developed and influenced by
many experts in the field of I/O bus architectures. There
is momentum in the industry to make sure the standard
succeeds. This momentum includes card vendors work-
ing to design I/O cards, system vendors working through
the design issues of the specification, and test and mea-
surement firms developing technologies to test the design
once it exists. Many of these elements did not yet exist
and were challenges for earlier Hewlett-Packard propri-
etary I/O interface projects.

Although there were many elements in the team’s favor
that did not exist in the past, there were still some signifi-
cant tasks in integrating this industry-standard bus. These
tasks included:

� Designing the architecture for the bus interface ASIC,
which provides a high-performance interface between
the internal proprietary workstation buses and PCI

� Verifying that the bus interface ASIC does what it is
intended to do, both in compliance with PCI and in
performance goals defined by the team

� Providing the necessary system support, primarily in
the form of firmware and system software to allow
cards plugged into the slots on the bus interface ASIC
to work with the HP-UX operating system.

With these design tasks identified, there still remained
some formidable challenges for the bus interface ASIC
design and verification and the software development
teams. These challenges included ambiguities in the PCI
specification, difficulties in determining migration plans,
differences in the way PCI cards can operate within the
PCI specification, and the unavailability of PCI cards
with the necessary HP-UX drivers.

53 May 1998 • The Hewlett-Packard JournalArticle 8 • 1998 Hewlett Packard Company

Architecture

The Bus Interface ASIC

The role of the bus interface ASIC is to bridge the HP
proprietary I/O bus, called the general system connect
(GSC) bus, to the PCI bus in the HP B-class and C-class
workstations. Figures 1 and 2 show the B-class and
C-class workstation system block diagrams with the bus
interface ASIC bridging the GSC bus to the PCI bus. The
Runway bus shown in Figure 2 is a high-speed processor-
to-memory bus.1

The bus interface ASIC maps portions of the GSC bus
address space onto the PCI bus address space and vice
versa. System firmware allocates addresses to map be-
tween the GSC and PCI buses and programs this informa-
tion into configuration registers in the bus interface ASIC.
Once programmed, the bus interface ASIC performs the
following tasks:

� Forward writes transactions from the GSC bus to the
PCI bus. Since the write originates in the processor, this
task is called a processor I/O write.

� Forward reads requests from the GSC bus to the PCI
bus, waits for a PCI device to respond, and returns the

Figure 1

HP B-class workstation block diagram.

PA 7300LC
CPU To Main Memory

PCI Bus
Interface

ASIC

GSC Bus

PCI Slots GSC Slots

GSC
PCI

General System Connect
Peripheral Component Interconnect

PCI Bus

read data from the PCI bus back to the GSC bus. Since
the read originates in the processor, this task is called
a processor I/O read.

� Forward writes transactions from the PCI bus to the
GSC bus. Since the destination of the write transaction
is main memory, this task is called a direct memory
access (DMA) write.

� Forward reads requests from the PCI bus to the GSC
bus, waits for the GSC host to respond, and returns the
read data from the GSC bus to the PCI bus. Since the
source of the read data is main memory, this task is
called a DMA read.

Figure 3 shows a block diagram of the internal architec-
ture of the bus interface ASIC. The bus interface ASIC
uses five asynchronous FIFOs to send address, data, and
transaction information between the GSC and PCI buses.

Figure 2

HP C-class workstation block diagram.

PA 8000
CPU

Memory Controller

Runway to
GSC Bridge

PCI Slots GSC Slots

PCI Bus
Interface

ASIC

GSC Bus 1

Runway
Bus

GSC Bus 0

GSC
PCI

General System Connect
Peripheral Component Interconnect

PCI Bus

54 May 1998 • The Hewlett-Packard JournalArticle 8 • 1998 Hewlett Packard Company

Figure 3

A block diagram of the architecture for the bus interface ASIC.

GSC Bus

DMA
Transaction FIFO

DMA
FIFO

DMA
Read Return FIFO

Processor I/O
FIFO

Processor I/O
Read Return FIFO

GSC
Interface

PCI
Interface

Configuration
Registers

Interrupt
Controller

PCI
Arbitration

PCI Bus
CPU PCI Slots

A FIFO is a memory device that has a port for writing data
into the FIFO and a separate port for reading data out of
the FIFO. Data is read from the FIFO in the same order
that it was written into the FIFO. The GSC bus clock is
asynchronous to the PCI bus clock. For this reason, the
FIFOs need to be asynchronous. An asynchronous FIFO
allows the data to be written into the FIFO with a clock
that is asynchronous to the clock used to read data from
the FIFO.

Data flows through the bus interface ASIC are as follows:

� Processor I/O write:

� The GSC interface receives both the address and the
data for the processor I/O write from the GSC bus and
loads them into the processor I/O FIFO.

� The PCI interface arbitrates for the PCI bus.

� The PCI interface unloads the address and data from
the processor I/O FIFO and masters the write on the
PCI bus.

� Processor I/O read:

� The GSC interface receives the address for the pro-
cessor I/O read from the GSC bus and loads it into the
processor I/O FIFO.

� The PCI interface arbitrates for the PCI bus.

� The PCI interface unloads the address from the pro-
cessor I/O FIFO and masters a read on the PCI bus.

� The PCI interface waits for the read data to return and
loads the data into the processor I/O read return FIFO.

� The GSC interface unloads the processor I/O read
return FIFO and places the read data on the GSC bus.

55 May 1998 • The Hewlett-Packard JournalArticle 8 • 1998 Hewlett Packard Company

� DMA Write:

� The PCI interface receives both the address and the
data for the DMA write from the PCI bus and loads
them into the DMA FIFO.

� The PCI interface loads control information for the
write into the DMA transaction FIFO.

� The GSC interface arbitrates for the GSC bus.

� The GSC interface unloads the write command from
the DMA transaction FIFO, unloads the address and
data from the DMA FIFO, and masters the write on
the GSC bus.

� DMA Read:

� The PCI interface receives the address for the DMA
read from the PCI bus and loads it into the DMA FIFO.

� The GSC interface arbitrates for the GSC bus.

� The GSC interface unloads the address from the DMA
FIFO and masters a read on the GSC bus

� The GSC interface then waits for the read data to
return and loads the data into the DMA read return
FIFO.

� The PCI interface unloads the DMA read return FIFO
and places the read data on the PCI bus.

Architectural Challenges

One of the difficulties of joining two dissimilar I/O buses is
achieving peak I/O bus performance despite the fact that
the transaction structures are different for both I/O buses.
For example, transactions on the GSC bus are fixed length
with not more than eight words per transaction while
transactions on the PCI bus are of arbitrary length. It is
critical to create long PCI transactions to reach peak
bandwidth on the PCI bus. For better performance and
whenever possible, the bus interface ASIC coalesces mul-
tiple processor I/O write transactions from the GSC bus
into a single processor I/O write transaction on the PCI
bus. For DMA writes, the bus interface ASIC needs to de-
termine the optimal method of breaking variable-size PCI
transactions into one-, two-, four-, or eight-word GSC
transactions. The PCI interface breaks DMA writes into
packets and communicates the transaction size to
the GSC interface through the DMA transaction FIFO.

Another difficulty of joining two dissimilar I/O buses is
avoiding deadlock conditions. Deadlock conditions can
occur when a transaction begins on both the GSC and PCI
buses simultaneously. For example, if a processor I/O read
begins on the GSC bus at the same time a DMA read be-
gins on the PCI bus, then the processor I/O read will wait
for the DMA read to be completed before it can master its
read on the PCI bus. Meanwhile, the DMA read will wait
for the processor I/O read to be completed before it can
master its read on the GSC bus. Since both reads are wait-
ing for the other to be completed, we have a deadlock
case. One solution to this problem is to detect the dead-
lock case and retry or split one of the transactions to
break the deadlock. In general, the bus interface ASIC
uses the GSC split protocol to divide a GSC transaction
and allow a PCI transaction to make forward progress
whenever it detects a potential deadlock condition.

Unfortunately, the bus interface ASIC adds more latency
to the round trip of DMA reads. This extra latency can
have a negative affect on DMA read performance. The
C-class workstation has a greater latency on DMA reads
than the B-class workstation. This is due primarily to the
extra layer of bus bridges that the DMA read must traverse
to get to memory and back (refer to Figures 1 and 2).
The performance of DMA reads is important to outbound
DMA devices such as network cards and disk controllers.
The extra read latency is hidden by prefetching consecu-
tive data words from main memory with the expectation
that the I/O device needs a block of data and not just a
word or two.

Open Standard Challenges

The PCI bus specification, like most specifications, is not
perfect. There are areas where the specification is vague
and open to interpretation. Ideally, when we find a vague
area of a specification, we investigate how other design-
ers have interpreted the specification and follow the
trend. With a proprietary bus this often means simply con-
tacting our partners within HP and resolving the issue.
With an industry-standard bus, our partners are not within
the company, so resolving the issue is more difficult. The
PCI mail reflector, which is run by the PCI SIG at
www.pcsig.com, is sometimes helpful for resolving such
issues. Monitoring the PCI mail reflector also gives the

56 May 1998 • The Hewlett-Packard JournalArticle 8 • 1998 Hewlett Packard Company

benefit of seeing what parts of the PCI specification ap-
pear vague to others. Simply put, engineers designing to
a standard need a forum for communicating with others
using that standard. When designing to an industry stan-
dard, that forum must by necessity include wide represen-
tation from the industry.

The PCI specification has guidelines and migration plans
that PCI card vendors are encouraged to follow. In prac-
tice, PCI card vendors are slow to move from legacy
standards to follow guidelines or migration plans. For
example, the PCI bus supports a legacy I/O* address
space that is small and fragmented. The PCI bus also has
a memory address space that is large and has higher write
bandwidth than the I/O address space. For obvious rea-
sons, the PCI specification recommends that all PCI cards
map their registers to the PCI I/O address space and the
PCI memory address space so systems will have the most
flexibility in allocating base addresses to I/O cards. In prac-
tice, most PCI cards still only support the PCI address I/O
space. Since we believed that the PCI I/O address space
would almost never be used, trade-offs were made in the
design of the bus interface ASIC that compromised the
performance of transactions to the PCI I/O address space.

Another example in which the PCI card vendors follow
legacy standards rather than PCI specification guidelines
is in the area of PCI migration from 5 volts to 3.3 volts.
The PCI specification defines two types of PCI slots: one
for a 5-volt signaling environment and one for a 3.3-volt
signaling environment. The specification also defines
three possible types of I/O cards: 5-volt only, 3.3-volt only,
or universal. As their names imply, 5-volt-only and 3.3-volt-
only cards only work in 5-volt and 3.3-volt slots respec-
tively. Universal cards can work in either a 5-volt or
3.3-volt slot. The PCI specification recommends that PCI
card vendors only develop universal cards. Even though
it costs no more to manufacture a universal card than a
5-volt card, PCI card vendors are slow to migrate to uni-
versal cards until volume platforms (that is, Intel-based
PC platforms) begin to have 3.3-volt slots.

Verification

Verification Methodology and Goals

The purpose of verification is to ensure that the bus inter-
face ASIC correctly meets the requirements described in

* Legacy refers to the Intel I/O port space.

the design specification. In our VLSI development process
this verification effort is broken into two distinct parts
called phase-1 and phase-2. Both parts have the intent of
proving that the design is correct, but each uses different
tools and methods to do so. Phase-1 verification is carried
out on a software-based simulator using a model of the
bus interface ASIC. Phase-2 verification is carried out on
real chips in real systems.

Phase-1. The primary goals of phase-1 verification can be
summarized as correctness, performance, and compliance.
Proving correctness entails showing that the Verilog model
of the design properly produces the behavior detailed in
the specification. This is done by studying the design
specification, enumerating a function list of operations
and behaviors that the design is required to exhibit, and
generating a suite of tests that verify all items on that
function list. Creating sets of randomly generated trans-
action combinations enhances the test coverage by expos-
ing the design to numerous corner cases.

Performance verification is then carried out to prove that
the design meets or exceeds all important performance
criteria. This is verified by first identifying the important
performance cases, such as key bandwidths and latencies,
and then generating tests that produce simulated loads
for performance measurement.

Finally, compliance testing is used to prove that the bus
protocols implemented in the design will work correctly
with other devices using the same protocol. For a de-
sign such as the bus interface ASIC that implements an
industry-standard protocol, special consideration was
given to ensure that the design would be compatible with
a spectrum of outside designs.

Phase-2. This verification phase begins with the receipt
of the fabricated parts. The effort during this phase is pri-
marily focused on testing the physical components, with
simulation techniques restricted to the supporting role of
duplicating and better understanding phenomenon seen
on the bench. The goals of phase-2 verification can be
summarized as compliance, performance, and compati-
bility. Therefore, part of phase-2 is spent proving that the
physical device behaves on the bench the same as it did
in simulation. The heart of phase-2, however, is that the
design is finally tested for compatibility with the actual
devices that it will be connected to in a production system.

57 May 1998 • The Hewlett-Packard JournalArticle 8 • 1998 Hewlett Packard Company

Verification Challenges

From the point of view of a verification engineer, there
are benefits and difficulties in verifying the implementa-
tion of an industry-standard bus as compared to a pro-
prietary bus. One benefit is that since PCI is an industry
standard, there are plenty of off-the-shelf simulation and
verification tools available. The use of these tools greatly
reduces the engineering effort required for verification,
but at the cost of a loss of control over the debugging and
feature set of the tools.

The major verification challenge (particularly in phase-1)
was proving compliance with the PCI standard. When
verifying compliance with a proprietary standard there
are typically only a few chips that have to be compatible
with one another. The design teams involved can resolve
any ambiguity in the bus specification. This activity tends
to involve only a small and well-defined set of individuals.
In contrast, when verifying compliance with an open stan-
dard there is usually no canonical source that can provide
the correct interpretation of the specification. Therefore,
it is impossible to know ahead of time where devices will
differ in their implementation of the specification. This
made it somewhat difficult for us to determine the specific
tests required to ensure compliance with the PCI standard.
In the end, it matters not only how faithfully the specifica-
tion is followed, but also whether or not the design is com-
patible with whatever interpretation becomes dominant.

The most significant challenge in phase-2 testing came in
getting the strategy to become a reality. The strategy de-
pended heavily on real cards with real drivers to demon-
strate PCI compliance. However, the HP systems with
PCI slots were shipped before any PCI cards with drivers
were supported on HP workstations. Creative solutions
were found to develop a core set of drivers to complete
the testing. However, this approach contributed to having
to debug problems closer to shipment than would have
been optimal. Similarly, 3.3-volt slots were to be sup-
ported at first shipment. The general unavailability of
3.3-volt or universal (supporting 5 volts and 3.3 volts)
cards hampered this testing. These are examples of the
potential dangers of “preenabling” systems with new
hardware capability before software and cards to use
the capability are ready.

An interesting compliance issue was uncovered late in
phase-2. One characteristic of the PA 8000 C-class system
is that when the system is heavily loaded, the bus interface

ASIC can respond to PCI requests with either long read
latencies (over 1 µs before acknowledging the transaction)
or many (over 50) sequential PCI retry cycles. Both behav-
iors are legal with regard to the PCI 2.0 bus specification,
and both of them are appropriate given the circumstances.
However, neither of these behaviors is exhibited by Intel’s
PCI chipsets, which are the dominant implementation of
the PCI bus in the PC industry. Several PCI cards worked
fine in a PC, but failed in a busy C-class system. The PCI
card vendors had no intention of designing cards that
were not PCI compliant, but since they only tested their
cards in Intel-based systems, they never found the prob-
lem. Fortunately, the card vendors agreed to fix this issue
on each of their PCI cards. If there is a dominant imple-
mentation of an industry standard, then deviating from
that implementation adds risk.

Firmware

Firmware is the low-level software that acts as the inter-
face between the operating system and the hardware.
Firmware is typically executed from nonvolatile memory
at startup by the workstation. We added the following
extensions to the system firmware to support PCI:

� A bus walk to identify and map all devices on the PCI
bus

� A reverse bus walk to configure PCI devices

� Routines to provide boot capability through specified
PCI cards.

The firmware bus walk identifies all PCI devices con-
nected to the PCI bus and records memory requirements
in a resource request map. When necessary, the firmware
bus walk will traverse PCI-to-PCI bridges.* If a PCI device
has Built-in Self Test (BIST), the BIST is run, and if it fails,
the PCI device is disabled and taken out of the resource
request map. As the bus walk unwinds, it initializes bridges
and allocates resources for all of the downstream PCI
devices.

Firmware also supports booting the HP-UX operating sys-
tem from two built-in PCI devices. Specifically, firmware
can load the HP-UX operating system from either a disk
attached to a built-in PCI SCSI chip or from a file server
attached to a built-in PCI 100BT LAN chip.

* A PCI-to-PCI bridge connects two PCI buses, forwarding transactions from one to the
other.

58 May 1998 • The Hewlett-Packard JournalArticle 8 • 1998 Hewlett Packard Company

Firmware Challenges

The first challenge in firmware was the result of another
ambiguity in the PCI specification. The specification does
not define how soon devices on the PCI bus must be ready
to receive their first transaction after the PCI bus exits
from reset. Several PCI cards failed when they were
accessed shortly after PCI reset went away. These cards
need to download code from an attached nonvolatile
memory before they will work correctly. The cards begin
the download after PCI reset goes away, and it can take
hundreds of milliseconds to complete the download. Intel
platforms delay one second after reset before using the
PCI bus. This informal compliance requirement meant
that firmware needed to add a routine to delay the first
access after the PCI bus exits reset.

Interfacing with other ASICs implementing varying levels
of the PCI specification creates additional challenges.
Compliance with PCI 2.0 (PCI-to-PCI) bridges resulted in
two issues for firmware. First, the bridges added latency to
processor I/O reads. This extra latency stressed a busy
system and caused some processor I/O reads to timeout
in the processor and bring down the system. The firm-
ware was changed so that it would reprogram the proces-
sor timeout value to allow for this extra delay. The second
issue occurs when PCI 2.0 bridges are stacked two or
more layers deep. It is possible to configure the bridges
such that the right combination of processor I/O reads
and DMA reads will cause the bridges to retry each others
transactions and cause a deadlock or starve one of the
two reads. Our system firmware fixes this problem by
supporting no more than two layers of PCI-to-PCI bridges
and configuring the upstream bridge with different retry
parameters than the downstream bridge.

Operating System Support

The HP-UX operating system contains routines provided
for PCI-based kernel drivers called PCI services. The first
HP-UX release that provides PCI support is the 10.20 re-
lease. An infrastructure exists in the HP-UX operating
system for kernel-level drivers, but the PCI bus introduced
several new requirements. The four main areas of direct
impact include context dependent I/O, driver attachment,
interrupt service routines (ISR), and endian issues. Each
area requires special routines in the kernel’s PCI services.

Context Dependent I/O

In the HP-UX operating system, a centralized I/O services
context dependent I/O (CDIO) module supplies support
for drivers that conform to its model and consume its
services. Workstations such as the C-class and B-class
machines use the workstation I/O services CDIO (WSIO
CDIO) for this abstraction layer. The WSIO CDIO provides
general I/O services to bus-specific CDIOs such as EISA
and PCI. Drivers that are written for the WSIO environ-
ment are referred to as WSIO drivers. The services pro-
vided by WSIO CDIO include system mapping, cache
coherency management, and interrupt service linkage. In
cases where WSIO CDIO does need to interface to the I/O
bus, WSIO CDIO translates the call to the appropriate bus
CDIO. For the PCI bus, WSIO CDIO relies on services in
PCI CDIO to carry out bus-specific code.

Ideally, all PCI CDIO services should be accessed only
through WSIO CDIO services. However, there are a
number of PCI-specific calls that cannot be hidden with
a generic WSIO CDIO interface. These functions include
PCI register operations and PCI bus tuning operations.

Driver Attachment

The PCI CDIO is also responsible for attaching drivers to
PCI devices. The PCI CDIO completes a PCI bus walk,
identifying attached cards that had been set up by firm-
ware. The PCI CDIO initializes data structures, such as
the interface select code (ISC) structure, and maps the
card memory base register. Next, the PCI CDIO calls the
list of PCI drivers that have linked themselves to the PCI
attach chain.

The PCI driver is called with two parameters: a pointer
to an ISC structure (which contains mapping information
and is used in most subsequent PCI services calls) and an
integer containing the PCI device’s vendor and device IDs.
If the vendor and device IDs match the driver’s interface,
the driver attach routine can do one more check to verify
its ownership of the device by reading the PCI subsystem
vendor ID and subsystem ID registers in the configuration
space. If the driver does own this PCI device, it typically
initializes data structures, optionally links in an interrupt
service routine, initializes and claims the interface, and
then calls the next driver in the PCI attach chain.

59 May 1998 • The Hewlett-Packard JournalArticle 8 • 1998 Hewlett Packard Company

Interrupt Service Routines

The PCI bus uses level-sensitive, shared interrupts. PCI
drivers that use interrupts use a WSIO routine to register
their interrupt service routine with the PCI CDIO. When a
PCI interface card asserts an interrupt, the operating sys-
tem calls the PCI CDIO to do the initial handling. The PCI
CDIO determines which PCI interrupt line is asserted and
then calls each driver associated with that interrupt line.

The PCI CDIO loops, calling drivers for an interrupt line
until the interrupt line is deasserted. When all interrupt
lines are deasserted, the PCI CDIO reenables interrupts
and returns control to the operating system. To prevent
deadlock, the PCI CDIO has a finite (although large) num-
ber of times it can loop through an interrupt level before
it will give up and leave the interrupt line disabled. Once
disabled, the only way to reenable the interrupt is to re-
boot the system.

PCI Endian Issues

PCI drivers need to be cognizant of endian issues.* The
PCI bus is inherently little endian while the rest of the
workstation hardware is big endian. This is only an issue
with card register access when the register is accessed in
quantities other than a byte. Typically there are no endian
issues associated with data payload since data payload is
usually byte-oriented. For example, network data tends
to be a stream of byte data. The PCI CDIO provides one
method for handling register endian issues. Another
method lies in the capability of some PCI interface chips
to configure their registers to be big or little endian.

Operating System Support Challenges

We ran into a problem when third-party card developers
were porting their drivers to the HP-UX operating system.
Their drivers only looked at device and vendor identifiers
and claimed the built-in LAN inappropriately. Many PCI
interface cards use an industry-standard bus interface
chip as a front end and therefore share the same device
and vendor IDs. For example, several vendors use the
Digital 2114X family of PCI-to-10/100 Mbits/s Ethernet
LAN controllers, with each vendor customizing other
parts of the network interface card with perhaps different
physical layer entities. It is possible that a workstation

* Little endian and big endian are conventions that define how byte addresses are as-
signed to data that is two or more bytes long. The little endian convention places bytes
with lower significance at lower byte addresses. (The word is stored “little-end-first.”)
The big endian convention places bytes with greater significance at lower byte ad-
dresses. (The word is stored “big-end-first.”)

could be configured with multiple LAN interfaces having
the same vendor and device ID with different subsystem
IDs controlled by separate drivers. A final driver attach-
ment step was added to verify the driver’s ownership of
the device. This consisted of reading the PCI subsystem
vendor ID and subsystem ID registers in the configuration
space.

The HP-UX operating system does not have the ability to
allocate contiguous physical pages of memory. Several
PCI cards (for example, SCSI and Fibre Channel) require
contiguous physical pages of memory for bus master task
lists. The C-class implementation, which allows virtual
DMA through TLB (translation lookaside buffer) entries,
is capable of supplying 32K bytes of contiguous memory
space. In the case of the B-class workstation, which does
not support virtual DMA, the team had to develop a work-
around that consisted of preallocating contiguous pages
of memory to enable this class of devices.

Conclusion

PCI and Interoperability. We set out to integrate PCI into
the HP workstations. The goal was to provide our systems
with access to a wide variety of industry-standard I/O
cards and functionality. The delivery of this capability
required the creation and verification of a bus interface
ASIC and development of the appropriate software sup-
port in firmware and in the HP-UX operating system.

Challenges of Interfacing with Industry Standards. There
are many advantages to interfacing with an industry
standard, but it also comes with many challenges. In de-
fining and implementing an I/O bus architecture, perfor-
mance is a primary concern. Interfacing proprietary and
industry-standard buses and achieving acceptable perfor-
mance is difficult. Usually the two buses are designed with
different goals for different systems, and determining the
correct optimizations requires a great deal of testing and
redesign.

Maintaining compliance with an industry standard is an-
other major challenge. It is often like shooting at a moving
target. If another vendor ships enough large volumes of a
nonstandard feature, then that feature becomes a de facto
part of the standard. It is also very difficult to prove that
the specification is met. In the end, the best verification
techniques for us involved simply testing the bus interface
ASIC against as many devices as possible to find where the
interface broke down or performed poorly.

60 May 1998 • The Hewlett-Packard JournalArticle 8 • 1998 Hewlett Packard Company

Finally, it is difficult to drive development and verification
unless the functionality is critical to the product being
shipped. The issues found late in the development cycle
for the bus interface ASIC could have been found earlier
if the system had required specific PCI I/O functionality
for initial shipments. The strategy of preenabling the
system to be PCI compatible before a large number of
devices became available made it difficult to achieve the
appropriate level of testing before the systems were
shipped.

Successes. The integration of PCI into the HP workstations
through design and verification of the bus interface ASIC
and the development of the necessary software components
has been quite successful. The goals of the PCI integration
effort were to provide fully compatible, high-performance
PCI capability in a cost-effective and timely manner. The
design meets or exceeds all of these goals. The bandwidth
available to PCI cards is within 98 percent of the bandwidth
available to native GSC cards. The solution was ready in
time to be shipped in the first PCI-enabled HP workstations
B132, B160, C160, and C180.

The bus-bridge ASIC and associated software have since
been enhanced for two new uses in the second generation
of PCI on HP workstations. The first enhancement pro-
vides support for the GSC-to-PCI adapter to enable specific

PCI functionality on HP server GSC I/O cards. The sec-
ond is a version of the bus interface supporting GSC-2x
(higher bandwidth GSC) and 64-bit PCI for increased
bandwidth to PCI graphics devices on HP C200 and C240
workstations.

Acknowledgments

This article is a summary of some of the challenges expe-
rienced by numerous team members involved in the inte-
gration of PCI into workstations. We would like to specifi-
cally thank several of those team members who helped
contribute to and review this article. George Letey, Frank
Lettang, and Jim Peterson assisted with the architecture
section. Vicky Hansen, Dave Klink, and J.L. Marsh
provided firmware details. Matt Dumm and Chris Hyser
reviewed the operating system information.

References

1. W. Bryg, K. Chan, and N. Fiduccia, “A High-Performance, Low-
Cost Multiprocessor Bus for Workstations and Midrange Servers,”
Hewlett-Packard Journal, Vol. 47, no. 1, February 1996, p. 18.

HP-UX Release 10.20 and later and HP-UX 11.00 and later (in both 32- and 64-bit configurations)
on all HP 9000 computers are Open Group UNIX 95 branded products.

UNIX is a registered trademark of the The Open Group.

61 May 1998 • The Hewlett-Packard JournalArticle 8 • 1998 Hewlett Packard Company

��� 	� 	����

A project manager at the

HP Workstation Systems

Division, Ric Lewis was

responsible for managing the development

of the PCI bus interface ASIC. He came to HP

in 1987 after receiving a BSEE degree from

Utah State University. He also has an MSEE

degree (1993) from Stanford University and

an MBA (1992) from Santa Clara University.

Ric was born in Twin Falls, Idaho, and he is

married and has one son. His outside interests

include basketball, mountain biking, and

skiing.

���� �� ������

Erin Handgen is a techni-

cal contributor at the HP

Workstation Systems

Division working on ASICs for HP work-

stations. He was the lead engineer for the PCI

bus interface ASIC during the shipment phase.

He has a BS degree in computer and electrical

engineering (1986) and an MSEE degree

(1988) from Purdue University. He joined HP

in 1988. Born in Warsaw, Indiana, he is mar-

ried and has three children. His outside inter-

ests include astronomy, camping, and hiking.

������ �� ���������

A hardware design engi-

neer at the HP Fort Col-

lins Systems Laboratory,

Nicholas Ingegneri was the lead verification

engineer for the PCI bus interface ASIC. He

has a BSEE degree (1989) from the Univer-

sity of Nevada at Reno and an MSEE degree

(1994) from Stanford University. He came

to HP in 1990. His outside interests include

travel and camping.

���� �� ��������

Glen Robinson is a tech-

nical contributor at the

HP Workstation Systems

Division. He came to HP in 1979 and was re-

sponsible for the subsystem test for the PCI

network and kernel drivers. He has an MBA

degree (1979) from Chapman College. Born

in Santa Monica, California, he is married and

has two grown children. He enjoys biking and

AKC hunting tests with Labrador retrievers.

� Go to Next Article
� Go to Journal Home Page

http://www.hp.com/hpj/98may/ma98a9.htm
http://www.hp.com/hpj/journal.html

