
May 1998 • The Hewlett-Packard JournalB-1Subarticle 7b •  1998 Hewlett Packard Company

The Hewlett-Packard Approach to Dynamic
Loading within the X Server

The HP X server implementation supports dynamic loading of HP and third-party

hardware and software products using a plug-and-play approach that maintains

X server robustness.

The goal was to simplify creation and support of new products while

eliminating required end-user configuration responsibilities for the X server.

This was accomplished by addressing design limitations in the X Consortium’s

sample server. The HP solution introduces two new paradigms called broker

and coinitialization.

The broker paradigm is the backbone of the HP dynamic loading solution.

This mechanism:

� Provides standard interfaces to support third-party products

� Manages graphics hardware, associated software DDX drivers, and

X extensions

� Supports order independence of product installation

� Permits restriction of end-user configuration to noncritical feature

information

� Reduces system resource requirements by deferring loading X extensions

until they are used

� Maintains a log of selected components and configuration information for

reproducibility and maintenance

� Handles product configuration requirements and clarifies product revision

issues

� Introduces a new X server startup control point, creating a very flexible and

extensible server initialization process for product developers.

����
	 �� �������
	

����
	 �� �������
	

With HP since 1988, Ron-

ald MacDonald is a soft-

ware engineer at the HP

Workstation Systems Division. He was a

member of the X server team responsible for

dynamic loading development and third-party

partnerships. He has a BS degree in forestry

(1975) from the University of Michigan and

an MS degree in computer science (1986)

from the University of Arizona.

B-2 May 1998 • The Hewlett-Packard JournalSubarticle 7b •  1998 Hewlett Packard Company

The coinitialization paradigm defines a straightforward
process for joint initialization of graphics drivers and X
extensions requiring graphics driver support. Solving a
classic chicken and egg dilemma in which the graphics
driver and X extension both need the other in place to
complete their initialization.

Background

The term “X server” refers to the X Window System server
developed at the Massachuset Institute of Technology and
then managed by the X Consortium. The X server is the
functional basis for windows on workstations running the
UNIX operating system. What appears on the computer
screen is the output generated by the graphics card in the
workstation managed by the X server.

Over time the quantity of supported graphics hardware
devices and X extensions has grown to the point where
providing a single binary to support everything is not
practical. In addition, some X extensions do not work
with all graphics cards, and third-party graphics cards and
extensions need support. Since the end user can change
the workstation configuration after initial shipping, a more
flexible approach is mandated that can determine a work-
station’s configuration and select a subset of the binaries
present to support that configuration.

This article discusses how the HP X server implementa-
tion addresses configuration issues encountered during
server initialization. This includes honoring optional end-
user configuration requests, selection of specific graphics
hardware and binaries from an available pool, and accom-
modation of a continuously evolving set of X server exten-
sion binaries. X server extensions are enhancements or
modifications to the core functional X server.

The HP X server implementation accomplishes this inte-
gration by separating the various components into dynam-
ically loaded modules so that all components can be con-
sidered with only a minimal set of binaries loaded to form
the run-time binary for any given X server instantiation.
The set of routines that performs this selection and inte-
gration is referred to as the collector.

Broker Paradigm

The broker paradigm is a very simple concept with sur-
prising capabilities. Brokers represent each dynamically
loaded X server component. Brokers are shared libraries
created by the product vendors. The brokers are called

upon by the collector, which interrogates them individu-
ally while sharing information among all of them. The
collector determines which brokers are eventually se-
lected for loading based on information provided by the
brokers as to what they are and what needs to be loaded.
Other than product installation, no further end-user action
is required because the X server loads the correct brokers
during initialization.

During X server startup, initialization steps occur to fill
the X server data structures. Network sockets are estab-
lished, input and output devices are set up, and X exten-
sions are initialized. All this is done to prepare for enter-
ing the dispatch loop to enable client requests to be
processed by the X server.

The broker paradigm is executed as part of this X server
initialization phase. First, end-user requests, such as
which graphics card to use, are checked for. The re-
quested hardware is tested and identified. If problems are
encountered, defaults are substituted in an attempt to
start up the X server. Since the X server is the primary
human-machine interface, robustness is required.

Next, all the extension brokers present are queried via
standard interface definitions to learn their properties and
graphics requirements. Each broker contains the tradi-
tional product definition and configuration information.
This information, along with target graphics hardware
descriptions, is then presented to all graphics brokers.
Each graphics broker reviews the information provided
and responds with a bid for the hardware and a vote on
each extension. Graphics brokers can represent one or
more graphics drivers capable of supporting specific
graphics hardware with varying X extension support
capabilities.

The collector evaluates the hardware bids, selecting the
highest bidder for each target graphics card. Graphics
broker bids are based on the ability to support specific
hardware, performance optimizations, and product revi-
sions. After the graphics hardware drivers are selected,
the extension votes from the winning graphics brokers
are examined to determine which extensions can be
supported.

After the target dynamic components have been identi-
fied, the selected brokers are again queried to determine
which shared libraries should be loaded to define the se-
lected products. At this point it is known which products

May 1998 • The Hewlett-Packard JournalB-3Subarticle 7b •  1998 Hewlett Packard Company

will be loaded. This information is shared with the se-
lected brokers, providing a new control point in the X
server startup. This control point permits the selected
brokers to review the given X server’s instantiation defini-
tion and make final configuration decisions such as ask-
ing the X server to change shared memory size or identify-
ing additional shared libraries for loading. With this last
information available, the collector proceeds to load the
identified shared libraries in preparation for the normal
graphics and extension initialization steps. Finally, a log
file for recording the configuration and loaded shared
library information is maintained.

Since the collector has all the configuration information
in hand, it is possible to delay loading extension libraries
until the first protocol request for that extension is en-
countered. This can significantly reduce the system re-
sources required for a given X server instantiation and
reduce X server startup time. Some X server extensions
are quite resource intensive.

Coinitialization Paradigm

In the X Consortium’s sample X server, the graphics driv-
ers are initialized before the extensions. No initialization
interplay between graphics drivers and X extensions is
addressed. Yet, with each X extension requiring graphics
driver support, additional special control and information
interfaces are typically introduced with joint initialization
dependencies. Coupling this joint dependency with order
independent product installation and dynamic selection
of components provided by the broker paradigm, missing
or new components become a likelihood. Fortunately, the
HP coinitialization paradigm provides a simple solution.

During screen initialization, graphics drivers check which
dynamically loaded extensions are present. This involves
searching for extensions that require specific graphics
driver support to function correctly. When a particular
supported extension is located, assuming the given graph-
ics driver supports that extension, the required special
initialization steps are taken as far as possible. Frequently,
information must be obtained from the extension before
initialization can be completed. (Remember the exten-
sions have not yet been initialized.) This might involve
initializing function pointers or allocating data structures.
Additionally, a callback is registered with the X server for
later use by the extension during its initialization.

Finally, during extension initialization, the graphics driver
callback is retrieved. The extension can use the callback
to request further actions from the graphics driver. Since
the nature of the callback and its argument list is an
extension-specific convention, the mechanism is very
flexible.

Conclusion

These flexible paradigms not only simplify the HP prod-
uct development and release considerations, they also
make it fairly easy to partner with third-party vendors to
place their products on HP-UX platforms. The standard
interfaces make independent development straight-
forward and dynamic loading permits order independent
product releases and installation. With all the complex
vendor-specified configuration information located in the
brokers and managed by the collector, the end user truly
has a plug-and-play environment.

� Return to Article 7
� Return to Subarticle 7a
� Go to Next Article
� Go to Journal Home Page

http://www.hp.com/hpj/98may/ma98a7.pdf
http://www.hp.com/hpj/98may/ma98a7a.pdf
http://www.hp.com/hpj/98may/ma98a8.htm
http://www.hp.com/hpj/journal.html

